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Abstract. Aspect-oriented programming (AOP) is a promising new soft-
ware development technique claimed to improve code modularization and
therefore reduce complexity of object-oriented programs. However, exact
quantitative inspections on the problem details are still under way. In this
paper we describe a multiparadigm software metric and its extension to
AspectJ. We use the metric to compute structural complexity of all the
object-oriented, aspect-related and procedural components of AOP code.
We tested our metric on two functionally equal implementations of GoF
design patterns made in aspect-oriented way and in pure object-oriented
style and compared the results.

1 Introduction

Metrics play an important role in modern software engineering. Testing, bug�x-
ing cover an increasing percentage of the software lifecycle. In software design the
most signi�cant part of the cost is spent on the maintenance of the product. The
cost of software maintenance highly correlates with the structural complexity of
the code. The critical parts of the software can be identi�ed in the early stages
of the developement process with the aid of a good complexity-measurement
tool. Based on software metrics we can give recommendations and de�ne coding
conventions on the development of sound, manageable and hygienic code. Even
though general recommendations for specifying sensible metrics exist [23], the
concrete measurement tools are typically paradigm-, and language-dependent.

In the software development process abstractions play a central role. An ab-
straction focuses on the essence of a problem and excludes the special details [4].
Abstractions depend on many factors: user requirements, technical environment,
and the key design decisions. In software technology a paradigm represents the
directives in creating abstractions. The paradigm is the principle by which a
problem can be comprehended and decomposed into manageable components
[1]. In practice, a paradigm directs us in identifying the elements in which a
problem will be decomposed and projected. The paradigm sets up the rules and
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properties, but also o�ers tools for developing applications. These methods and
tools are not independent of their environment in which they occur.

The last 50 years of software design has seen several programming paradigms
from automated programming and the FORTRAN language in the mid-�fties, to
procedural programming with structured imperative languages (ALGOL, Pascal),
to the object-oriented paradigm with languages like Smalltalk, C++ and Java.
However, it is important to understand that new paradigms cannot entirely
replace the previous ones, but rather form a new structural layer on the top of
them. Object-orientation is a new form of expressing relations between data and
functions, however, these relations implicitly existed in the procedural paradigm.

The need for new programming paradigms is a result of the ever-growing
complexity of software. Object-oriented programming (OOP) is widely used in
the software industry for managing large projects, but recently some of the weak-
nesses emerged. Problems like cross-cutting concerns, multi-dimensional separa-
tion of concerns, symmetric extension of a class hierarchy [22] are hard to handle.
Modern programming languages have made possible the birth of new program-
ming paradigms like (C++) template metaprogramming (TMP) [5], generic pro-
gramming (GP) [24], and aspect-oriented programming (AOP) [15].

Software metrics have always been strongly related to the paradigm used in
the respective period. The McCabe Cyclomatic complexity number [2] was de-
signed for measuring the testing e�orts of non-structural FORTRAN programs.
Piwowarksi [17], Howatt and Baker [11] extended the cyclomatic complexity with
the notion of nesting level in order to describe structured programs better. Af-
ter the object-oriented paradigm became widely accepted and used, both the
academic world, and the IT industry focused on metrics based on special object-
oriented features, like number of classes, depth of inheritance tree, number of
children classes, etc. [3]. Several implementations of such metrics are available
for the most popular languages (like Java, C#, C++) and platforms (like Eclipse)
[25].

Most programs are written by using more paradigms. Object-oriented pro-
grams have large procedural components in implementations of methods. AOP
implementations (among which the most widely-used is AspectJ), highly rely on
OOP principles. AspectJ essentially integrates tools for modularizing crosscut-
ting concerns into object-oriented programs. Moreover multiparadigm programs
[4] appear in C++, Java, on the .NET platform, and others.

Metrics applied to di�erent paradigms than the one they were designed for,
might report false results [21]. Therefore an adequate measure applied to mul-
tiparadigm programs should not be based on special features of only one pro-
gramming paradigm. A multiparadigm metric has to be based on basic language
elements and constuction rules applied to di�erent paradigms. A paradigm-
independent software metric is applicable to programs using di�erent paradigms
or in a multiparadigm environment. The paradigm-independent metric should
be based on general programming language features which are paradigm- and
language independent.



Here we give the structure of the paper. In section 2 we de�ne our multi-
paradigm metric, the AV-graph. After that we de�ne the complexity of the class,
where class is de�ned as a set of data (attributes) and control structures (mem-
ber functions, methods) carrying out operations on the attributes. Afterwards,
in section 4 we explain how our metric applies to AOP notions and constructs.
Section 5 describes our test results when applying the metric to the OOP and
AOP versions of the GoF design patterns. We explain how AOP a�ects the com-
plexity of these implementations, and in which cases AOP provided a simpler
solution.

2 A multiparadigm metric
The well-known measure of McCabe, the cyclomatic complexity [2] is based
only on the number of predicates in a program: V (G) = p + 1. The inadequacy
of the measure becomes clear, if we realize that cyclomatic complexity ignores
the nesting level of the predicate nodes. Improvements as weighting the control
structure with the nesting level were proposed by Harrison and Magel [10], by
Piwowarski [17] and by Howatt and Baker [11]. The scope of a predicate node
is a set of statements, whose execution depends on the decision made in the
predicate node. The nesting level of a statement is de�ned as the number of
predicate nodes whose scope contains the statement.

The nesting level notation re�ects procedural programs in an adequate way.
At the same time, it does not take into account data handling, which has central
role in modern programming languages. We have to take the complexity of the
data de�ned and the complexity of data handling into consideration. Accordingly,
the AV complexity of a program is a sum of three components:

1. Control structure of program. Most programs have the same control state-
ments irrespectively of the paradigm used. The control structure is repre-
sented by a graph where nodes are statements and (directed) edges represent
the possible �ow of control. Nodes with more than one output edge are called
predicate nodes. Nesting level is used weighting statement nodes.

2. Complexity of data types. It re�ects the complexity of data used (like in the
case of classes). Data nodes are represented as di�erent type of nodes in the
control graph.

3. Complexity of data access. Connection between control structure and data
is represented by edges between the data nodes and statements that use
them. The direction of these edges re�ect the data �ow (for example in case
of reading data the edge is directed from the data node to the statement).
Data edges are nested by the nesting level of their statement node.

An important feature of our metric is that it does not count the complexity of
data handling based on the place of the declaration. The metric encounters that
value exactly at the point of data handling. Of course, the metric also measures
the declaration in an implicite way: local variables are used only in the local
code context (in the subprogram).



There is an other possible way to get these results. Let us suppose that we
have no data nodes and data edges in our graph, but we replace them whit
special control nodes: �reader� and/or �writer�. These control nodes only send
and receive information. They will be inserted just before and after the real
control nodes which read and/or write data. The nesting depth and complexity
value we get with this model is the 0same as the one calculated with AV graphs.

We can naturally extend our model to object-oriented programs. The central
notion of the object-oriented paradigm is the class. Therefore we describe how
we measure the complexity of a class �rst. On the base of the previous sections
we can see the class de�nition as a set of (local) data and a set of methods
accessing them.

The complexity of a class is the sum of the complexity of the methods and the
data members (attributes). As the control nodes (nodes belonging to the control
structure of one of the member graphs) were unique, there is no path from one
member graph to another one. However, there could be attributes (data nodes)
which are used by more than one member graph. These attributes have data
reference edges to di�erent member graphs.

This is a natural model of the class. It re�ects the fact that a class is a
coherent set of attributes (data) and the methods working on the attributes.
Here the methods (member functions) are procedures represented by individual
AV graphs (the member graphs). Every member graph has its own start node and
terminal node, as they are individually callable functions. What makes this set
of procedures more than an ordinary library is the common set of attributes used
by the member procedures. Here the attributes are not local to one procedure
but local to the object, and can be accessed by several procedures.

Let us consider that the de�nition of the AV graph permits the empty set of
control nodes. In that case we get a classical data structure. The complexity of
a classical data structure is the sum of the data nodes. The opposite situation
is also possible. When a �class� contains disjunct methods � there is no common
data shared between them �, we compute the complexity of the class as the sum
of the complexities of the disjunct functions. We can identify this construct as
an ordinay function library.

These examples also point to the fact that we use paradigm-independent
notions, so we can apply our measure to procedural, object-oriented, or even
mixed-style programs. This was our goal.

3 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is one of the most promising new software
development techniques. AOP aids a better handling of crosscutting concerns
[12], as compared to object-orientation. Thus AOP is a generative programming
paradigm that aims to help in writing more modularized, and more maintain-
able code. Today's AOP implementations (among which the most widely-used
is AspectJ), mostly rely on OOP. AspectJ essentially integrates tools for mod-



ularizing crosscutting concerns into object-oriented programs. AOP de�nes the
following important constructs, aside the OOP notions:

1. Pointcut de�nitions are made up of Pointcut type, and Pointcut signature.
The pointcut type describes what happens, e.g. call stands for function
call, execution stands for the execution of a function. The signature de-
scribes which kind of functions are monitored by the pointcut de�nition.
(void || int f(*)) means all the functions with the name f, that have
either a void or an int return type, and receive one parameter of any type.

2. Pointcuts are sets of pointcut de�nitions bound by Pointcut operators (||,
&&). A named pointcut is a pointcut that can be referred to by a name,
therefore it is not necessary to be de�ned repeatedly.
pointcut p() : call(void || int f(*)) || execution(* g());

3. Advice constructs specify the action to be taken at a certain pointcut (bound
to the advice). The before, after and around keywords de�ne when the
body part of the advice is executed with respect to the pointcut. Otherwise
the body of an advice is very similar to the body of a Java method.

4. Inter-type declarations allow among others declaring aspect precedences, cus-
tom compilation errors or warnings.

5. Aspects contain pointcuts, advices, and inter-type declarations. On the other
hand, they also have a class-like behavior, as they can have their own at-
tributes and methods.

Nowadays AOP is widely used in both academic, and industrial world. Practice
shows that AOP programs are in many cases shorter, have more modular struc-
ture and are easier to understand. Numerous publications discuss the advantages
of AOP design and implementation. However, we still have not found appropri-
ate metric tools to present quantitative results on the structural complexity of
AOP programs.

One possible reason might be the lack of multiparadigm metrics that are
valid on both object-oriented and generative paradigm. There are proposals to
measure speci�c features of AOP programs [6, 9], but our approach is that in
practice a more suitable metric has to be able to measure soundly in more
paradigms at once. The complexity of an AOP program depends on the OOP
components and the AOP-speci�c constructs. Therefore the complexity could
be scattered between the AOP-speci�c parts ( in pointcut-de�nitions, advices,
etc.), the object-oriented constructs (classes, inheritance, etc.), and even in the
procedural-style implementation of the methods. Hence in our opinion we need
to apply a metric that measures well more paradigms at the same time.

Experiences show that AOP provides a better solution for a certain set of
problems (e.g. logging, debugging, etc.). In this paper we investigate what is
common in these problem groups that renders the AOP solution intuitively eas-
ier. Can we �nd problem sets in which AOP provides a better solution? Why do
we see one solution easier understandable than the other if they are implemented
using di�erent paradigms? How can we prove that for those aforementioned AOP
problems the solutions are not only intuitively but also objectively better? In



order to answer these questions, we aim to analyze the Gang-of-Four (GoF) De-
sign patterns [7] and their implementations in pure Java and an AOP version in
AspectJ [14].

4 Extending the metric
Extending the metric requires the identi�cation of AOP-speci�c program ele-
ments, and their mapping to an AV-graph. In section 3 we have enumerated the
most important AspectJ constructions, now we examine how our multiparadigm
metric applies to them. In order to measure programs, we also needed to extend
the measurement tool.

1. Pointcut de�nitions, and pointcuts. Aspect-oriented programming is a kind
of metaprogramming. With the help of pointcut de�nitions we describe no-
tions to control the compilation and weaving process. A pointcut de�nes a
condition which triggers the possible execution of a code de�ned in the ap-
propriate advice. In that sense a pointcut de�nition is a metaprogram con-
ditional statement. Therefore we map pointcut de�nitions to the AV-graph
as predicate nodes, and its constitutes (the pointcut type and the signature
as input nodes). As in the case of run-time programs, where a predicate
node might use complex expressions, a pointcut de�nition can use pointcut
operators to express complex conditions.
We measure pointcut de�nitions by summing up the value (1 by default)
assigned to the de�nition's type (call, execution, etc) and the complexity
of the signature. The complexity of pointcuts is the sum of the de�nitions'
complexities. The signature can be expressed as a regular expression, for
which metrics already exist [18]. We have decided to add a constant 1 com-
plexity to each token occuring in the expression. A token is a string literal
(like: foo), a keyword (like: int), or a regular expression metacharacter
(like: *). The rationale behind the de�nition is the following. It takes the
same e�ort to understand that a signature applies to all functions (in the
form: * *(*)) or to exactly one (void foo(int) throws IOException).
However, more complex patterns cause decisions harder to understand, like
in void f*oo(int,*) throws *.

2. Named pointcuts. The complexity of named pointcuts is the sum of the com-
plexity of their names (1 by default) and the pointcut itself. Thus if the
programmer de�nes a certain pointcut, names it, and instead of repeatedly
de�ning it again refers to the pointcut by its name, the complexity of the
code can be reduced. In section 2 we have seen, that the usage of functions
decreases the complexity, because by making a function call, the added com-
plexity is only the function's name, and its parameters. The usage of named
pointcuts is analogous to that procedure.

3. Advices, from our metric's point of view are built up from two parts: the
function part, and the pointcut part.
� The method for measuring the pointcut part has already been described

in the item 1.



� The purely function part is as follows. An advice's header is like that
of a special function's, with the keywords before, after, or around as
the name, followed by the regular parameter list. The "name" might
be preceeded by a return type. The body of an advice does not seem
di�erent for the programmer than the body of a function would. Even
in an around advice, the keyword proceed does not seem di�erent from
an ordinary function call. Therefore the function part's complexity is
measured the same way as Java methods.

The pointcut decides when a certain advice's body part is executed. This
is as if the body part of the advice would be in the scope of the predicates
de�ned by the pointcut. Complex pointcut de�nitions behave like nested
predicates. Thus the complexity of an advice is the complexity of advice's
body multiplied by the complexity of its pointcut.

4. Aspects and classes have a lot in common from the complexity point of
view. Both may include data, and member functions. Thus these members
of aspects can be measured the same way as if they were in classes, for this the
method is described in 2. Aspects may also have members of AOP-speci�c
constructs. We have classi�ed these constructs into two groups.
� The complexity of advices, and named pointcuts is taken into consider-

ation when measuring the aspect. These constructs directly a�ect the
way the programmer sees the code. She needs to understand these mem-
bers to be able to comprehend the complex construct described by the
program.

� As of now inter-type declarations like declare parents, declare errors,
declare warning, and others are not taken into account when measuring
complexity. We consider these auxiliary constructs in AspectJ which do
not directly a�ect the complexity seen by the programmer, but rather
as tools to easier express certain notions.

These complexity values are summed up with the complexities of the data,
and the member functions of the aspects.

We have seen in section 2 that the visibility of classes, and its members does not
in�uence their complexity. For the same reasons we do not take this attribute
into consideration in the case of aspects, and its members either.

5 Results

To validate our metric we have chosen the GoF Design Patterns' ([7]) imple-
mentations ([14]) for measuring. One of the reasons was that in [14] we �nd a
functionally equivalent implementation of each pattern in AOP and OOP. At
the same time, the renowned authors behind the implementations let us assume
that the aspect-oriented techniques were handled correctly. We also supposed
that DPs are neutral to crosscutting concerns. We did not choose examples that
are well-known crosscutting problems (e.g. logging, tracing, etc), but more gen-
eral ones, that might be in this problem set.



Many people think AOP reduces the complexity of the design patterns' im-
plementations because of the patterns' crosscutting approaches. Obviously, the
design patterns have been created as solutions for the non-trivial problems in
OOP. The approach of AOP can describe these solutions easier by AOP's new
language constructs.

The structure of these implementations is as follows. Each pattern has a
Java and an AspectJ implementation. The AspectJ implementations also uti-
lize a common library, otherwise independent of the patterns. As of now our
measurement tool is able to parse and measure 14 out of 23 design pattern im-
plementations. The table shows the AV-metric values, and the e�ective lines of
code (ELOC) per patterns.

Design Pattern Implementation AV Complexity E�ective LOC
adapter java 77 27

AOP 51 22
bridge java 235 75

AOP 237 79
builder java 219 55

AOP 201 66
decorator java 91 34

AOP 93 25
factoryMethod java 113 54

AOP 129 67
flyweight java 299 66

AOP 286 71
interpreter java 567 115

AOP 567 113
memento java 99 33

AOP 186 47
observer java 374 93

AOP 305 87
prototype java 187 53

AOP 204 56
state java 259 97

AOP 179 103
strategy java 265 56

AOP 732 68
templateMethod java 158 43

AOP 158 45
visitor java 300 83

AOP 362 85



A comparison between the implementation of the design patterns in the OOP
and AOP way can be found in [14, 16]. These papers explain that 17 out of
23 patterns had exhibited some degree of crosscutting. They also declare that
implementing the patterns in AOP has many bene�ts, among them the most
important being the ability to localize the code for a given pattern. Many pat-
terns can be implemented as a single aspect, or as 2 closely related aspects.
Our metric especially rewards code localization. The OOP versions can not be
as well-structured as the AOP versions, where the code is more maintainable,
and comprehensible. Another important bene�t is the code's obliviousness. This
bene�t results directly from localization: as the pattern is localized in an as-
pect, it does not invade its participants. Henneman and Kiczales stated that the
AOP versions are more modular by 74%, and more reuseable by 52%. According
to [14] some patterns' implementation may disappear into the code because of
AOP's constructs (e.g. the decorator pattern). This can also lead to complexity
decrease.

In some cases we can see that the AOP implementation was less complex
by our metric even if the ELOC number was greater. These are the cases when
using AOP was adequate, these are the adapter, builder, observer, and state
patterns. However, we can see a number of patterns where the AOP implementa-
tions were at least as complex as their Java counterparts. Patterns like memento,
visitor and most typically strategy belong here. This shows that inadequate
use of AOP can even be disadvantageous.

6 Conclusion and future work

In this paper we described a multiparadigm metric which was extended for
aspect-oriented programs. The metric can measure the complexity of procedural,
object-oriented, and aspect-related parts of programs implemented in AspectJ.
We tested our metric on two functionally equal implementations of GoF design
patterns: one of them is written in pure Java, the other is based on AspectJ.
The metric revealed that aspect-orientation does not necessarily reduce the com-
plexity on its own � the gain highly depends on the actual problem. Future
investigations are needed to clarify the details.
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