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Abstract 

Improvements in the software development process 
depend on our ability to collect and analyze data drawn 
from various phases of the development life cycle. Our 
design metrics research team was presented with a large-
scale SDL production model plus the accompanying 
problem reports that began in the requirements phase of 
development.  The goal of this research was to identify and 
measure the occurrences of faults and the efficiency of their 
removal by development phase in order to target software 
development process improvement strategies. Through our 
analysis of the system data, the study confirms that 
catching faults in the phase of origin is an important goal.  
The faults that migrated to future phases are on average 
ten times more costly to repair. The study also confirms 
that upstream faults are the most critical faults and more 
importantly it identifies detailed design as the major 
contributor of faults, including critical faults.  When the 
entire correction process is accounted for, this project 
follows the Pareto principle, or the 80/20 rule.  However, 
when observing only downstream activities this ratio is 
much more extreme, approximating a 95/5 distribution. 

 

1. Introduction 
 

The authors have been studying design metrics as 
indicators of fault-prone software components in research 
supported by the Software Engineering Research Center.  
Over a fifteen-year validation period, on projects over a 
wide variety of application areas, these design metrics have 
been shown to target fault-prone design components 
[8,9,10,11].  The research reported in this paper is an 
extension of that previous metrics work with the goal of 
exploring the distribution of faults, their types and 
techniques of fault removal in the interest of providing 
improvements in the software development process. 

The study began on a large-scale industrial software 
system written in the Specification and Description 
Language (SDL).  SDL is a standard language for the 
specification and description of systems. Its more recent 

versions contain object orientation, remote procedure calls 
and non-determinism [5].  SDL is used in 
telecommunications, as well as in other real-time, 
distributed and communicating systems to increase 
productivity, reduce faults and improve maintainability.  

The analysis presented here has study data that is 
especially useful since the data supplied was compiled as 
early as the requirements phase.  Such thorough fault 
reporting is relatively uncommon and is most helpful in 
determining the origin and resolution of faults in the 
development process. The authors were fortunate enough to 
have been granted access to problem reports from an 
organization with a strong CMM1 rating.  Once the 
requirements had reached a satisfactory level of stability, 
problem reports were submitted and catalogued. This study 
data is also valuable because it utilizes a compressed 
software development environment that employs a fourth 
generation language with automatic code generation.  

The data consisted of the production model and the 
related problem reports for the model.  The SDL production 
model consisted of 1600 SDL components (processes, 
states, state transitions and procedures), accompanied by 
602 problem reports.  Our research team had the task of 
tracking each fault identified in the problem reports back to 
its SDL component.  Each problem report consisted of 35 
fields that included the development cycle phase of origin 
and phase found, severity class, a fault class, detection 
method and the amount of effort required to resolve the 
fault. In addition, a separate analysis section was appended 
to each report detailing the description of the problem, the 
problem history, the suggested cause and solution and 
subsequent changes to the model. 

                                                        
1 CMM stands for Capability Maturity Model.  This is an independent 
industry rating system that rates the maturity of a company’s software 
development process.  Companies are then assigned a CMM Level 
ranging from 1, which represents an ad hoc process to 5 representing a 
fully mature and evolving process.  CMM Levels of 4 or above are 
considered to be high, and reflect development processes that are among 
the best in the business. 
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2. Analysis of problem reports 
 

The analysis began by categorizing the problem reports 
by severity class and development phase.  As seen from 
Table 1, the majority of the reports stemmed from faults 
attributed to detailed design.  This phase also accounts for 
the maximum number of faults designated as critical.  Of 
these 11 faults, 5 of them were removed in detailed design, 
leaving 6 to be found later in the development life cycle.  
Some reports have indicated that coding errors are more 
severe than design errors [7].  Our results indicate that 
detailed design in particular is the phase that contains the 
most critical faults in this SDL model. 

Table 1. Number and severity of problem reports by 
development phase 

. 

For these study data, 75% (455/603) of the reports 
originated in the upstream phases of software development.  
This is a marked difference over the projects studied in the 
Marick Report [6].  The average percentage of the upstream 
faults in his survey was 39%.  It has been shown [4] that 
faults identified earlier in the development process are 
cheaper to fix than faults identified late in the process. Very 
few (2.5%) of the total faults reported originated in the 
coding phase.  This outcome can be attributed to the 
development environment, since SDL by its nature stresses 
design over coding.  Thus design is maximized (along with 
the potential to originate faults) and coding is minimized.  
However, pushing faults into the upstream phases may 
reduce the total cost of the entire system.  The emphasis on 
design in turn leads to a situation where the bulk of the 
faults originate in the design phases of development.   

The sorting of the reports into the fifteen different fault 
classes is presented in Table 2. Note that the largest 
category, containing almost 20% of reports, was named 
“unknown”.  This category contains the reports that did not 
list a fault type.  The two fault classes of “data” and 
“interface” combined contain 33% (200/603) of the reports.    
An interface fault interacts with other components or 
drivers through calls, macros, control blocks or a parameter 

list. Ninety of the 118 interface faults and 73 of 82 data 
faults entered the system during the design phase of 
software development.   

The separation of each fault class into problems that 
were detected within the development phase (in-phase) and 
those that were detected in a later software development 
phase (post-phase) was completed to determine the latency 
for various fault types (Table 3).  Observing the six classes 
of faults that contain over 10 reports and not including the 
category “unknown” (Table 2), three fault classes, namely 
“data”, “initialize” and “reqment” roughly possess an even 
distribution between in-phase and post-phase discovery 
(Table3). 

Table 2: Number and severity of problem reports by 
fault class 

 
Only logic faults are discovered earlier: 2/3 are in-phase, 
1/3 are post-phase. The two classes that exhibited the 
opposite pattern of discovery were the classes of “other” 
and “interface”.  Only 1/5 of the “other” reports were 
identified in-phase while 4/5 slipped into later phases.  
Interface faults also were discovered later, with 2/5 being 
discovered within the phase and 3/5 sliding into later 
phases.  

When observing the remaining nine fault types, which 
make up approximately just 6% of all the reports (34/602), 
six of the nine are identified mostly in-phase and the 
remaining three are identified post-phase. Of these three 
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post-phase fault types, two, “rel/repeat” and “user-int” had 
higher than the average effort per problem report at 5.1 (see 
Table 6).  In fact, the single problem report denoting the 
fault class of “rel/repeat” expended 24 hours to remove the 
fault. 

Table 3. Fault class separated by in and post-phase 
discovery 

 

In a fault classification for a Hewlett Packard division 
system provided in Table 4, logic faults are the major 
source of problems, followed by documentation and 
computation [3].  Logic and computation are most likely to 
occur during coding.  Our system has very few coding 
errors, and with its emphasis on the design phase, logic 
faults are minimized and removed with efficiency (see 
Table 3). Interesting in itself is that a category employing 
the concept of “other” appears in both classifications and 
has a significant percentage of the total faults.  In this 
study, the faults classified as “other” have a poor in-phase 
discovery rate.  It is well known that finding faults later 
magnifies the effort to correct, also verified by this study.  
The fault classification “other” has the second highest 
effort per report. Implications are that one-of-a-kind type of 
classifications that are placed into this catch-all category 
should be carefully scrutinized.  Unique fault types require 
more effort.  This statement was also observed in this 
study’s fault class distribution where the classes that have a 
small number of reports such as “rel/repeat” and “user-int” 
are responsible for a higher than average effort/report. 

Table 4. Fault classification from a Hewlett Packard 
division system 

 This historical fault classification can be useful as long 
as the same process and activities are executed and as long 
as the recording of the type of fault provides true insight 
into the nature of the fault.  A concern is that 29% of the 
reports either did not record a fault class or selected the 
category “other”. 

A second focus in this study was to measure the 
effectiveness and efficiency of the fault removal process.  
Table 5 identifies the source of the fault and phase in which 
that fault was identified.  As observed from Table 5, 31% 
of the requirements faults were eliminated in the 
requirements phase, 30% of requirements faults were 
eliminated in preliminary design, 15% during detailed 
design and the remaining were removed during testing.  
When observing the large percent of coding faults removed 
during the testing phase, recall that there were a total of 
only 12 coding faults in all.  However, 51% (130) of the 
detailed design faults slipped into the testing phase.  One 
could say that detailed design faults had only one chance 
(phase) in which to be discovered, but intra-phase fault 
detection was 15% higher during preliminary design.  It 
seems reasonable to conclude that practitioners could have 
benefited from further review during detailed design. 

Unfortunately, a number of faults pass from one phase 
to the next as seen in Figure 1.  The information in Table 5 
displays the efficiency of fault removal by phase, but it 
does not present the cumulative effect of this slippage for 
the entire process.  In Figure 1, the vertical arrow going 
into each box represents faults injected at that step.  The 
vertical arrow going out of each box represents the faults 
removed at that step.  The diagonal arrow represents the 
faults passed to the next step. As also observed from Table 
5, the requirements phase has a 31% (28/88) removal 
efficiency.  In preliminarily design, the removal efficiency 
increases to 57% (99/(113+60)) thus raising the cumulative 
efficiency to 63%.  This increasing trend does not continue 
through detailed design.  The removal efficiency decreases 
to 49% and the cumulative efficiency remains stable.  Since 
there are so few coding faults, it is not reasonable to 
comment on that phase.  Once again, as seen from the 
previous analysis in this paper, detailed design is the least 
efficient fault removal phase. 

The other important aspect to efficiency is the effort 
required to remove the faults.  If only a marginal difference 
exists between correcting the fault earlier than later, then 
many techniques can be applied at anytime for improving 
the fault removal process.  This investigation confirms that 
it is costly to wait.  The total effort expended to remove 
236 intra-phase faults was 250.5 hours while it took 1964.8 
hours to remove the 248 inter-phase faults. Faults 
undetected within the originating phase took approximately 
eight times more effort to correct. In fact, the problem 
doesn’t get better as time passes. “Faults found in the field 
are at least an order of magnitude more expensive to fix 
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than those found while testing”[2]. This also confirms Boehm’s classic result [1] that propagating faults to later 

Table 5. Percentage of faults detected in each phase by phase of origin 

Phase Found 

Phase  

of Origin 

Requirements Preliminary 
Design 

Detailed 
Design 

Coding Testing Totals 

Requirements 31% 30% 15% 0% 24% 100% 

Preliminary Design  64% 21% 0% 15% 100% 

Detailed Design   49% 0% 51% 100% 

Coding    16% 84% 100% 

Testing     100% 100% 

 

 
 

Figure 1. Profile of injected, removed and remaining faults by phase

Table 6. Percentage of effort to correct faults by phase 

Phase Found 

 

Phase of Origin 

Requirements Preliminary 
Design 

Detailed 
Design 

Coding Testing Totals 

Requirements 8% 5% 2% 0% 85% 100% 

Preliminary Design  21% 12% 0% 67% 100% 

Detailed Design   10% 0% 90% 100% 

Coding    4% 96% 100% 

Testing     100% 100% 
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phases of development produces a nearly exponential 
increase in the effort, and thus in the cost, of fixing those 
faults. Table 6 quantifies the effort expended to remove 
faults during each phase of software development for this 
SDL project. From this table, one can easily determine that 
upstream faults that passed into the testing phase will 
require significantly more effort to remove than those 
removed earlier. To identify the effort expended compared 
to the volume of faults either identified in the phase of 
origin or passed on to subsequent phases, see Figure 2.  The 
first column contains the requirement faults data. 
Removing 31% of the requirement faults in the 
requirements phase took 8% of the total effort. The 
remaining 68% of the requirement faults required 92% of 

the total effort to remove those faults in subsequent phases.  
Preliminary design, column two, had a similar relationship 
of faults captured within the phase of origin.  However, the 
disparity of the effort applied to the intra and inter-
preliminary design faults was not as dramatic as that of 
requirement analysis, but it is still significant.  The third 
column of Figure 2 corresponds to the data of the detailed 
design phase.  The 49% of the detailed design faults that 
were caught in the detailed design phase only consumed 
10% of the total effort.  The remaining detailed design 
faults consumed the lion’s share, 90%, of the total effort.  
To place this result in another perspective, 10% of the 
detailed design effort was larger than the total effort 
expended to eliminate all of the preliminary design faults. 

 

 

Figure 2: Analysis of inter and intra-phase faults and removal effort by development phase
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The detection methods employed to uncover errors also 
were reviewed. The problem reports were categorized by 
the detection method identified in the report.  There were 
eleven methods recorded in the problem reports as seen in 
Table 7.  Only 3% of the reports did not record the 
detection method.  The most expensive test detection 
method was integration test.  On the average this detection  

Table 7: Number and Effort by Detection Method 

 

method consumed 17.2 hours per recorded report.  Note 
however, that approximately half of the integration test 
reports did not report effort. Of these reports with no effort 
recorded, nine were terminated and thirteen were labeled 
new.  Additional information on the thirteen new reports 
could affect the average for the integration test method.  

However, the integration test detection method contained 
the highest three total efforts of the 483 reports that had 
recorded effort information, thus it is possible that this 
average will increase. 

Another observation that can be seen from Table 7 is 
that the detection methods of author code and group code 
review constitute a very minor portion of the total detection 
methods.  Author code review appears only twice, and 
group code appears five times.  Two conclusions come to 
mind: either this method was not used extensively to 
uncover faults or it has a very poor record in uncovering 
faults.  However, another review category, namely manual 
review, uncovered 92 faults. The average effort per report 
using a manual review was in the top half based on effort 
expended of the eleven methods recorded. 

The detection method of interactive test uncovered 29% 
of the total faults.  These faults consumed 118.75 removal 
hours. Thus the faults that were uncovered by interactive 
tests were the least costly. Analyzing the 173 problem 
reports listing interactive test as the detection method, 141 
of the faults were discovered within the development 
phase, while the 32 remaining faults were from previous 
phases.  The source for 89 of these interactive reports was 
test problems. Perhaps the reason that interactive tests 
uncovered problems with less effort is that this method 
uncovered only the least severe problems. When the 
reported severity classes for the reports listing the 
interactive test as the detection method were compiled, it 
was found that 52% of all the cosmetic and 39% of all the 
minor class severity reports were identified by interactive 
tests.  Interactive test has a greater share of minor and 
cosmetic faults than the other 11 detection method 
categories, thus it should have the greatest efficiency per 
test. However, this method was also responsible for 
uncovering four critical problems while only consuming 
less than 4 hours effort.  Only in-house normal use and 
system test uncovered as many critical faults, but each 
method required additional effort at 11 hours for in-house 
and over 65 hours each for system test. 

It is also interesting that reports listing critical faults do 
not consume the most effort, but the reports cataloging 
enhancements and major faults consume the most per 
enhancement or fault.  These data can be seen in Table 8.  
The majority of the reports designate the severity level as 
minor or cosmetic.  Sixty-two percent of the reports 
recorded less than one hour of effort to correct the problem. 
These 62% accounted for only 7% of the total effort.  There 
are only 29 reports with effort recorded at 20 hours or 
more, and yet they consume 1380 hours or 56% of the total 
effort for all of the reports listing. Or stating it as a 
distribution 5% of the reports took 56% of the effort. Seven 
of the twenty-nine reports listed requirements as the phase 
of origin. Two reports in this set listed preliminary design 
as the phase of origin. Eighteen reports listed detail design. 
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INTEGRATION TEST 74 36 38 652.95 17.2 12.3% 

SYSTEM TEST 71 35 36 522.85 14.5 11.8% 

AUTHOR CODE 
REVIEW 

2 0 2 23 11.5 0.3% 

RANDOM 
UNPLANNED TEST 

23 5 18 202.25 11.2 3.8% 

MANUAL REVIEW 92 10 82 383.25 4.7 15.3% 

IN - HOUSE NORMAL 
USE 

68 4 64 290.5 4.5 11.3% 

REGRESSION TEST 22 0 22 98.75 4.5 3.6% 

FUNCTIONAL TEST 56 9 47 149.75 3.2 9.3% 

GROUP CODE 
REVIEW 

5 2 3 2.25 0.8 0.8% 

INTERACTIVE TEST 173 2 171 118.75 0.7 28.7% 

NOT GIVEN 16 16 0 0 0.0 2.7% 

CUSTOMER USE 1 1 0 0 0.0 0.2% 

TOTALS 603 120 483 2444.3 5.1 100.0
% 
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The phases of coding and integration testing each listed 
one.  As previously noted, the phase of detail design has the 
most reports identifying the severity level as critical, it is 
also the phase of origin of the most time consuming reports 
to fix.   

Table 8: Severity Classes Total and Effort 

Severity 
Class 

Number Effort  AVERAGE 
EFFORT PER 
REPORT 

Critical 19 117 6.2 

Major 134 1103.7 8.2 

Minor 305 1005.1 3.3 

Cosmetic 52 66 1.3 

Enhance
ment 

9 152.5 16.9 

Unknown 84  0 

Total 603 2444.3 4.1 

 

All of the 29 reports were uncovered during later stages 
of development. The majority of them were uncovered 
during integration (8) and system testing (12) phase. 

The fault class of these 29 reports was also explored. 
Fourteen of the reports listed interface as the fault class. 
From Table 2 the percentage of interface faults for the 
entire set of reports falls at about 20%.  When considering 
only the 29 reports with effort greater than 20 hours, 
interface fault now constitutes 48%.  As expected, the other 
fault classes of data, logic, and other roughly approximate 
the same proportion as in the total report population.  
Requirement faults have less than the expected distribution 
at 2 reports. This perhaps can be explained by the fact that 
all of these reports stem from the later stages of 
development and the majority, if not all of requirement 
fixes have had time to resolve themselves.  Surprisingly the 
fault classes with very few reports in the total report set 
such as err-handling, initialize, rel/repeat are represented 
within these 29 reports. This suggests that uniqueness has 
its price in terms of effort.   

The problem reports also contain documentation on the 
history of the report. For example, the submission date, the 
submitter, and the resolve date are part of the information.  
Also as part of this information is whether a problem was 
cloned from another problem set, for example the 
associated hardware problem reporting.  Of the 29 reports, 
16 (55%) were cloned.  In the entire database of 603 
reports, there were 62 reports that were cloned.  Of these 62 
reports only 24 had recorded an effort detection method of 
which 16 took over 20 hours to correct.  

The detection methods by each development phase 
were analyzed to determine which methods are most likely 
to uncover certain fault categories. This analysis did not 
uncover any surprising results. The detection methods 
divided themselves more by their availability to perform 
the test.  For example, in-house normal use was the best at 
identifying problems with requirements.  Interactive test 
was the best method in finding preliminary design and 
detail design problems.  Random unplanned test and system 
test also discovered requirement problems, but these 
required more than thirty hours each on average. 
 

The detection methods categorized by fault class were 
compiled. There were 11 detections methods. The top three 
fault classes, data, requirement and interface faults, which 
made up over 50% of the reports were isolated. The 
distribution of the type of methods used to uncover all of 
the various fault classes exhibited the same pattern of 
discovery methods for the individual fault classes of data, 
requirement, and interface.  This implies that even if a 
tester has the knowledge of the fault class, the detection 
methods applied would be similar to when this information 
is not available. 
 
3. Analysis of Model Changes  
 

When the changes for each problem report were 
distributed to approximately 1600 modules in the SDL 
production system, 37% of these modules had changes 
while 63% did not.  Also recall that these problem reports 
began with the requirements phase and ended with 
maintenance, thus these changes are the aggregate changes 
for the entire development process over the entire model. 
As expected from the modules that had changes (Table 9), 
most of them only had one change.  The greatest number of 
changes for a module was 16. This particular module was a 
setup module and even with its sixteen changes, the effort 
associated with these sixteen changes was a little over 26 
hours. 

Table 9: Percentage of modules with 1 to 16 changes 
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The modules that required 2 changes were isolated to 
determine if fault types occur in pairs. Since there were 15 
fault classes, pairs of faults can occur in a total of 105 fault 
class combinations.  (15*14)/2. When analyzing the 150 
modules that required 2 changes, only 19 combinations 
were found. and three of the pairs occurred 12%,13% and 
14% of the total 105 two change modules. 
 
4. Conclusions and future research directions 

The results indicate that detailed design is the phase that 
introduces the most critical faults in a developing system.  
Detailed design is also the least efficient fault-removal 
phase.  Moreover, this investigation confirms that it is very 
costly to remove faults if they are not detected in their 
phase of origin.  The types of fault-detection methods used 
to uncover the various fault classes exhibit the same pattern 
of discovery, suggesting that even if a tester has the 
knowledge of the fault class, the detection methods applied 
would be similar to when this information is not available. 
The results of this study suggest that a further analysis of a 
system during detailed design is needed to capture a 
relatively high number of faults that often slip through to 
downstream life cycle phases.  

In the future, a detailed analysis of the module changes 
will be performed in order to offer further guidance during 
testing.  In addition, we will explore whether the 
functionality of the module can be used to identify 
appropriate fault-detection techniques. 
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