
Towards soundness examination of the

C++ Standard Template Library

Norbert Pataki, Zoltán Porkoláb, and Zoltán Istenes
Eötvös Loránd University, Faculty of Informatics

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
email: patakino@elte.hu, gsd@elte.hu, istenes@inf.elte.hu

Abstract

The Standard Template Library (STL) is an essential part of professional C++ programs. STL
is a type-safe template library which is based on the generic programming paradigm and helps to
avoid some possible dangerous C++ constructions. With its usage, increases the efficiency, safety and
quality of the code. However, the C++ standard gives the definition of STL by informal description
that can lead to ambiguous explanations. In this paper we create a formal specification of STL.
With these instruments we prove the soundness of STL implementations, libraries over the STL and
programs that use STL. Our solution is based on the Hoare-method, that we extend to describe the
claims of the generic programming paradigm.

Keywords: program correctness, C++, STL

1. Introduction

Generic programming is a software develop-
ment technique generalizing software com-
ponents so that they can be easily reused.
Using this approach we can greatly reduce
the complexity of a software library. The
generic programming most typical appear-
ance is the C++ Standard Template Li-
brary (STL). Generative programming [6] is
mightly based on the generic programming.
The aim of the generative programming is au-
tomatic code generation.

Every programmer wants to avoid bugs in
own code. Usually the test cases cannot cover
the all of the potentials and, of course, cannot
prove the code’s soundness in mathematical
way. But there are several methods to prove
it like a mathematical theorem, what is more,
there are some opportunity to do it automat-
ically. One of the most widely used method is
the Hoare-method [9]. It is more important to
prove a widely-used library’s soundness, be-
cause the usage of the library appears in thou-
sands of programs. Because in the last years
Java and C# were extended to be qualified
to generic programming, more important to
make a mathematic based soundness proving

to this paradigm.
The STL framework works well for years,

the codes that use STL are very common.
Alas, the standard does not give a formal
definition of the components. This can lead
to ambiguous explanations. For example, the
standard does not define well, what the order
is in a multiset, where the keys are equivalent.
Another example is the for each algorithm: it
is a non-modifying algorithm, but it is able
to modify the object. The problem is more
important when the application runs in seri-
ous situation. The lack of formal definition is
more serious if we check a STL’s new imple-
mentation: very hard to prove soundness of
an implementation without framework.

The usage of STL does not mean, that
the programs do not contain mistakes. For
example, vector’s operator [] does not check if
the index is correct. The vector has a member
function called at(), this throws an exception,
when the index is not correct. When an end()
iterator or an iterator which does not point
anywhere, is dereferenced, it can also cause
undefined behaviour. These mistakes can be
avoided by a mathematical foundation.

In view of the relationship between gener-



ative and generic programming, it is impor-
tant to make correct generic programs.

2. The architecture of the Stan-
dard Template Library

STL is part of the C++ standard library. It
consists of many useful template data struc-
tures that we can instantiate with our types,
algorithms, that work together with these
containers [3, 4, 15]. They can work well be-
cause the containers offer iterators, and the
algorithms work with the iterators. This con-
struction supports that we can extend the li-
brary with new containers and/or algorithms.

The standard guarantees the complexity
of the operations, that every implementation
has to perform.

2.1 Containers

STL offers several template containers: se-
quence containers (vector, deque, list) and as-
sociative containers (set, multiset, map and
multimap). There are three data structures
(stack, queue and priority queue) in the STL,
they are the adapters. They have no iterators,
and they work over a sequence container with
a short interface.

The containers hold objects of the same
type, other words a container is a sequence of
objects.

Every container has some member func-
tions, so they can work without the algo-
rithms. For example, every sequence con-
tainer has a push back() member function,
and every container offers the size() member
function.

One of the most widely-used containers is
the vector, because it guarantees a more pow-
erful, and more secure application, than the
lowly C-style arrays. It manages the memory
for own, so it can be grow, when it needs, does
not cause memory-leaks, and we can avoid a
lot of problems.

The associative containers hold objects or-
dered, so they need a compare function on the
keytype. Most STL implementations use red-
black trees for the associative containers [5].

This guarantees efficiency.

2.2 Iterators

Iterators are the generalization of pointers
[13]. Iterators have two essential roles in the
STL. Firstly, the iterators guarantee access
for the elements in a container. Secondly,
they enable the containers and algorithms to
work together. Iterators have some elemen-
tary functions (e.g. operator * – dereferences
an iterator, operator ++ – makes the iterator
step to next element in the container, opera-
tor == – returns true if two iterators point
at the same element, etc.).

Every container offers iterators (except
for the adapters), but the belonging differ-
ent container iterators have not the same set
of operations. Iterators have a hierarchy. We
can speak about: InputIterators, OutputIt-
erators, ForwardIterators, BidirectionalItera-
tors and RandomAccessIterators.

Every container offers four different it-
erator types: iterator, const iterator, re-
verse iterator and const reverse iterator.

2.3 Algorithms

The STL offers about sixty algorithms, im-
plemented as template functions. The al-
gorithms can be classified: there are the
non-modifying algorithms (for each, find,
etc.), modifying algorithms (reverse, re-
place if, etc.), ordered ranges algorithms
(merge, binary search, etc.), set opera-
tions (set intersection, etc.), heap opera-
tions (make heap, sort heap, etc.), minimum
and maximum algorithms (min element,
etc.) and the permutation algorithms
(next permutation, etc.).

3. Tools for safe coding

In this section we give an overview on existing
tools and methods of either writing safe code
or proving the correctness of code.



3.1 Algebraic specification

This is a formal tool for specificate contain-
ers and algorithms (e.g. [2]). It supports the
soundness proving, but for it we must apply
structural induction, which works very hard
at STL’s size. Gibbons works on the STL’s al-
gebraic specification, and he worked to make
the specification in Haskell (functional) pro-
gramming language [8].

3.2 Hoare-method

The Hoare-method is an old method to prove
the soundness of abstract programs. It uses
pre- and postconditions as a state of a pro-
gram. The method defines rules for the pro-
gram constructions. With these rules the
procedure is sound and complete. But, of
course it has some limitations. The Hoare-
method works on an abstract machine, there
are no pointers. Assigments execute properly,
that is not true in C++. There are no over-
loaded functions or constructors. Note that
the Hoare-method has an extension for mul-
tithreaded environments [14].

3.3 Concept checking

Concept checking is programming method,
what able to use the template parameters in
a safety way [11]. C++ uses lazy instantion
to the template parameters [16, 17, 19]. This
means, if a function uses an operation on the
template type, it is checked, when the call of
function compiles. If this function not used,
it will not compile. Therefore if the operation
does not exist on the type, it can be problem.
Other languages (e.g. Ada) check is it at the
instantion, and give an error message, if the
operation does not exist, not depends on us-
age. This is safer, but not so flexible as lazy
instantion.

The Boost has a Concept Checking li-
brary [18], which able to use STL more eas-
ier, because it make possible to work with
C++, like Ada. The implementation of the
library use template metaprogramming tech-
niques [1]. We can read about the improve-

ment of this library [21].

3.4 STLlint

STLlint [10] is a static checking tool that tries
to find semantic errors in the usage of the
STL. STLlint analyses user programs and re-
ports error messages for any construct it can-
not prove correctness with respect to the se-
mantics of the STL. STLlint is an online pro-
gram, everybody can send a program over the
internet, and gets back the message. It is use-
ful software, but there are a lot of imperfec-
tion: several known errors are uncaught by
STLlint.

3.5 Tecton

Tecton is a specification language for describ-
ing and using abstract concepts in formal
software development [12, 20]. It is made
by David R. Musser and others. Algebraic
specification is used by the Tecton. From the
formal specification Tecton makes (not nec-
essarily constructive way) Prolog programs
(Interface Engine). This cannot be used di-
rectly. Between the two parts there is the
Run-Time Analysis Oracle – RAO. This can
bind IEs with C++ generic algorithm being
verified. The RAO works with C++ classes.
The specification class must be implemented
with 3 member functions: precond(), that
checks the precondition, post update(), that
simulize the application of the function, and
postcond(), that checks the postcondition.
The implementation of this class is not trivial.

MELAS is the MEta-Level integrated
Analysis System, which was developed for the
analysis of C++ template-based generic al-
gorithms. It allows the user to verify and
test C++ generic programs at a meta-level
directly. MELAS is implemented on top of
the GNU C/C++ debugging system (gdb).
This can link IE and RAO. The verification
process can work automatically or manually.
The debugger executes this program, that use
specification object, in a loop. When the loop
ends, the verification ends.

This is an interesting solution, but this



cannot prove soundness of a program or a li-
brary that use STL. And this approach is not
easy.

4. Extension of Hoare–method

Before specificate the STL, we show our for-
malism, that based on the pre- and post-
conditions: {P}S{Q}, where P and Q is a
first-order logic expression, and S is a pro-
gram, in this case S will be syntactical good
C++ instruction or instructions. P is called
precondition, Q is called postcondition. We
won’t write out the std namespace.

We had to extend the Hoare’s formal tools
to be able to specificate the STL and impor-
tant C++ constructions.

In C++ we can use an object (for exam-
ple, an iterator or an int variable) before it
get value. This state is represented by a ?
symbol, for example {i =?}.

The Undef symbol means that program
effect is undefined. It means there will be
a problem, maybe a runtime error, or some-
thing else.

An order can throw an exception, so
Exc(a) means is the program throws an ex-
ception of type a.

Algorithms can substitute loops, so al-
gorithms often mean an sequential orders.
SEQ(f(a), g(b)) means the sequential execu-
tion of f(a) and g(b).

Types have general invariants, so do the
STL containers. I means the class or typein-
variant.

The assignment in C++ is dissimilar from
other languages. When we write = in C++, it
can be two different functions depend on the
context. The copy constructor runs in the
case, when we create an object and immedi-
ate give it value, (for example: int i=0;).
The assignment operator runs, when we use
operator= to a defined object, for example:
it=v.begin();, where it is an iterator. For
an arbitrary class this functions can work im-
properly. So, we cannot assume, this func-
tions are correct. In the formalism, we will
use 2 symbol, one for the copy constructor
(cpctor), and one for the assignment opera-

tor.
The STL containers are abstract se-

quences according to their traverses, so a
container named v can describe this way:
v =< v1, v2, . . . , vn >. An empty container is
formalized:v =<>. The vector index starts
with 0, rather a vector write this way:
v =< v0, v1, . . . , vn >. The container objects
can be constant and non-constant. The const
member functions can be applied to a con-
stant and a non-constant too, but a non-const
member function do not allow to apply to a
const object. C++ supports overloading on
const. We will describe x as a constant con-
tainer: const(x), and y as a non-const con-
tainer: ¬const(y).

Let us show some examples: from the vec-
tor class:

{v =< v0, v1, . . . , vn >}
s = v.size();

{s = n + 1 ∧ v =< v0, v1, . . . , vn >}

{v =< v0, v1, . . . , vn > ∧i ≤ n ∧ ¬const(v)}
T t = v[i];

{t = t.vpctor(vi)∧v =< v0, v1, . . . , vn > ∧¬const(v)}

{v =< v0, v1, . . . , vn > ∧i ≤ n ∧ const(v)}
T t = v[i];

{t = t.vpctor(vi)∧v =< v0, v1, . . . , vn > ∧const(v)}
This two last specification shows that

operator[] is overloaded with const, and
this two functions are not the same:

{v =< v0, v1, . . . , vn > ∧(∗it = v.end∨∗it =?)∧
type(it) = vector < T > ∧¬const(v)∧¬rev it(it)}

v.erase(it);

{Undef}

This is a part of the set (associative con-
tainer) specification:



I = {LTC(T, operator <)}

{s =< x1, x2, . . . , xn > ∧
∧¬const(s) ∧ ∃j : 1 ≥ j ≥ n : a = xj

pair < set < T >:: iterator, bool >

p = s.insert(a);

s =< x1, x2, . . . , xn > ∧¬const(s)∧
∧p.second = false∧

∧ ∗ (p.first) = xj ∧ ¬rev it(p.first)

∧const it(p.first)∧type(p.first) = set < T >

Iterators have more difficult formalism.
The most important attribute is where points
an iterator: ∗it = vi means that, an iterator
named it, points to vi. There are const it-
erators, and iterators: const it(it) describes
a const iterator, and ¬const it(it) describes
it as an iterator. A reverse iterator can be
described this way: rev it(it) and a not re-
verse iterator implicitly ¬rev it(it). Itera-
tors have a hierarchy. If an iterator is Ran-
domAccessIterator, that will be formalized:
cat(it) = Ran. Implicitly cat(it) = Bi means
it is a BidirectionalIterator, cat(it) = For
means it is a ForwardIterator, cat(it) = In
means it is an InputIterator, cat(it) = Out
means it is an OutputIterator. Of course, we
have to describe the iterator operations, too.

The iterator hierarchy could be described
this way:

cat(it) = Ran ⇒ cat(it) = Bi

cat(it) = Bi ⇒ cat(it) = For

cat(it) = For ⇒ cat(it) = In

cat(it) = In ⇒ cat(it) = Out

Containers determine their iterator cate-
gory:

type(it) = vector < T >⇒ cat(it) = Ran

type(it) = list < T >⇒ cat(it) = Bi

etc.

Let assume, we define a new
list<T>::iterator. This can be described:

{true}

list < T >:: iterator i;

{type(i) = list < T > ∧¬rev it(i)∧
¬const it(i) ∧ ∗i =?}

Algorithms do not require new formal
tools.

{x =< x1, x2, . . . , xn > ∧
cat(it1) = In ∧ cat(it2) = In∧

∗it1 = xk ∧ ∗it2 = xl∧
¬rev it(it1) ∧ ¬rev it(it2)}

for each(it1, it2, f);

{SEQ(f(xk), f(xk+1), . . . , f(xl−1))∧
x =< x1, x2, . . . , xn > ∧

cat(it1) = In ∧ cat(it2) = In∧
∗it1 = xk ∧ ∗it2 = xl∧

¬rev it(it1) ∧ ¬rev it(it2)}
After the specification of the STL, the

method is able to prove correctness of a pro-
gram, library or an implementation.

5. Experiments, Conclusions
and Future works

Meanwhile we created the formal specifi-
cation, find some interesting observations.
Notwithstanding the standard describes the
for each, the find if, etc. algorithms as non-
modifying algorithms, we can change the con-
tainer with these algorithms with a proper
function. However, this problem cannot be
caught by the STLlint.

In this paper, we showed a potential for-
malism for the C++ STL. This formalism
supports soundness proving STL implemen-
tations, libraries over the STL, and programs,
that use the STL. We specificated a part of
the STL and showed some observations. The



method can be extend for multithreaded sys-
tems.

There are a lot of work to make this
method work properly: it would be nice to
make a program that made this check au-
tomatically. The STLlint works, but it can-
not prove the soundness, and there are some
scantiness. Our method able to get more
problem, than STLlint.

AspectC [22] is an extension to the aspect-
oriented programming (AOP). Pre- and post-
conditions can be checked with this paradigm.
Unfortunately, AspectC does not support the
weaving in template instances, yet.

References

[1] Andrei Alexandrescu: Modern C++ De-
sign: Generic Programming and Design
Patterns Applied. Addison-Wesley (2001)

[2] Sergio Antoy, Dick Hamlet: Automatically
Checking an Implementation against Its
Formal Specification (1999)

[3] Matthew H. Austern: Generic Program-
ming and the STL. Addison-Wesley (1999)

[4] Ulrich Breymann: Designing Components
with C++ STL: A New Approach to Pro-
gramming, Addison-Wesley (1998)

[5] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest: Introduction to Algo-
rithms, McGraw Hill (1990)

[6] Krzysztof Czarnecki, Ulrich W. Eisenecker:
Generative Programming: Methods, Tools
and Applications. Addison-Wesley (2000)

[7] David L. Deflefs: An Overview of the Ex-
tended Static Checking System, Proc. of
The First Workshop on Formal Methods in
Software Practice (1996)

[8] Jeremy Gibbons: Patterns in Datatype-
Generic Programming, In J. Striegnitz, edi-
tor, DPCOOL (2003).

[9] C. A. R. Hoare: An axiomatic basis for
computer programming. Commun. ACM,
12(10):576-580, 1969.

[10] Douglas Gregor: STLlint
http://www.cs.rpi.edu/~gregod/STLlint/

[11] Jaakko Jarvi, Jeremiah Willcock, Andrew
Lumsdaine: Concept-Controlled Polymor-
phism. In proceedings of GPCE 2003, LNCS
2830, pp. 228-244.

[12] D. Kapur, D. R. Musser, X. Nie: An
Overview of the Tecton Proof System, The-
oretical Computer Science, Vol. 133, pp.
307-339 (1994)

[13] Scott Meyers: Effective STL. Addison-
Wesley (2001)

[14] S. Owicki, D.Gries: An axiomatic proof
technique for parallel programs, Acta Infor-
matica 6, pp. 319-340, (1976)

[15] Musser and Stepanov: Generic Program-
ming Proceedings of the ACM SIGSAM In-
ternational Symposium on Symbolic and Al-
gebraic Computation 1989

[16] Bjarne Stroustrup: The C++ Programming
Language Special Edition. Addison-Wesley
(2000)

[17] Bjarne Stroustrup: The Design and Evolu-
tion of C++. Addison-Wesley (1994)

[18] The Boost concept checking library.
http://www.boost.org/libs/
concept_check/concept_check.htm

[19] David Vandevoorde, Nicolai M. Josuttis:
C++ Templates: The Complete Guide.
Addison-Wesley (2002)

[20] Changqing Wang and David R. Musser: Dy-
namic Verification of C++ Generic Algo-
rithms, Software Engineering Vol. 23. (5)
pp. 314-323 (1997)

[21] István Zólyomi, Zoltán Porkoláb: Towards a
general template introspection library Gen-
erative Programming and Component Engi-
neering LNCS Vol.3286(2004) pp. 266-282.

[22] AspectC, http://aspectc.org/


