

An Analysis of the Fault Correction Process in a Large-Scale SDL Production
Model

Dolores Zage Wayne Zage
Software Engineering Research Center

Ball State University
Muncie, IN 47306 USA

+1 765 285 8642
{dmz, wmz }@cs.bsu.edu

Abstract

Improvements in the software development process
depend on our ability to collect and analyze data drawn
from various phases of the development life cycle. Our
design metrics research team was presented with a large-
scale SDL production model plus the accompanying
problem reports that began in the requirements phase of
development. The goal of this research was to identify and
measure the occurrences of faults and the efficiency of their
removal by development phase in order to target software
development process improvement strategies. Through our
analysis of the system data, the study confirms that
catching faults in the phase of origin is an important goal.
The faults that migrated to future phases are on average
ten times more costly to repair. The study also confirms
that upstream faults are the most critical faults and more
importantly it identifies detailed design as the major
contributor of faults, including critical faults. When the
entire correction process is accounted for, this project
follows the Pareto principle, or the 80/20 rule. However,
when observing only downstream activities this ratio is
much more extreme, approximating a 95/5 distribution.

1. Introduction

The authors have been studying design metrics as
indicators of fault-prone software components in research
supported by the Software Engineering Research Center.
Over a fifteen-year validation period, on projects over a
wide variety of application areas, these design metrics have
been shown to target fault-prone design components
[8,9,10,11]. The research reported in this paper is an
extension of that previous metrics work with the goal of
exploring the distribution of faults, their types and
techniques of fault removal in the interest of providing
improvements in the software development process.

The study began on a large-scale industrial software
system written in the Specification and Description
Language (SDL). SDL is a standard language for the
specification and description of systems. Its more recent

versions contain object orientation, remote procedure calls
and non-determinism [5]. SDL is used in
telecommunications, as well as in other real-time,
distributed and communicating systems to increase
productivity, reduce faults and improve maintainability.

The analysis presented here has study data that is
especially useful since the data supplied was compiled as
early as the requirements phase. Such thorough fault
reporting is relatively uncommon and is most helpful in
determining the origin and resolution of faults in the
development process. The authors were fortunate enough to
have been granted access to problem reports from an
organization with a strong CMM1 rating. Once the
requirements had reached a satisfactory level of stability,
problem reports were submitted and catalogued. This study
data is also valuable because it utilizes a compressed
software development environment that employs a fourth
generation language with automatic code generation.

The data consisted of the production model and the
related problem reports for the model. The SDL production
model consisted of 1600 SDL components (processes,
states, state transitions and procedures), accompanied by
602 problem reports. Our research team had the task of
tracking each fault identified in the problem reports back to
its SDL component. Each problem report consisted of 35
fields that included the development cycle phase of origin
and phase found, severity class, a fault class, detection
method and the amount of effort required to resolve the
fault. In addition, a separate analysis section was appended
to each report detailing the description of the problem, the
problem history, the suggested cause and solution and
subsequent changes to the model.

1 CMM stands for Capability Maturity Model. This is an independent
industry rating system that rates the maturity of a company’s software
development process. Companies are then assigned a CMM Level
ranging from 1, which represents an ad hoc process to 5 representing a
fully mature and evolving process. CMM Levels of 4 or above are
considered to be high, and reflect development processes that are among
the best in the business.

 2

2. Analysis of problem reports

The analysis began by categorizing the problem reports
by severity class and development phase. As seen from
Table 1, the majority of the reports stemmed from faults
attributed to detailed design. This phase also accounts for
the maximum number of faults designated as critical. Of
these 11 faults, 5 of them were removed in detailed design,
leaving 6 to be found later in the development life cycle.
Some reports have indicated that coding errors are more
severe than design errors [7]. Our results indicate that
detailed design in particular is the phase that contains the
most critical faults in this SDL model.

Table 1. Number and severity of problem reports by
development phase

.

For these study data, 75% (455/603) of the reports
originated in the upstream phases of software development.
This is a marked difference over the projects studied in the
Marick Report [6]. The average percentage of the upstream
faults in his survey was 39%. It has been shown [4] that
faults identified earlier in the development process are
cheaper to fix than faults identified late in the process. Very
few (2.5%) of the total faults reported originated in the
coding phase. This outcome can be attributed to the
development environment, since SDL by its nature stresses
design over coding. Thus design is maximized (along with
the potential to originate faults) and coding is minimized.
However, pushing faults into the upstream phases may
reduce the total cost of the entire system. The emphasis on
design in turn leads to a situation where the bulk of the
faults originate in the design phases of development.

The sorting of the reports into the fifteen different fault
classes is presented in Table 2. Note that the largest
category, containing almost 20% of reports, was named
“unknown”. This category contains the reports that did not
list a fault type. The two fault classes of “data” and
“interface” combined contain 33% (200/603) of the reports.
An interface fault interacts with other components or
drivers through calls, macros, control blocks or a parameter

list. Ninety of the 118 interface faults and 73 of 82 data
faults entered the system during the design phase of
software development.

The separation of each fault class into problems that
were detected within the development phase (in-phase) and
those that were detected in a later software development
phase (post-phase) was completed to determine the latency
for various fault types (Table 3). Observing the six classes
of faults that contain over 10 reports and not including the
category “unknown” (Table 2), three fault classes, namely
“data”, “initialize” and “reqment” roughly possess an even
distribution between in-phase and post-phase discovery
(Table3).

Table 2: Number and severity of problem reports by
fault class

Only logic faults are discovered earlier: 2/3 are in-phase,
1/3 are post-phase. The two classes that exhibited the
opposite pattern of discovery were the classes of “other”
and “interface”. Only 1/5 of the “other” reports were
identified in-phase while 4/5 slipped into later phases.
Interface faults also were discovered later, with 2/5 being
discovered within the phase and 3/5 sliding into later
phases.

When observing the remaining nine fault types, which
make up approximately just 6% of all the reports (34/602),
six of the nine are identified mostly in-phase and the
remaining three are identified post-phase. Of these three

 3

post-phase fault types, two, “rel/repeat” and “user-int” had
higher than the average effort per problem report at 5.1 (see
Table 6). In fact, the single problem report denoting the
fault class of “rel/repeat” expended 24 hours to remove the
fault.

Table 3. Fault class separated by in and post-phase
discovery

In a fault classification for a Hewlett Packard division
system provided in Table 4, logic faults are the major
source of problems, followed by documentation and
computation [3]. Logic and computation are most likely to
occur during coding. Our system has very few coding
errors, and with its emphasis on the design phase, logic
faults are minimized and removed with efficiency (see
Table 3). Interesting in itself is that a category employing
the concept of “other” appears in both classifications and
has a significant percentage of the total faults. In this
study, the faults classified as “other” have a poor in-phase
discovery rate. It is well known that finding faults later
magnifies the effort to correct, also verified by this study.
The fault classification “other” has the second highest
effort per report. Implications are that one-of-a-kind type of
classifications that are placed into this catch-all category
should be carefully scrutinized. Unique fault types require
more effort. This statement was also observed in this
study’s fault class distribution where the classes that have a
small number of reports such as “rel/repeat” and “user-int”
are responsible for a higher than average effort/report.

Table 4. Fault classification from a Hewlett Packard
division system

 This historical fault classification can be useful as long
as the same process and activities are executed and as long
as the recording of the type of fault provides true insight
into the nature of the fault. A concern is that 29% of the
reports either did not record a fault class or selected the
category “other”.

A second focus in this study was to measure the
effectiveness and efficiency of the fault removal process.
Table 5 identifies the source of the fault and phase in which
that fault was identified. As observed from Table 5, 31%
of the requirements faults were eliminated in the
requirements phase, 30% of requirements faults were
eliminated in preliminary design, 15% during detailed
design and the remaining were removed during testing.
When observing the large percent of coding faults removed
during the testing phase, recall that there were a total of
only 12 coding faults in all. However, 51% (130) of the
detailed design faults slipped into the testing phase. One
could say that detailed design faults had only one chance
(phase) in which to be discovered, but intra-phase fault
detection was 15% higher during preliminary design. It
seems reasonable to conclude that practitioners could have
benefited from further review during detailed design.

Unfortunately, a number of faults pass from one phase
to the next as seen in Figure 1. The information in Table 5
displays the efficiency of fault removal by phase, but it
does not present the cumulative effect of this slippage for
the entire process. In Figure 1, the vertical arrow going
into each box represents faults injected at that step. The
vertical arrow going out of each box represents the faults
removed at that step. The diagonal arrow represents the
faults passed to the next step. As also observed from Table
5, the requirements phase has a 31% (28/88) removal
efficiency. In preliminarily design, the removal efficiency
increases to 57% (99/(113+60)) thus raising the cumulative
efficiency to 63%. This increasing trend does not continue
through detailed design. The removal efficiency decreases
to 49% and the cumulative efficiency remains stable. Since
there are so few coding faults, it is not reasonable to
comment on that phase. Once again, as seen from the
previous analysis in this paper, detailed design is the least
efficient fault removal phase.

The other important aspect to efficiency is the effort
required to remove the faults. If only a marginal difference
exists between correcting the fault earlier than later, then
many techniques can be applied at anytime for improving
the fault removal process. This investigation confirms that
it is costly to wait. The total effort expended to remove
236 intra-phase faults was 250.5 hours while it took 1964.8
hours to remove the 248 inter-phase faults. Faults
undetected within the originating phase took approximately
eight times more effort to correct. In fact, the problem
doesn’t get better as time passes. “Faults found in the field
are at least an order of magnitude more expensive to fix

 4

than those found while testing”[2]. This also confirms Boehm’s classic result [1] that propagating faults to later

Table 5. Percentage of faults detected in each phase by phase of origin

Phase Found

Phase

of Origin

Requirements Preliminary
Design

Detailed
Design

Coding Testing Totals

Requirements 31% 30% 15% 0% 24% 100%

Preliminary Design 64% 21% 0% 15% 100%

Detailed Design 49% 0% 51% 100%

Coding 16% 84% 100%

Testing 100% 100%

Figure 1. Profile of injected, removed and remaining faults by phase

Table 6. Percentage of effort to correct faults by phase

Phase Found

Phase of Origin

Requirements Preliminary
Design

Detailed
Design

Coding Testing Totals

Requirements 8% 5% 2% 0% 85% 100%

Preliminary Design 21% 12% 0% 67% 100%

Detailed Design 10% 0% 90% 100%

Coding 4% 96% 100%

Testing 100% 100%

 5

phases of development produces a nearly exponential
increase in the effort, and thus in the cost, of fixing those
faults. Table 6 quantifies the effort expended to remove
faults during each phase of software development for this
SDL project. From this table, one can easily determine that
upstream faults that passed into the testing phase will
require significantly more effort to remove than those
removed earlier. To identify the effort expended compared
to the volume of faults either identified in the phase of
origin or passed on to subsequent phases, see Figure 2. The
first column contains the requirement faults data.
Removing 31% of the requirement faults in the
requirements phase took 8% of the total effort. The
remaining 68% of the requirement faults required 92% of

the total effort to remove those faults in subsequent phases.
Preliminary design, column two, had a similar relationship
of faults captured within the phase of origin. However, the
disparity of the effort applied to the intra and inter-
preliminary design faults was not as dramatic as that of
requirement analysis, but it is still significant. The third
column of Figure 2 corresponds to the data of the detailed
design phase. The 49% of the detailed design faults that
were caught in the detailed design phase only consumed
10% of the total effort. The remaining detailed design
faults consumed the lion’s share, 90%, of the total effort.
To place this result in another perspective, 10% of the
detailed design effort was larger than the total effort
expended to eliminate all of the preliminary design faults.

Figure 2: Analysis of inter and intra-phase faults and removal effort by development phase

10%

90%78%
22%8%

92%

49%
51%64%

36%

68%

31%

% of Errors Found % of Errors Found % of Errors Found

% of Effort % of Effort % of Effort

Phase of Origin = Requirements Phase of Origin = Preliminary Design Phase of Origin = Detailed Design

Phase Found <> Phase of Origin
Phase Found = Phase of Origin

 6

The detection methods employed to uncover errors also
were reviewed. The problem reports were categorized by
the detection method identified in the report. There were
eleven methods recorded in the problem reports as seen in
Table 7. Only 3% of the reports did not record the
detection method. The most expensive test detection
method was integration test. On the average this detection

Table 7: Number and Effort by Detection Method

method consumed 17.2 hours per recorded report. Note
however, that approximately half of the integration test
reports did not report effort. Of these reports with no effort
recorded, nine were terminated and thirteen were labeled
new. Additional information on the thirteen new reports
could affect the average for the integration test method.

However, the integration test detection method contained
the highest three total efforts of the 483 reports that had
recorded effort information, thus it is possible that this
average will increase.

Another observation that can be seen from Table 7 is
that the detection methods of author code and group code
review constitute a very minor portion of the total detection
methods. Author code review appears only twice, and
group code appears five times. Two conclusions come to
mind: either this method was not used extensively to
uncover faults or it has a very poor record in uncovering
faults. However, another review category, namely manual
review, uncovered 92 faults. The average effort per report
using a manual review was in the top half based on effort
expended of the eleven methods recorded.

The detection method of interactive test uncovered 29%
of the total faults. These faults consumed 118.75 removal
hours. Thus the faults that were uncovered by interactive
tests were the least costly. Analyzing the 173 problem
reports listing interactive test as the detection method, 141
of the faults were discovered within the development
phase, while the 32 remaining faults were from previous
phases. The source for 89 of these interactive reports was
test problems. Perhaps the reason that interactive tests
uncovered problems with less effort is that this method
uncovered only the least severe problems. When the
reported severity classes for the reports listing the
interactive test as the detection method were compiled, it
was found that 52% of all the cosmetic and 39% of all the
minor class severity reports were identified by interactive
tests. Interactive test has a greater share of minor and
cosmetic faults than the other 11 detection method
categories, thus it should have the greatest efficiency per
test. However, this method was also responsible for
uncovering four critical problems while only consuming
less than 4 hours effort. Only in-house normal use and
system test uncovered as many critical faults, but each
method required additional effort at 11 hours for in-house
and over 65 hours each for system test.

It is also interesting that reports listing critical faults do
not consume the most effort, but the reports cataloging
enhancements and major faults consume the most per
enhancement or fault. These data can be seen in Table 8.
The majority of the reports designate the severity level as
minor or cosmetic. Sixty-two percent of the reports
recorded less than one hour of effort to correct the problem.
These 62% accounted for only 7% of the total effort. There
are only 29 reports with effort recorded at 20 hours or
more, and yet they consume 1380 hours or 56% of the total
effort for all of the reports listing. Or stating it as a
distribution 5% of the reports took 56% of the effort. Seven
of the twenty-nine reports listed requirements as the phase
of origin. Two reports in this set listed preliminary design
as the phase of origin. Eighteen reports listed detail design.

Detection Method

T
o

ta
l N

u
m

b
er

 o
f

 R
ep

o
rt

s

R
ep

o
rt

s
W

it
h

ou
t

E
ff

o
rt

 V
al

u
e

R
ep

o
rt

s
W

it
h

 E
ff

o
rt

 V
al

u
e

T
o

ta
l E

ff
o

rt

A
ve

ra
g

e
o

f
D

et
ec

ti
o

n

M
et

h
o

d

E
ff

o
rt

fo

r
R

ep
o

rt
s

W
it

h
 E

ff
o

rt
 V

al
u

e

%
 o

f
D

et
ec

ti
o

n
M

et
h

o
d

INTEGRATION TEST 74 36 38 652.95 17.2 12.3%

SYSTEM TEST 71 35 36 522.85 14.5 11.8%

AUTHOR CODE
REVIEW

2 0 2 23 11.5 0.3%

RANDOM
UNPLANNED TEST

23 5 18 202.25 11.2 3.8%

MANUAL REVIEW 92 10 82 383.25 4.7 15.3%

IN - HOUSE NORMAL
USE

68 4 64 290.5 4.5 11.3%

REGRESSION TEST 22 0 22 98.75 4.5 3.6%

FUNCTIONAL TEST 56 9 47 149.75 3.2 9.3%

GROUP CODE
REVIEW

5 2 3 2.25 0.8 0.8%

INTERACTIVE TEST 173 2 171 118.75 0.7 28.7%

NOT GIVEN 16 16 0 0 0.0 2.7%

CUSTOMER USE 1 1 0 0 0.0 0.2%

TOTALS 603 120 483 2444.3 5.1 100.0
%

 7

The phases of coding and integration testing each listed
one. As previously noted, the phase of detail design has the
most reports identifying the severity level as critical, it is
also the phase of origin of the most time consuming reports
to fix.

Table 8: Severity Classes Total and Effort

Severity
Class

Number Effort AVERAGE
EFFORT PER
REPORT

Critical 19 117 6.2

Major 134 1103.7 8.2

Minor 305 1005.1 3.3

Cosmetic 52 66 1.3

Enhance
ment

9 152.5 16.9

Unknown 84 0

Total 603 2444.3 4.1

All of the 29 reports were uncovered during later stages
of development. The majority of them were uncovered
during integration (8) and system testing (12) phase.

The fault class of these 29 reports was also explored.
Fourteen of the reports listed interface as the fault class.
From Table 2 the percentage of interface faults for the
entire set of reports falls at about 20%. When considering
only the 29 reports with effort greater than 20 hours,
interface fault now constitutes 48%. As expected, the other
fault classes of data, logic, and other roughly approximate
the same proportion as in the total report population.
Requirement faults have less than the expected distribution
at 2 reports. This perhaps can be explained by the fact that
all of these reports stem from the later stages of
development and the majority, if not all of requirement
fixes have had time to resolve themselves. Surprisingly the
fault classes with very few reports in the total report set
such as err-handling, initialize, rel/repeat are represented
within these 29 reports. This suggests that uniqueness has
its price in terms of effort.

The problem reports also contain documentation on the
history of the report. For example, the submission date, the
submitter, and the resolve date are part of the information.
Also as part of this information is whether a problem was
cloned from another problem set, for example the
associated hardware problem reporting. Of the 29 reports,
16 (55%) were cloned. In the entire database of 603
reports, there were 62 reports that were cloned. Of these 62
reports only 24 had recorded an effort detection method of
which 16 took over 20 hours to correct.

The detection methods by each development phase
were analyzed to determine which methods are most likely
to uncover certain fault categories. This analysis did not
uncover any surprising results. The detection methods
divided themselves more by their availability to perform
the test. For example, in-house normal use was the best at
identifying problems with requirements. Interactive test
was the best method in finding preliminary design and
detail design problems. Random unplanned test and system
test also discovered requirement problems, but these
required more than thirty hours each on average.

The detection methods categorized by fault class were
compiled. There were 11 detections methods. The top three
fault classes, data, requirement and interface faults, which
made up over 50% of the reports were isolated. The
distribution of the type of methods used to uncover all of
the various fault classes exhibited the same pattern of
discovery methods for the individual fault classes of data,
requirement, and interface. This implies that even if a
tester has the knowledge of the fault class, the detection
methods applied would be similar to when this information
is not available.

3. Analysis of Model Changes

When the changes for each problem report were
distributed to approximately 1600 modules in the SDL
production system, 37% of these modules had changes
while 63% did not. Also recall that these problem reports
began with the requirements phase and ended with
maintenance, thus these changes are the aggregate changes
for the entire development process over the entire model.
As expected from the modules that had changes (Table 9),
most of them only had one change. The greatest number of
changes for a module was 16. This particular module was a
setup module and even with its sixteen changes, the effort
associated with these sixteen changes was a little over 26
hours.

Table 9: Percentage of modules with 1 to 16 changes

 8

The modules that required 2 changes were isolated to
determine if fault types occur in pairs. Since there were 15
fault classes, pairs of faults can occur in a total of 105 fault
class combinations. (15*14)/2. When analyzing the 150
modules that required 2 changes, only 19 combinations
were found. and three of the pairs occurred 12%,13% and
14% of the total 105 two change modules.

4. Conclusions and future research directions

The results indicate that detailed design is the phase that
introduces the most critical faults in a developing system.
Detailed design is also the least efficient fault-removal
phase. Moreover, this investigation confirms that it is very
costly to remove faults if they are not detected in their
phase of origin. The types of fault-detection methods used
to uncover the various fault classes exhibit the same pattern
of discovery, suggesting that even if a tester has the
knowledge of the fault class, the detection methods applied
would be similar to when this information is not available.
The results of this study suggest that a further analysis of a
system during detailed design is needed to capture a
relatively high number of faults that often slip through to
downstream life cycle phases.

In the future, a detailed analysis of the module changes
will be performed in order to offer further guidance during
testing. In addition, we will explore whether the
functionality of the module can be used to identify
appropriate fault-detection techniques.

5. Acknowledgements

The research presented in this paper was funded by
Motorola Corporation through the Software Engineering
Research Center (SERC), a National Science Foundation
Industry/University Cooperative Research Center (NSF
Grant No. ECD-8913133).

6. References

1. Boehm, B. W. “Software Engineering”, IEEE Transactions
on Computers, December 1976, pp. 1226-1241.

2. Dalal, S.R., J.R. Horgan, and J.R. Kettenring, “Reliable
Software and Communication: Software Quality, Reliability,
and Safety”, Proceedings of the 15th International
Conference on Software Engineering, 1993, pp. 425-435.

3. Daran, M., and P. Thévenod-Fosse, “Software Error
Analysis: A Real Case Study Involving Real Faults and
Mutations”, ISSTA ’96, pp. 158-171.

4. Eick, S. G., et al, “Estimating Software Fault Content Before
Coding”, Proceedings of the 14th International Conference
on Software Engineering, 1992, pp. 59-65.

5. Ellsberger, J., D. Hogrefe, and A Sarma, SDL, Formal
Object-oriented Language for Communication Systems,
Prentice Hall, Europe, 1997.

6. Marick, B. “A Survey of Software Fault Surveys”, Report
No. UIUCDCS-R-90-1651, Dept. of Computer Science. U.
Illinois at Urbana-Champaign, December 1990.

7. Rubey, R.J., Quantitative Aspects of Software Validation,
Proceedings of the 1975 International Conference on
Reliable Software - SIGPLAN Notices, Vol. 10, June 1975,
pp. 246-251.

8. Wong, W.E., J.R. Horgan, W. Zage, D. Zage and M. Syring,
"Applying Design Metrics to Predict Fault Proneness: A
Case Study on a Large Scale Software System," Software-
Practice and Experience, Vol. 30, No. 14, November 25,
2000, pp. 1587-1608.

9. Zage, W., D. Zage, J. M. McGrew, and N. Sood, “Using
Design Metrics to Identify Error-Prone Components in SDL
Designs”, Proceedings of the 9th International SDL Forum,
Montreal, Canada, June 1999.

10. Zage, W., D. Zage, E. Wong, J. R. Horgan, and M. Syring,
“Applying Design Metrics to a Large-Scale Software
System”, Proceedings of the Ninth International Symposium
on Software Reliability Engineering (ISSRE ’98), Paderborn,
Germany, November 1998.

11. Zage, W. and D. Zage, “Evaluating Design Metrics on
Large-Scale Software”, IEEE Software Journal, July 1993,
pp. 75-81.

