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Abstract 

This paper presents a model for estimating the effect of design decisions on software 

reliability based on design metrics developed in the Software Engineering Research Center 

(SERC). The paper introduces the concepts of design significance and stress points, and a method 

to identify and measure these in software.  After a brief overview of selected software reliability 

models, the problem of validating life-critical software is presented.  The paper then investigates 

the proposition that a relationship exists between the design metric D(G) and the defects that are 

found in the field.  A study performed on a subset of a large defense software system provides 

empirical evidence to support the proposition. The last section of the paper describes a high 

reliability engineering process that has been developed based on the concepts in this paper.  The 

process is implemented on an active defense software development program. 

 
Key Words: software reliability, design metrics, high reliability engineering process, software 
stress, design significance. 
 

1. Defining Software Reliability 

In the history of the software industry, the point at which the reliability of a software 

program first became an issue is not known, although it seems reasonable to assume that the issue 

arose shortly after the first program was written.  Butler and Finelli [1] provide the generally 

accepted definitions for reliability categories given in Table 1, Column 2.  Ultra-reliable software 

applications include all safety-critical or life-critical systems.  In particular, this pertains to 

defense, aviation, space, medical, and life-support systems. 
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Table 1. Reliability Categories 

CATEGORY FAILURE RATE  

(PER HOUR) 

DEFECT RATE 

( DEFECTS/KSLOC) 

Ultra-reliability < 10  7− 0.1 

Moderate Reliability 10 3− to  10  7− 0.5 

Low Reliability > 10  3− 1 

 

It is also useful to tie defect rates to the reliability categories in Table 1.  Defect rates that 

were determined to be reasonable during the NASA and IBM Federal Systems programs for such 

applications as the space station, the space shuttle and large commercial systems are given in 

Table 1, Column 3 [5].  Since our research focuses on designing software to produce an expected 

reliability, we will focus on reliability as related to defect rates in this paper.  The software 

reliability expression used in this paper is derived from Dunn [6]: 

 

R = 1- (number_of_defects (predicted or actual) / lines_of_code) 

 

Thus, the reliability of a 300,000 line software program containing (or predicted to contain) 5 

defects per KSLOC (1500 defects total) is: 

 

R = 1 – (5*300/300,000) = 1 – (1500/300,000) = 1 - .005 = .995 

 

This program would fall into the low reliability category of Table 1.   

2. Software Reliability Models 

Many software reliability models have been developed to predict the reliability of a 

software product. Nearly all are based either on failure rate or time between failures, and most use 

measures obtained during testing.  In some cases the models attempt to predict a latent defect 

count using measures obtained during earlier phases, which is then translated into a reliability 

figure.  We survey some of the models here, showing the diversity of reliability modeling. 
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2.1 Complexity Models 

Models based on program complexity have been developed to predict software defects.  

The most well known of these are McCabe’s cyclomatic complexity metric V(G), and Halstead’s 

Volume metric V.  Lennselius [11] analyzed a number of complexity metrics collected for a 

telecommunications system and computed the correlation coefficients among them.  The results 

are shown in Table 2.  The metrics shown in the table are as follows: the number of SDL symbols 

used, SDL; the cyclomatic complexity metric, V(G); the maximum nesting level, NC; a count of 

the total program branches, B; Halstead’s volume metric, V; and total lines of code, LOC. 

 

Table 2. Correlation Coefficients for Lennselius Data 

METRIC SDL V(G) NC B V LOC 

SDL       

V(G) .99      

NC .89 .92     

B .98 .99 .95    

V .91 .92 .89 .92   

LOC .93 .94 .93 .94 .96  

DEFECTS .88 .90 .85 .89 .94 .87 

 

Note that all the correlation coefficients are above 0.84.  This reflects a high degree of 

multicollinearity among the metrics, and is a strong indication that all are based on a common 

underlying factor - LOC.  Analysis indicates that any one of these metrics can be used equally 

well in a regression model for the prediction of defects.    

 

2.2 Exponential Models 
Weibull exponential model has its basis in hardware reliability and was one of the earliest 

applied to software [8].  A member of this family, the Rayleigh model, is gaining popularity for 

use during development and is incorporated in a number of tools (e.g., SWEEP, a software error 

estimation program from SPC). 
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2.3 Test Coverage Models 

Many studies estimate software reliability from the standpoint of testing.  This is a 

different approach from the conventional software reliability growth models.  In many 

experiments a positive linear relation was uncovered independent of program size, fault 

distribution and the coverage criterion.  There are several techniques that incorporate test 

coverage measurement into the estimation of software reliability, such as those by Chen, Lyu and 

Wong [2, 3].  Chen, Wong and Pasquini further extend the coverage technique by first estimating 

testability and evaluating how well the software was written into the process [23].  This method 

was shown to possess better predictive ability when compared to conventional growth models.  A 

variation of test coverage reliability modeling has been studied by Mathur and Krishnamurthy, 

where they have estimated the reliability of a software system by estimating the reliabilities of its 

components [14].   

 

2.4 Bayesian Estimation Models 
Bayesian estimation models are based on the concept of fault-free operation and 

incorporate the data from previous intervals as well as the current interval. They are gaining in 

popularity and are the subject of many research projects.  One of the problems with these models 

is the subjectivity that can exist in the prior assumptions, although with the growing base of 

accurate historical data in CMM/CMMI rated companies, the subjectivity problem is diminishing. 

2.5 Process Quality Models 

With the increasing adoption of the Capability Maturity Model (CMM) in the software 

development industry there has been a corresponding interest in relating the CMM level to the 

latent defects at delivery of the software.  A similar interest is being shown in relating the use of 

the ‘Cleanroom’ method to defect density [7]. Diaz and Sligo [4] have been able to show 

empirical evidence supporting the CMM-level/Defect-density relationship.  A number of other 

studies have refined the relationship, as shown in Table 3 [20].  The last column in Table 3 gives 

the defect plateau level for each of the CMM levels of maturity.  The defect plateau level is the 

level at which the number of defects removed is balanced by an equivalent number of defects 

inserted by the correction process itself.  Industry data indicates that product stabilization occurs 

at about 48 months after delivery for initial product releases [24].  Subsequent releases of the 

same product tend to stabilize at about 24 months after delivery. 
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Table 3. CMM Level and Defect Density at Delivery 
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2.6 Multivariate Models 

Multivariate models were developed in an attempt to determine which factors present in 

the software development process have a significant effect on the quality and reliability of the 

delivered product.  One such model, the Rome Laboratory Prediction Model RL - TR-92-52, was 

developed to predict fault density at delivery time.  It also predicts the total number of faults, N, 

and the failure rate λ.  The unique feature of this model is that it incorporates a wide range of 

factors, including software characteristics, the development environment and the application type.  

The various factors are listed in Table 4. 
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Table 4. TR-92-52 Factors 

TERMS DESCRIPTION 

A Factor selected based on Application type; represents the baseline fault density 

D Factor selected to reflect the Development environment 

S Factor calculated from various “sub-factors” to reflect the Software characteristics 

SLOC The number of executable Source Lines Of Code (non-blank, non-comment) 

FD Fault Density;  defined as the ratio of faults to SLOC 

N Estimate of number of faults in the system, derived from fault density and SLOC 

C Factor representing a Conversion ratio for each Application type;  determined by dividing 
the average operational failure rate by the average fault density for each type 

 

This is one of the few publicly available prediction models based on extensive historical data.  

The data were obtained from a wide range of software systems that were developed for the Air 

Force, including airborne, strategic, tactical, process control, production center and development, 

and ranging in size from 88,000 LOC to 2,500,000 LOC. 

There are many more software reliability models available, each with a slightly different 

perspective.  Please see [8, 10, 11, 15, 21] for further information.  No model has yet been found 

that is applicable in all situations. 

3. Validation of Life-Critical Software  

Validation of ultra-reliable software is a prohibitively expensive and time-consuming 

effort.  As mentioned in Section 1, Butler and Finelli [1] provide an analysis of the problems 

associated with validating the reliability of software systems at the ultra-reliable level.  The 

discussion that follows is drawn from that work. 

To prove (validate) that a software program meets the requirement for ultra-reliable 

operation given in Table 1, it is necessary to operate the program for at least 107 hours without a 

failure.  Assuming that the program runs continuously (i.e., 24 hours per day, 7 days per week) 

this would take 1,141.5 years.  The impracticality of this is obvious.  Faced with this reality, 

Littlewood [13] writes: “Clearly, the reliability growth techniques . . . .are useless in the face of 

such ultrahigh reliability requirements.”  This is the underlying reason for the universal use of 

reliability growth models during testing.   
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Various techniques have been employed to overcome this problem, including the concept 

of fault tolerant design.  But while fault tolerant systems do increase the level of confidence in the 

product (the likelihood that two functionally identical programs written by independent 

developers will fail at the same point is very low), they do not solve the validation problem.  The 

two systems would require at least 107 hours of continuous defect-free operation to be validated. 

By the same reasoning, it can be seen that software reliability models likewise cannot be 

validated at the ultra-reliability level.  The unsettling conclusion is that we have no feasible way 

of proving that software designed for ultra-reliable applications is actually that reliable.  

Therefore, we focus on a static model that uses a proven design metrics technology to gauge 

software reliability. 

4. The Design Metrics 

The Software Engineering Research Center (SERC) was established in 1986 as a 

National Science Foundation Industry/University Cooperative Research Center.  The Design 

Metrics Research Team working in SERC developed a set of metrics to aid in the identification of 

defect-prone components in software under development.  Created from empirical studies of 

actual defects in a wide range of software programs, the metrics were based on information 

available during the design phase of software development.  In subsequent studies, researchers 

were able to create a model based on the design metrics that predicted which software 

components were likely to be defect-prone after coding.  A number of studies by independent 

researchers have since validated the design metrics model and its ability to identify defect-prone 

components during the design phase.  

4.1 The External Design Metric, De

The first metric, De, is a measure of the external relationships the component has to other 

components in the software system.  This information is available during the preliminary design 

(architectural design) phase of software development, and reflects the component’s fan-in and 

fan-out and the in-flow and out-flow of data through the component.  De is calculated from: 

De = e1 (inflows * outflows) + e2 (fan-in * fan-out)

where 

inflows, outflows    =   the number of data entities passed into and out-of the component 

fan-in, fan-out        =   the number of superordinate and subordinate components directly 

   connected to the component. 
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e1, e2         = weighting factors. 

The term (inflows * outflows) provides an indication of the data flow through the component, 

while the term (fan-in * fan-out) gives the number of invocation sequences through it.  These 

terms are of degree two because research showed this to provide the best fit with the observed 

data. 

4.2 The Internal Design Metric, Di

The second metric, Di, is a measure reflecting three areas internal to a component which 

research indicated were major sources of defects.  This information is available during the 

detailed design phase of software development, and reflects the component’s internal structure.  

Di is calculated from: 

Di = i1 CC + i2 DSM + i 3 I/O 

where  CC      = Central Calls, the number of procedure or function invocations 

 DSM   = Data Structure Manipulations, the number of references to complex 

        data types 

 I/O      = Input/Output, the number of accesses to external devices 

 i1, i2, i 3  = weighting factors. 

4.3 The Composite Design Metric, D(G) 

The research team developed a third metric, D(G), which is the simple sum of De and Di.   

D(G) = De + Di 

With this metric, researchers were able to account for decisions throughout the design stage that 

could affect the quality of the delivered product. 

4.4 Experimental Results 

The research team undertook studies to determine the effectiveness of the three metrics in 

identifying defect-prone components.  On student projects using assorted programming languages, 

and varying in length from 2,000 to 30,000 LOC [25], De identified 12% of the components as 

defect-prone.  Half of these actually contained defects and more than half (53%) of all of the 

detected defects in the programs were in the identified defect-prone group. 

When the same programs were used to study the effectiveness of Di , the team found that 

89% of the identified components actually contained defects and that 94% of all of the detected 
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defects in the system were contained in those components.  Only 11% of the components were 

falsely identified as defect-prone. 

The best results were obtained using the third metric, D(G).  On the student projects [25], 

100% of the components identified as defect-prone by D(G) actually contained defects, and 97% 

of all of the detected defects in the programs were contained in the identified group. No 

components were falsely identified as defect-prone.    

4.5 Comparison to Other Metrics 

In addition to studying the effectiveness of the design metrics, De, Di and D(G), the 

research team compared them with the time-honored McCabe’s cyclomatic complexity metric, 

V(G), and with the lines-of-code metric, LOC [9].  Results of the study are shown in Table 5.   

Table 5. Comparative Effectiveness of Defect-Detecting Metrics 

CATEGORY V(G) LOC De Di D(G) 

Components Highlighted 11% 11% 12% 11% 12% 

Highlighted Components with 

Defects 

44% 56% 50% 89% 100%

Detected Defects Found 37% 51% 53% 94% 97% 

False Positives 56% 44% 50% 11% 0% 

 

In the study [25], a component was identified as defect-prone if the V(G) value was greater than 

10, which is the value chosen by McCabe as being a reasonable upper limit.  For the LOC metric, 

a component was identified if the LOC value was in the upper 11% of all the component LOC 

values in the study. Note how well Di performed against both V(G) and LOC in all three 

categories.  This performance is even more significant considering the fact that Di is available 

during the early part of the design phase (architectural design), sooner than either V(G) or LOC. 

The performance of D(G) is even more startling.  When compared to V(G) and LOC, not 

only did every component identified by D(G) actually contain defects, but also 97% of all the 

defects in the programs studied were contained within those identified components.  Further, no 

false positives were identified by D(G) as compared to 56% false positives for V(G) and 44% for 

LOC.   As is the case for Di, the D(G) metric is available during the design phase of software 

development.   
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Numerous other studies have been conducted to validate the applicability of the design 

metrics in identifying defect-prone components in large-scale industrial software.  These studies 

vary widely in terms of the implementation language and the application domain.  In all such 

studies, these metrics have proven to be an effective approach in targeting defect-prone software 

components [22, 26, 27].  

5. Empirical Reliability Study 

The ability of the design metrics to accurately identify defect-prone components in a 

software system prior to the start of coding has been so effective that the question was asked 

whether they might also be used to gauge the reliability of the delivered product.  Obviously, the 

availability of such a gauge during the design phase would be of significant value to a developer.  

Accordingly, a study of a large, complex software product was undertaken to determine whether 

such a relationship existed and, if so, what its nature might be.  The first thrust of the study, 

reported here, was confined to a subset of a large-scale program, with the goal of identifying such 

a relationship, developing and quantifying the relationship hypothesis to a first approximation, 

and determining the feasibility and direction of further research. 

5.1 The Target System 

The software program selected for the study was a large defense program.  It consists of 

approximately 1,500,000 lines of Ada code and was developed over a period of several years by a 

group of about 200 software engineers.  New releases of the product, each with additional 

functionality, are developed according to a well-defined schedule.  Problems identified in the 

field are documented, categorized and prioritized.  For this study, only those problems 

categorized as ‘defect’ and having priority 1 or 2 out of 4, where 1 and 2 are most significant, 

were chosen.  This eliminated cosmetic problems and minor defects of little significance (as 

determined by the customer).  The study was confined to 956 individual procedures, functions 

and packages, and their associated defect reports. 

5.2 The Data 

To aid in the collection of the design metrics, a Design Metrics Analyzer for Ada 

(DMAA) was used.  The DMAA tool not only sped up metrics collection, but also provided 

consistency in calculating metric values.  The data consisted of 956 packages, procedures and 

functions contained in a total of 46 files.  The files were analyzed with the DMAA tool, which 
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calculated the values of De, Di and D(G) for each of the packages, procedures and functions within 

each file.  From the problem reports returned by the customer, the number of defects associated 

with each file was determined.  Because the problem reports did not identify which particular 

procedure or function within a file actually contained the defect, the average value of De, Di and 

D(G) was calculated for each file and used in the study.  Thus, each file had an associated defect 

count and an average value of De, Di and D(G).  The average was chosen to eliminate the problem 

of a large file containing many procedures or functions, each having small values for the metrics, 

outweighing a smaller file having fewer but larger metric values.   

5.3 Experimental Results 

The data were sorted in ascending order of the D(G) average for each file and the 

corresponding value of Defect-Count was plotted as the dependent variable.  A best-fit trend line 

was computed for the dependent variable, Defect-Count, and plotted.  A positive relationship 

between Defect-Count and the design metric, D(G), is clearly visible, as shown in Figure 1.  
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Figure 1: Trend line with Defect Count vs. D(G) Average 

The trend line is a second-order polynomial and is given by the expression: 

 

Nd = 0.0003D(G)2 + 0.0422D(G) + 3.6567 
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where Nd is the number of estimated defects (defect count), and D(G) is the design metric 

introduced in Section 4.3.  Thus, a first approximation to the relationship between the design 

metric, D(G), for a file and the number of defects that file will have in the field has emerged.  

Furthermore, if Nd is the number of defects in a file and n is the number of files in a product 

then clearly     ∑  
=

=
n

i
ip NdN

1

where Np  is the total number of defects in the product.  Using the definition of the reliability of a 

software product as introduced in Section 1 produces 

      

Re = 1 - ( Np / LOC).

 

Substituting for Np in terms of D(G) results in 
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which is the first approximation for the expected reliability of a software product in terms of the 

design metric, D(G). 

6. Design Significance and Software Stress 

The relationship between the expected reliability (Re) and the composite design metric, 

D(G), for a single software component (n = 1) can be expressed in the general case as:  

 

eR  = ⎥
⎦

⎤
⎢
⎣

⎡ ++
−

LOC
CGbDGaD )()(1

2

 

 

where C is the process latent defect capability in defects at delivery, based on the process 

maturity level.  We define the design significance D(S) of a software system S as  

 

D(S) = [ aD(G)2 + bD(G) ] / C 
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Note that D(S) incorporates the components of Re affected by design decisions.  In general, the 

point at which the design decisions reflected in D(G) become significant to the software 

component reliability occurs when D(S)  = 1.  At this point the effect of design decisions on the 

expected reliability of the software is as significant as the process defect capability, C.  When D(S) 

< 1, the effect of design decisions on the expected reliability of the software is less significant 

than C; when D(S) > 1, the effect of design decisions on the expected reliability of the software is 

more significant than C.   In practice the project engineer or design team may set the point of 

significance of D(S) to a higher or lower value, depending on the project reliability requirements.  

Thus the expected reliability may be designed into the software, subject to the process capability. 

The relationship between CMM process maturity level and the corresponding defect 

density is displayed in Table 3.  As the software development process becomes more mature in 

terms of the CMM rating, the latent defects decrease (as seen in the defect density data in Table 

3), thus making the inherent design decisions reflected in D(G) more significant.  For example, in 

a CMM Level 1 process, the design decisions become significant when aD(G)2+bD(G) ~ 5.0 

(Keene data) and for a CMM Level 5 process, the design decisions become significant when 

aD(G)2+bD(G) ~ 0.5.  For a 1KLOC software component this occurs when D(G) is 

approximately 80 for a CMM Level 1 process and approximately 11 for a CMM level 5 process.   

Actual D(G) values in studies have ranged from 2 to more than 19,000. 

Thus by calculating D(S) for each software component as it is being developed, it is 

possible to identify those components for which design decisions are significant to the reliability 

of the product.  This measure is used to focus reliability improvement efforts to those components 

where it would be most effective.  It is also possible to design a software component or program 

to have a specific software reliability parameter. 

For a software component, stress is defined as the likelihood that it will fail (break) in 

operational use.  Studies on D(G) and reported field failures indicate that D(G) is accurate in 

identifying components likely to fail in operation, in other words, components with significant 

stress.  In addition, the value of D(G) is directly related to the magnitude of stress on the 

component.  Therefore, by measuring D(G) it is possible to identify those components in a system 

which are the stress points (most likely to fail in the field, highest value of D(G) ) while still in 

development and to modify the components to alleviate the stress or preclude such failure.  

Further discussion of stress points in software design can be found in [25, 26, 27]. 

 

7. High Reliability Engineering Process – In Practice 
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As a result of these advances, and in response to customer requests for specific reliability 

performance, a process was developed to identify the design significance D(S) points (the default 

is D(S) = 1), stress points, and expected reliability in the software as it is being developed and to 

measure the magnitude of these attributes at each D(S) point.  Techniques were also developed to 

incorporate these parameters into the design of the product while still in development.  Beginning 

with the adaptive reliability process used by Peterson [20] as a base, modifications were made to 

provide measurement and analysis of the stress, design significance and expected reliability 

parameters needed, and to close the feedback loop with the design team to allow the software to 

be improved.  The process is depicted in Figure 2.  Further information on the adaptive reliability 

process can be found in [16, 17, 18, 19]. 

 

       
 

Figure 2: High Reliability Engineering Process 
 

The result is a highly practical high reliability engineering process which incorporates the 

concepts and techniques described in this paper.  This process is designed to be used at every 

stage of the software life-cycle and is currently being implemented in the code and test phases of 

an active development program.  Research is underway to extend the process to earlier phases.  

In the code phase an automated tool is used to measure the D(G) value of each 

component, followed by computation of D(S).  From these data the components with the highest 

stress levels (top 12 – 15%) are identified, as well as those with the highest D(S).  These 
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components are then analyzed   with respect to the component parts of D(G), which allows the 

individual lines of code that are responsible for the stress or design significance within the 

component to be identified. 

After the design significance, stress points and magnitudes are identified and measured, 

the process moves to a meeting with the design team where design modification alternatives are 

considered to alleviate the stresses and reliability concerns.  Modifications typically include 

redesign to reduce data flows or fan-in/out, partitioning, procedure calls, data state manipulations 

or I/O statements - the primitives that form the composite D(G).  The design modifications are 

implemented and, if warranted, the component reliability and stress parameters are re-measured.  

The extent to which a given component can or should be modified is always a trade-off between 

competing interests and the negotiated decision is arrived at by consensus. 

The next step is structural reinforcement to strengthen the software in those places where 

design modification is not possible or where reinforcement is judged worthwhile.  Reinforcement 

can take the form of parameter checking, assert statements, data verification, or other means.  As 

noted before, the extent of reinforcement efforts is a trade-off. 

Following structural reinforcement the software component is subjected to reliability 

enhancement testing.  This is unit level testing in a high-stress environment that is specifically 

designed to break the component at the stress points.  The reliability engineer works with the 

design and test teams in the development and application of these tests.  The confidence in the 

ability of D(G) to accurately identify high stress components allows more focused and efficient 

allocation of expensive test resources to be used where they are most beneficial across the 

program.  High stress components, as well as those identified as critical due to mission, safety, or 

other factors, are subjected to more strenuous testing than others.  These components are tracked 

throughout the lifecycle and monitored to ensure that no degradation occurs to stress, reliability, 

or other parameter of interest. 
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8. Conclusion 

 

The results of the study indicate that a positive relationship exists between the design 

metric, D(G), and the number of defects that are found in the product after it has been fielded. 

The relationship has been identified and quantified to a first approximation.  Further, it has been 

shown that D(G) can be used to predict and measure the impact of design decisions on the 

expected reliability of a software product during the code and tests phases of development. The 

ability to identify and measure stress points in the software has also been shown.  The concept of 

design significance was introduced and shown to be a viable and measurable attribute that can 

identify those components for which design decisions have a significant effect on the expected 

reliability of the software. These findings were sufficient to justify development and 

implementation of a high reliability engineering process.  

A high reliability engineering process which incorporates the concepts and techniques 

described herein was developed and placed into practice on an active software development 

program requiring ultra-reliability.  With this process it is possible to engineer reliability into the 

design of the product. The result is a significant improvement in the practice of software 

engineering and may be the subject of a future paper.   

It must be noted that the accuracy of the findings is subject to the wide variations in the 

dependent variable, Defect-Count, with respect to the independent variable D(G), and to the large 

values in the standard deviation computed for the D(G) associated with each value of Defect-

Count.  These variations are due in large part to the variable nature of the software development 

process itself, i.e., experience of the developers, efficiency of the peer-review process in defect 

identification and removal, extent to which the process is followed when schedule pressure occurs, 

etc.  As the software development process is brought more into control, in the statistical sense, 

these wide variations should diminish.   

As Butler and Finelli pointed out so convincingly in [1], “neither this model nor any 

other can be validated for safety-critical real-time software applications.   At best, using current 

state of the art hardware and software, validation can be accomplished only for low to moderate 

reliability applications.”    
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