
Software Engineering

Norbert Pataki

November 5, 2007



UML

I Unified Modeling Language. Defined by the Object
Management Group.

I standardized specification language for object-oriented
modeling, analysis and design.

I a general-purpose modeling language that includes a graphical
notation used to create an abstract model of a system

I it was designed to specify, visualize, construct, and document
software-intensive systems.

I supports transformations into code: for example, C++, Java,
C#, etc. (Case tools, like Rational Rose)



UML

I it is not restricted to modeling software. It can be used for
business process modeling, system engineering modeling, and
representing organizational structures.

I UML is able to creating models from different views

I UML is able to describe the exact solution

I UML is a constructional tool

I Concepts, diagrams

I UML is extensible: profiles and stereotypes for customization.

I UML assists developers focusing on the design and the
architecture. ⇒ model-driven technologies



Models vs UML Diagrams

I A diagram is a partial graphical representation of a system’s
model.

I The model also contains a ,,semantic backplane” –
documentation such as written use cases that drive the model
elements and diagrams.



Some of the Influences on UML



History

Standard Date

UML 0.8 1995

UML 1.0 1997, January

UML 1.1 1997, September

UML 1.2 1998

UML 1.3 1999

UML 2.0 2004, October



Problems with UML

I Language Bloat: UML is large and complex. Many diagrams
show redundant information. Some diagrams and constructs
are infrequently used.

I Problems in learning and adopting: Hard to adopt and learn
UML because of the language bloat.

I Only the code is in sync with the code. The real code is
usually not a beautiful model.

I Compatible with every possible implementation language.

I Impedance mismatch: UML represents some systems more
concisely or efficiently than others. ⇒ Developers are
influenced.

I Imprecise semantics: not complete and inconsistent definition.
The formal definition is missing.



UML’s concepts

I an UML description consists of relations, elements and
diagrams.

Relationship can be divided into four groups:

I Dependence relationship (semantical connection): company
and bank account. The elements must exist on the same
abstraction level.

I Associational relationship (structural connenection): company
and employee

I Generalizational relationship (link between the general and
special): bird and dove

I Implementational relationship (semantical connection between
the notation and its implementation): bird and dove



UML’s elements

I Structural elements: object, class, use-case, etc.

I Manifestational elements: interaction, event, state machine,
etc.

I Grouped elements: package, subsystem, etc.

I Annotational elements: comment, constraint, etc.



UML’s diagrams



UML’s diagrams

Structure diagrams emphasize what things must be in the system
being modeled:

I Class diagram

I Component diagram

I Composite structure diagram

I Deployment diagram

I Object diagram

I Package diagram



UML’s diagrams

Behavior diagrams emphasize what must happen in the system
being modeled:

I Activity diagram

I State Machine diagram

I Use case diagram



UML’s diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the
flow of control and data among the things in the system being
modeled:

I Communication diagram

I Interaction overview diagram (UML 2.0)

I Sequence diagram

I UML Timing Diagram (UML 2.0)



UML’s diagrams – Some remarks

I The Protocol State Machine is a sub-variant of the State
Machine. Network communication protocols can be modeled
with it.

I UML does not restrict UML element types to a certain
diagram type. In general, every UML element can appear on
almost all types of diagrams.



Diagrams and view

In general, solutions should be represented from many views, for
instance:

I View of usage

I Static structural view

I Dynamical view

I View of implementation

I Environmental view



View of usage

I Who the system provides services (for people, other systems,
programs)?

I Who can use these services?

I Can the requirements of the system’s services be realized?

I The use case diagram expresses this view.



Static structural view

I What are the parts of the system?

I What is the function of these parts?

I How the parts work together?

I Class Diagram, Object Diagram



Dynamical view

I How the parts behave while the problem is being solved?

I How the parts of the system change?

I How the messages flow?

I Activity diagram, Sequence diagram, State machine diagram.



View of implementation

I Software components

I Connection between these components

I Component diagram, Package diagram



Environmental view

I Configuration of the software and hardware solution

I What are the hardware and the software requirements for the
system?

I Deployment diagram may expresses this view



UML and documentation

A solution can be documented with the assistance of UML:

I document the project plan

I document the phases of software-producing (requirements,
analysis, etc.)

I document the prototypes



Stereotypes

I Stereotypes allow you to extend the vocabulary of the UML so
that you can create new model elements, derived from
existing ones, but that have specific properties that are
suitable for your problem domain.

I Stereotypes are used for classifying or marking the UML
building blocks in order to introduce new building blocks that
speak the language of your domain and that look like
primitive, or basic, model elements.

I Notation: for instance, <<refine>> – a predefined
stereotype.

I Many predefined stereotypes.



Profiles

I provides a generic extension mechanism for building UML
models in particular domains

I A profile is a collection of such extensions and restrictions
that together describe some particular modeling problem and
facilitate modeling constructs in that domain.

I based on additional stereotypes and tagged values that are
applied to elements, attributes, methods, links, and link ends

I make UML proper to special areas: business modeling and
others.



Class diagram

I a type of static structure diagram that describes the structure
of a system by showing the system’s classes, their members,
and the relationships between the classes.

I a class diagram is a connected graph that describes the
structure of solution. The vertexes of the graph are classes.
The edges of the graph are relations (between classes).



Relations

The relation can be:

I Inheritance

I Aggregation

I Composition

I Association

I Dependency



Class diagram



Class diagrams



Class diagrams



Visibility of members

I public: + (the member is available from everywhere)

I private: - (the member is available from inside the class)

I protected: # (the member is available from inside the class or
its descendants)



Class template



Annotations



Relationship - Association

I Basic relationship among classes

I class level: association

I object level: link



Relationship - Association



Reflexive association



Association among 3 classes



Association among 4 classes



Association class



Multiplicity

I More objects of a class may be applied in a relation.

I Default notation: one object per class taking part in the
relation.

I Common multiplicities are:
I 0..1 means no instances, or one instance
I 1 means exactly one instance
I 0..* or * means zero or more instances
I 1..* means one or more instances (at least one)
I i means i instances
I i..j means at least i but no more than j instances.



Roles



Relationship - Aggregation

I Aggregation is a special association (stronger than the
association).

I expresses “is-a-part-of”



Relationship - Aggregation

A is an aggregation of B:



Relationship - Composition

I Composition is a special aggregation - the strongest
aggregational connection between classes

I It expresses that a class contains an other one (physically).

I The components live the same lifecycle



Relationship - Composition

A is a composition of B:



Difference between Composition and Aggregation

I The whole of a composition must have a multiplicity of 0..1 or
1, indicating that a part must be for only one whole.

I The whole of an aggregation may have any multiplicity.



Dependency

I A dependency exists between two defined elements if a change
to the definition of one would result in a change to the other.



Generalization (inheritance)

I The generalization relationship indicates that one of the two
related classes (the subtype) is considered to be a specialized
form of the other (the supertype) and supertype is considered
as generalization of subtype. In practice, this means that any
instance of the subtype is also an instance of the supertype.

I It expresses “is a” relationship.

I Multiple inheritence is supported by UML.



Generalization (inheritance)


