
Software Engineering

Norbert Pataki

December 10, 2007



Use case diagrams

I describe the functionality provided by a system in a term of
actors.

I describe the goals of a function and any dependencies
between the use cases.

I separate the system into actors and use cases



Components

I actor: a type of user that interacts with the system (not the
part of the system). For example, an actor can be another
program system, a person, a class, etc..

I use case: the functional goal that the actor achieves using the
system – the reason for using the system.



Example



Actor Generalization

I The only relationship allowed between actors is generalization.

I Actor generalization is useful in defining overlapping roles
between actors.



Use Case Relationships

I Include: a given use case must include another. The first use
case often depends on the outcome of the included use case.
This is useful for extracting truly common behaviors from
multiple use cases into a single description.

I Extend: a given use case may extend another. This
relationship indicates that the behavior of the extension use
case may be inserted in the extended use case under some
conditions. This can be useful for dealing with special cases,
or in accommodating new requirements during system
maintenance and extension.

I Generalization: A given use case may be a specialized form of
an existing use case.



Relationship – Example



Design Patterns

I design patterns are general repeatable solutions to commonly
occurring problems (usually in the object-oriented realm).

I DP is a description or template for how to solve a problem
that can be used in many different situations.

I DP means an unfinished designed.

I Design patterns can speed up the development process by
providing tested, proven development paradigms. Effective
software design requires considering issues that may not
become visible until later in the implementation. Reusing
design patterns helps to prevent subtle issues that can cause
major problems, and it also improves code readability for
coders and architects who are familiar with the patterns.



Classification DPs

I Fundamental patterns

I Creational patterns: deal with the creation of objects

I Structural patterns: ease the design by identifying a simple
way to realize relationships between entities

I Behavioral patterns: identify common communication
patterns between objects and realize these patterns

I Concurrency patterns: deal with concurrency.



Description of a design pattern

1 The name and classification of a design pattern

2 Purpose

3 Other names

4 Motivation, motivating example

5 Availability

6 Structure (usually with UML notation)

7 Elements

8 Collaboration

9 Consequences

10 Implementation

11 Example code

12 Known usage

13 Similar patterns



Iterator pattern

I Iterator design pattern: behavioral

I Access objects in an aggregate without kenning the
representation.

I Other name: cursor.

I Motivating example: access elements in a list but don’t
discover the list’s internal structure. More directions to iterate
the objects in the list: normal, reverse way. Don’t add these
functions to the list’s interface.



Iterator pattern – Motivating example



Iterator pattern – Structure



Iterator pattern – Elements, Collaboration

Elements:

I Iterator: defines the interface of the access

I ConcreteIterator: implements Iterator, keeps track of the
current element

I Aggregate: defines the interface of Iterator object’s creation.

I ConcreteAggregate: implements the creation of Iterator object
with proper representative.

Collaboration:

I ConcreteIterator object keeps track of the current element and
able to determine the next one.


