
7 th International Conference on Applied Informatics

Eger, Hungary, 2007.

Properties of C++ Template
Metaprograms∗

Norbert Patakia, Tamás Kozsika, Zoltán Porkolába

Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University, Budapest

e-mail:{patakino, kto, gsd}@elte.hu

Abstract

Verifying properties of programs is a common way to ensure the proper
behaviour of those programs. Invariants, pre- and postconditions are program
properties often used when proving correctness of programs.

C++ template metaprograms (TMPs) are special progams interpreted by
the compiler. Metaprograms are widely used for the following purposes: exe-
cuting algorithms in compile-time, optimizing runtime programs and emitting
compilation errors and warnings to enforce certain semantic checks.

In this paper we step to �meta-meta-level�: we present a technique to
make safer C++ TMPs with static asserts. We describe how to check in-
variants, pre- and postconditions of TMPs and enforce the compiler to refuse
metaprograms if any of the speci�ed program properties is dissatis�ed. We
present some examples where semantic errors in TMPs are revealed by our
method.

Keywords: template metaprogramming, program correctness

MSC: 68N19 Other programming techniques

1. Introduction

Correctness of a given program is the most important property. Every pro-
grammer wants to avoid bugs and creates error-free code. Testing cannot discover
all bugs in a program, so we need something more precise method.

Verifying properties of programs is a common way to ensure the proper be-
haviour of those programs. Invariants, pre- and postconditions are program prop-
erties often used when proving correctness of programs.

C++ template metaprograming is a recently emerged programming paradigm.
We use this paradigm execute algorithms in compilation time, optimize our runtime
programs, create active libraries, etc. Unfortunately, we do not have a framework

∗Supported by GVOP-3.2.2.-2004-07-0005/3.0

1

2

to check C++ template metaprograms and the common debuggers cannot help
generally. C++ template metaprogramming will be more widely-used if the pro-
grammers are more aided (e.g. with a correctness framework).

2. C++ Template metaprogramming

C++ template metaprogram actions are de�ned in the form of template de�-
nitions and are "executed" when the compiler instantiates them. Templates can
refer to other templates, therefore their instantiation can instruct the compiler to
execute other instantiations. This way we get an instantiation chain very similar
to a call stack of a runtime program. Recursive instantiations are not only possible
but regular in template metaprograms to model loops.

Conditional statements (and stopping recursion) are solved via specializations.
Templates can be overloaded and the compiler has to choose the narrowest ap-
plicable template to instantiate. Subprograms in ordinary C++ programs can be
used as data via function pointers or functor classes. Metaprograms are �rst class
citizens in template metaprograms, as they can be passed as parameters for other
metaprograms [3].

Data is expressed in runtime programs as constant values or literals. In template
metaprograms we use static const and enumeration values to store quantitative
information. Results of computations during the execution of a metaprogram are
stored either in new constants or enumerations. Furthermore, the execution of a
metaprogram may trigger the creation of new types by the compiler. These types
may hold information that in�uences the further execution of the metaprogram.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree struc-
tures, or sequences. Tree structures are the favorite implementation forms of ex-
pression templates [10]. The canonical examples for sequential data structures are
typelist [1] and the elements of the boost::mpl library [4].

However, there is a fundamental di�erence between runtime programs and C++
template metaprograms: once a certain entity (constant, enumeration value, type)
has been de�ned, it will be immutable. There is no way to change its value or
meaning. A metaprogram does not contain assignments. In this sense metapro-
gramming is similar to pure functional programming languages, where referential

transparency is obtained. That is the reason why we use recursion and specializa-
tion to implement loops: we are not able to change the value of any loop variable.
Immutability � as in functional languages � has a positive e�ect too: unwanted
side e�ects do not occur.

Template metaprograming is proved to be a Turing-complete sublanguage of
C++ [3]. We write metaprograms for various reasons, here we list some of them:

• Expression templates [10] replace runtime computations with compile-time
activities to enhance runtime performance.

• Static interface checking increases the ability of the compile-time to check

3

the requirements against template parameters, i.e. they form constraints on
template parameters [5, 6]. In this paper we want to use this feature to
implement safer metaprograms.

• Active libraries [11]. Active libraries act dynamically during compile-time,
making decisions based on programming contexts and making optimizations.

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution.

3. Motivating example

Let us consider the following C++ template programs that calculates the fac-
torial of N in compilation time:

template <int N>

struct Factorial

{

enum {Value = N * Factorial<N-1>::Value};

};

template <>

struct Factorial<0>

{

enum{Value = 1};

};

Unfortunately, this �metafunction� can be called with negative number or we
can miss the full specialization (i.e. Factorial<0>).

4. Basic annotations and utilities

First of all, we write a macro to create a static const object from the argument
with a unique identi�er. The de�ned object will check the annotation.

// Special macro to create a static const object:

#define ANNOTATION_CHECK_REQUIRES(TYPE) static const \

TYPE ANNOTATION_CHECK_FOO___##TYPE

We present implementation of some basic annotations with the help of the
boost::mpl library:

4

// Is the parameter a positive number?

template <int N>

struct positive {

BOOST_MPL_ASSERT_RELATION(N, >=, 1);

};

An object of the previous type can check if its argument is a positive number. If
the argument is not a positive number, the assert raises a compiler error diagnostics.
If the argument is positive number it does nothing. Similarly we can implement a
class that checks if the argument is a natural number.

This way we can write classes to check if the two arguments are equal or not:

// Are the two parameters equal?

template <int I, int J>

struct equal {

BOOST_MPL_ASSERT_RELATION(I, ==, J);

};

// Are the two parameters not equal?

template <int I, int J>

struct not_equal {

BOOST_MPL_ASSERT_RELATION(I, !=, J);

};

5. Towards safer metaprograms

We saw the implementation of the factorial template metaprogram as a moti-
vating example. We extend this program with special annotations to be safer:

template <int N, class Annotation = natural<N> >

struct Fac {

ANNOTATION_CHECK_REQUIRES(Annotation);

enum{Value = N * Fac<N-1>::Value};

typedef positive<Value> Post;

ANNOTATION_CHECK_REQUIRES(Post);

};

We do not have to modify the full specialization. This implementation checks if
its argument a natural number and if its result is a positive number. These are not
just a simple pre- and postconditions because of the recursion. These annotations
are checked in all instantiated classes. Since these annotations are checked in all
steps in the algorithm, these checks are worked as invariants.

What can we achieve with this technique? We can get an error diagnostics
when the class is instantiated with negative number: for example we call it with a

5

negative number, or we miss the full specialization. For instance, g++ 3.3.5 gives
the following message when we miss the specialization:

d.cpp: In instantiation of `natural<-1>':

d.cpp:19: instantiated from `Fac<-1, natural<-1> >'

d.cpp:33: instantiated from `Fac<0, natural<0> >'

d.cpp:33: instantiated from `Fac<1, natural<1> >'

d.cpp:33: instantiated from `Fac<2, natural<2> >'

d.cpp:33: instantiated from here

d.cpp:19: conversion from `

mpl_::failed************mpl_::assert_relation

<greater_equal, -1, 0>::************' to non-scalar

type `mpl_::assert<false>' requested

d.cpp:19: enumerator value for `mpl_assertion_in_line_7'

not integer constant

6. Conclusion and future work

In this paper we present a technique to check some annotations in C++ template
metaprograms. This technique uses template metaprogramming. The existing
programs can be extended to this way easily. With the help of this basic framework
we can write safer C++ template metaprograms.

Our aim is to create a more complex library. We will implement more anno-
tations, and support nicer diagnostics. More complex expressions and checks are
very important.

References

[1] Andrei Alexandrescu: Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison-Wesley (2001)

[2] Krzysztof Czarnecki, Ulrich W. Eisenecker, Robert Glück, David Vandevoorde, Todd
L. Veldhuizen: Generative Programmind and Active Libraries. Springer-Verlag (2000)

[3] Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative Programming: Methods, Tools

and Applications. Addison-Wesley (2000)

[4] Björn Karlsson: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley (2005).

[5] Brian McNamara, Yannis Smaragdakis: Static interfaces in C++. In First Workshop

on C++ Template Metaprogramming, October 2000

[6] Jeremy Siek, Andrew Lumsdaine: Concept checking: Binding parametric polymor-
phism in C++. In First Workshop on C++ Template Metaprogramming, October
2000

6

[7] Stroustrup, B.: The C++ Programming Language. Special Edition. Addison-Wesley
(2000)

[8] David Vandevoorde, Nicolai M. Josuttis: C++ Templates: The Complete Guide.
Addison-Wesley (2003)

[9] Todd Veldhuizen: Using C++ Template Metaprograms. C++ Report vol. 7, no. 4,
1995, pp. 36-43.

[10] Todd Veldhuizen: Expression Templates. C++ Report vol. 7, no. 5, 1995, pp. 26-31.

[11] Todd L. Veldhuizen and Dennis Gannon: Active libraries: Rethinking the roles
of compilers and libraries. In Proceedings of the SIAM Workshop on Object Ori-

ented Methods for Inter-operable Scientic and Engineering Computing (OO'98). SIAM
Press, 1998 pp. 21�23

[12] Boost C++ Libraries,
http://boost.org/

Norbert Pataki

Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary

Tamás Kozsik

Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary

Zoltán Porkoláb

Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary

