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Preface 
Like any human language, C++ provides a way to 

express concepts. If successful, this medium of 

expression will be significantly easier and more flexible 

than the alternatives as problems grow larger and more 

complex. 
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You can’t just look at C++ as a collection of features; some of the 
features make no sense in isolation. You can only use the sum of the 
parts if you are thinking about design, not simply coding. And to 
understand C++ this way, you must understand the problems with 
C and with programming in general. This book discusses 
programming problems, why they are problems, and the approach 
C++ has taken to solve such problems. Thus, the set of features I 
explain in each chapter will be based on the way that I see a 
particular type of problem being solved with the language. In this 
way I hope to move you, a little at a time, from understanding C to 
the point where the C++ mindset becomes your native tongue. 

Throughout, I’ll be taking the attitude that you want to build a 
model in your head that allows you to understand the language all 
the way down to the bare metal; if you encounter a puzzle, you’ll be 
able to feed it to your model and deduce the answer. I will try to 
convey to you the insights that have rearranged my brain to make 
me start “thinking in C++.” 

What’s new in the second edition 
This book is a thorough rewrite of the first edition to reflect all of 
the changes introduced in C++ by the finalization of the C++ 
Standard, and also to reflect what I’ve learned since writing the first 
edition. The entire text present in the first edition has been 
examined and rewritten, sometimes removing old examples, often 
changing existing examples and adding new ones, and adding many 
new exercises. Significant rearrangement and re-ordering of the 
material took place to reflect the availability of better tools and my 
improved understanding of how people learn C++. A new chapter 
was added which is a rapid introduction to the C concepts and basic 
C++ features for those who don’t have the C background to tackle 
the rest of the book. The CD ROM bound into the back of the book 
contains a seminar that is an even gentler introduction to the C 
concepts necessary to understand C++ (or Java). It was created by 
Chuck Allison for my company (MindView, Inc.), and it’s called 
“Thinking in C: Foundations for Java and C++.” It introduces you to 
the aspects of C that are necessary for you to move on to C++ or 
Java, leaving out the nasty bits that C programmers must deal with 
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on a day-to-day basis but that the C++ and Java languages steer you 
away from (or even eliminate, in the case of Java). 

So the short answer  to the question “what’s different in the 2nd 
edition?” is: what isn’t brand new has been rewritten, sometimes to 
the point where you wouldn’t recognize the original examples and 
material. 

What’s in Volume 2 of this book 
The completion of the C++ Standard also added a number of 
important new libraries, such as string and the containers and 
algorithms in the Standard C++ Library, as well as new complexity 
in templates. These and other more advanced topics have been 
relegated to Volume 2 of this book, including issues such as 
multiple inheritance, exception handling, design patterns, and 
topics about building and debugging stable systems. 

How to get Volume 2 
Just like the book you currently hold, Thinking in C++, Volume 2 is 
downloadable in its entirety from my Web site at 
www.BruceEckel.com. You can find information on the Web site 
about the expected print date of Volume 2. 

The Web site also contains the source code for both of the books, 
along with updates and information about other seminars-on-CD 
ROM that MindView, Inc. offers, public seminars, and in-house 
training, consulting, mentoring, and walkthroughs. 

Prerequisites 
In the first edition of this book, I decided to assume that someone 
else had taught you C and that you have at least a reading level of 
comfort with it. My primary focus was on simplifying what I found 
difficult: the C++ language. In this edition I have added a chapter 
that is a rapid introduction to C, along with the Thinking in C 
seminar-on-CD, but I am still assuming that you already have some 
kind of programming experience. In addition, just as you learn 
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many new words intuitively by seeing them in context in a novel, it’s 
possible to learn a great deal about C from the context in which it is 
used in the rest of the book. 

Learning C++ 
I clawed my way into C++ from exactly the same position I expect 
many of the readers of this book are in: as a programmer with a 
very no-nonsense, nuts-and-bolts attitude about programming. 
Worse, my background and experience was in hardware-level 
embedded programming, in which C has often been considered a 
high-level language and an inefficient overkill for pushing bits 
around. I discovered later that I wasn’t even a very good C 
programmer, hiding my ignorance of structures, malloc( ) and 
free( ), setjmp( ) and longjmp( ), and other “sophisticated” 
concepts, scuttling away in shame when the subjects came up in 
conversation instead of reaching out for new knowledge. 

When I began my struggle to understand C++, the only decent book 
was Bjarne Stroustrup’s self-professed “expert’s guide,1” so I was 
left to simplify the basic concepts on my own. This resulted in my 
first C++ book,2 which was essentially a brain dump of my 
experience. That was designed as a reader’s guide to bring 
programmers into C and C++ at the same time. Both editions3 of 
the book garnered enthusiastic response. 

At about the same time that Using C++ came out, I began teaching 
the language in seminars and presentations. Teaching C++ (and 
later, Java) became my profession; I’ve seen nodding heads, blank 
faces, and puzzled expressions in audiences all over the world since 
1989. As I began giving in-house training to smaller groups of 
people, I discovered something during the exercises. Even those 
people who were smiling and nodding were confused about many 

                                                   
1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first 
edition). 
2 Using C++, Osborne/McGraw-Hill 1989. 
3 Using C++ and C++ Inside & Out, Osborne/McGraw-Hill 1993. 
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issues. I found out, by creating and chairing the C++ and Java 
tracks at the Software Development Conference for many years, 
that I and other speakers tended to give the typical audience too 
many topics, too fast. So eventually, through both variety in the 
audience level and the way that I presented the material, I would 
end up losing some portion of the audience. Maybe it’s asking too 
much, but because I am one of those people resistant to traditional 
lecturing (and for most people, I believe, such resistance results 
from boredom), I wanted to try to keep everyone up to speed. 

For a time, I was creating a number of different presentations in 
fairly short order. Thus, I ended up learning by experiment and 
iteration (a technique that also works well in C++ program design). 
Eventually I developed a course using everything I had learned 
from my teaching experience. It tackles the learning problem in 
discrete, easy-to-digest steps and for a hands-on seminar (the ideal 
learning situation) there are exercises following each of the 
presentations. You can find out about my public seminars at 
www.BruceEckel.com, and you can also learn about the seminars 
that I’ve turned into CD ROMs. 

The first edition of this book developed over the course of two years, 
and the material in this book has been road-tested in many forms in 
many different seminars. The feedback that I’ve gotten from each 
seminar has helped me change and refocus the material until I feel 
it works well as a teaching medium. But it isn’t just a seminar 
handout; I tried to pack as much information as I could within 
these pages, and structure it to draw you through onto the next 
subject. More than anything, the book is designed to serve the 
solitary reader who is struggling with a new programming language. 

Goals 
My goals in this book are to: 

1. Present the material one simple step at a time, so the reader 
can easily digest each concept before moving on. 
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2. Use examples that are as simple and short as possible. This 
often prevents me from tackling “real world” problems, but 
I’ve found that beginners are usually happier when they can 
understand every detail of an example rather than being 
impressed by the scope of the problem it solves. Also, there’s 
a severe limit to the amount of code that can be absorbed in a 
classroom situation. For this I sometimes receive criticism for 
using “toy examples,” but I’m willing to accept that in favor of 
producing something pedagogically useful. 

3. Carefully sequence the presentation of features so that you 
aren’t seeing something you haven’t been exposed to. Of 
course, this isn’t always possible; in those situations, a brief 
introductory description will be given. 

4. Give you what I think is important for you to understand 
about the language, rather than everything that I know. I 
believe there is an “information importance hierarchy,” and 
there are some facts that 95 percent of programmers will 
never need to know and that would just confuse them and 
add to their perception of the complexity of the language. To 
take an example from C, if you memorize the operator 
precedence table (I never did), you can write clever code. But 
if you have to think about it, it will confuse the 
reader/maintainer of that code. So forget about precedence, 
and use parentheses when things aren’t clear. This same 
attitude will be taken with some information in the C++ 
language, which I think is more important for compiler 
writers than for programmers. 

5. Keep each section focused enough so the lecture time – and 
the time between exercise periods – is reasonable. Not only 
does this keep the audience’s minds more active and involved 
during a hands-on seminar, it gives the reader a greater sense 
of accomplishment. 

6. Provide readers with a solid foundation so they can 
understand the issues well enough to move on to more 
difficult coursework and books (in particular, Volume 2 of 
this book). 

Preface  7 

7. I’ve tried not to use any particular vendor’s version of C++ 
because, for learning the language, I don’t think that the 
details of a particular implementation are as important as the 
language itself. Most vendors’ documentation concerning 
their own implementation specifics is adequate. 

Chapters 
C++ is a language in which new and different features are built on 
top of an existing syntax. (Because of this, it is referred to as a 
hybrid object-oriented programming language.) As more people 
pass through the learning curve, we’ve begun to get a feel for the 
way programmers move through the stages of the C++ language 
features. Because it appears to be the natural progression of the 
procedurally-trained mind, I decided to understand and follow this 
same path and accelerate the process by posing and answering the 
questions that came to me as I learned the language and those 
questions that came from audiences as I taught the language. 

This course was designed with one thing in mind: to streamline the 
process of learning C++. Audience feedback helped me understand 
which parts were difficult and needed extra illumination. In the 
areas in which I got ambitious and included too many features all at 
once, I came to know – through the process of presenting the 
material – that if you include a lot of new features, you have to 
explain them all, and the student’s confusion is easily compounded. 
As a result, I’ve taken a great deal of trouble to introduce the 
features as few at a time as possible; ideally, only one major concept 
at a time per chapter. 

The goal, then, is for each chapter to teach a single concept, or a 
small group of associated concepts, in such a way that no additional 
features are relied upon. That way you can digest each piece in the 
context of your current knowledge before moving on. To accomplish 
this, I leave some C features in place for longer than I would prefer. 
The benefit is that you will not be confused by seeing all the C++ 
features used before they are explained, so your introduction to the 
language will be gentle and will mirror the way you will assimilate 
the features if left to your own devices. 
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Here is a brief description of the chapters contained in this book: 

Chapter 1: Introduction to Objects. When projects became too 
big and complicated to easily maintain, the “software crisis” was 
born, with programmers saying, “We can’t get projects done, and if 
we can, they’re too expensive!” This precipitated a number of 
responses, which are discussed in this chapter along with the ideas 
of object-oriented programming (OOP) and how it attempts to solve 
the software crisis. The chapter walks you through the basic 
concepts and features of OOP and also introduces the analysis and 
design process. In addition, you’ll learn about the benefits and 
concerns of adopting the language and suggestions for moving into 
the world of C++. 

Chapter 2: Making and Using Objects. This chapter explains 
the process of building programs using compilers and libraries. It 
introduces the first C++ program in the book and shows how 
programs are constructed and compiled. Then some of the basic 
libraries of objects available in Standard C++ are introduced. By the 
time you finish this chapter you’ll have a good grasp of what it 
means to write a C++ program using off-the-shelf object libraries. 

Chapter 3: The C in C++. This chapter is a dense overview of the 
features in C that are used in C++, as well as a number of basic 
features that are available only in C++. It also introduces the 
“make” utility that’s common in the software development world 
and that is used to build all the examples in this book (the source 
code for the book, which is available at www.BruceEckel.com, 
contains makefiles for each chapter). Chapter 3 assumes that you 
have a solid grounding in some procedural programming language 
like Pascal, C, or even some flavors of Basic (as long as you’ve 
written plenty of code in that language, especially functions). If you 
find this chapter a bit too much, you should first go through the 
Thinking in C seminar on the CD that’s bound with this book (and 
also available at www.BruceEckel.com). 

Chapter 4: Data Abstraction. Most features in C++ revolve 
around the ability to create new data types. Not only does this 
provide superior code organization, but it lays the groundwork for 
more powerful OOP abilities. You’ll see how this idea is facilitated 
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by the simple act of putting functions inside structures, the details 
of how to do it, and what kind of code it creates. You’ll also learn the 
best way to organize your code into header files and 
implementation files. 

Chapter 5: Hiding the Implementation. You can decide that 
some of the data and functions in your structure are unavailable to 
the user of the new type by making them private. This means that 
you can separate the underlying implementation from the interface 
that the client programmer sees, and thus allow that 
implementation to be easily changed without affecting client code. 
The keyword class is also introduced as a fancier way to describe a 
new data type, and the meaning of the word “object” is demystified 
(it’s a fancy variable). 

Chapter 6: Initialization and Cleanup. One of the most 
common C errors results from uninitialized variables. The 
constructor in C++ allows you to guarantee that variables of your 
new data type (“objects of your class”) will always be initialized 
properly. If your objects also require some sort of cleanup, you can 
guarantee that this cleanup will always happen with the C++ 
destructor. 

Chapter 7: Function Overloading and Default Arguments. 
C++ is intended to help you build big, complex projects. While 
doing this, you may bring in multiple libraries that use the same 
function name, and you may also choose to use the same name with 
different meanings within a single library. C++ makes this easy with 
function overloading, which allows you to reuse the same function 
name as long as the argument lists are different. Default arguments 
allow you to call the same function in different ways by 
automatically providing default values for some of your arguments. 

Chapter 8: Constants. This chapter covers the const and 
volatile keywords, which have additional meaning in C++, 
especially inside classes. You’ll learn what it means to apply const 
to a pointer definition. The chapter also shows how the meaning of 
const varies when used inside and outside of classes and how to 
create compile-time constants inside classes. 
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Chapter 9: Inline Functions. Preprocessor macros eliminate 
function call overhead, but the preprocessor also eliminates 
valuable C++ type checking. The inline function gives you all the 
benefits of a preprocessor macro plus all of the benefits of a real 
function call. This chapter thoroughly explores the implementation 
and use of inline functions. 

Chapter 10: Name Control. Creating names is a fundamental 
activity in programming, and when a project gets large, the number 
of names can be overwhelming. C++ allows you a great deal of 
control over names in terms of their creation, visibility, placement 
of storage, and linkage. This chapter shows how names are 
controlled in C++ using two techniques. First, the static keyword is 
used to control visibility and linkage, and its special meaning with 
classes is explored. A far more useful technique for controlling 
names at the global scope is C++’s namespace feature, which 
allows you to break up the global name space into distinct regions. 

Chapter 11: References and the Copy-Constructor. C++ 
pointers work like C pointers with the additional benefit of stronger 
C++ type checking. C++ also provides an additional way to handle 
addresses: from Algol and Pascal, C++ lifts the reference, which lets 
the compiler handle the address manipulation while you use 
ordinary notation. You’ll also meet the copy-constructor, which 
controls the way objects are passed into and out of functions by 
value. Finally, the C++ pointer-to-member is illuminated. 

Chapter 12: Operator Overloading. This feature is sometimes 
called “syntactic sugar;” it lets you sweeten the syntax for using 
your type by allowing operators as well as function calls. In this 
chapter you’ll learn that operator overloading is just a different type 
of function call and you’ll learn how to write your own, dealing with 
the sometimes-confusing uses of arguments, return types, and the 
decision of whether to make an operator a member or friend. 

Chapter 13: Dynamic Object Creation. How many planes will 
an air-traffic system need to manage? How many shapes will a CAD 
system require? In the general programming problem, you can’t 
know the quantity, lifetime, or type of objects needed by your 
running program. In this chapter, you’ll learn how C++’s new and 
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delete elegantly solve this problem by safely creating objects on the 
heap. You’ll also see how new and delete can be overloaded in a 
variety of ways so you can control how storage is allocated and 
released. 

Chapter 14: Inheritance and Composition. Data abstraction 
allows you to create new types from scratch, but with composition 
and inheritance, you can create new types from existing types. With 
composition, you assemble a new type using other types as pieces, 
and with inheritance, you create a more specific version of an 
existing type. In this chapter you’ll learn the syntax, how to redefine 
functions, and the importance of construction and destruction for 
inheritance and composition. 

Chapter 15: Polymorphism and virtual Functions. On your 
own, you might take nine months to discover and understand this 
cornerstone of OOP. Through small, simple examples, you’ll see 
how to create a family of types with inheritance and manipulate 
objects in that family through their common base class. The virtual 
keyword allows you to treat all objects in this family generically, 
which means that the bulk of your code doesn’t rely on specific type 
information. This makes your programs extensible, so building 
programs and code maintenance is easier and cheaper. 

Chapter 16: Introduction to Templates. Inheritance and 
composition allow you to reuse object code, but that doesn’t solve 
all of your reuse needs. Templates allow you to reuse source code by 
providing the compiler with a way to substitute type names in the 
body of a class or function. This supports the use of container class 
libraries, which are important tools for the rapid, robust 
development of object-oriented programs (the Standard C++ 
Library includes a significant library of container classes). This 
chapter gives you a thorough grounding in this essential subject. 

Additional topics (and more advanced subjects) are available in 
Volume 2 of this book, which can be downloaded from the Web site 
www.BruceEckel.com. 
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Exercises 
I’ve discovered that exercises are exceptionally useful during a 
seminar to complete a student’s understanding, so you’ll find a set 
at the end of each chapter. The number of exercises has been greatly 
increased over the number in the first edition.  

Many of the exercises are fairly simple so that they can be finished 
in a reasonable amount of time in a classroom situation or lab 
section while the instructor observes, making sure all students are 
absorbing the material. Some exercises are a bit more challenging 
to keep advanced students entertained. The bulk of the exercises are 
designed to be solved in a short time and are intended only to test 
and polish your knowledge rather than present major challenges 
(presumably, you’ll find those on your own – or more likely, they’ll 
find you). 

Exercise solutions 
Solutions to selected exercises can be found in the electronic 
document The Thinking in C++ Annotated Solution Guide, 
available for a small fee from www.BruceEckel.com. 

Source code 
The source code for this book is copyrighted freeware, distributed 
via the Web site www.BruceEckel.com. The copyright prevents you 
from republishing the code in print media without permission, but 
you are granted the right to use it in many other situations (see 
below). 

The code is available in a zipped file, designed to be extracted for 
any platform that has a “zip” utility (most do; you can search the 
Internet to find a version for your platform if you don’t already have 
one installed). In the starting directory where you unpacked the 
code you will find the following copyright notice: 

//:! :Copyright.txt 

Copyright (c) 2000, Bruce Eckel 

Source code file from the book "Thinking in C++" 
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All rights reserved EXCEPT as allowed by the 

following statements: You can freely use this file 

for your own work (personal or commercial), 

including modifications and distribution in 

executable form only. Permission is granted to use 

this file in classroom situations, including its 

use in presentation materials, as long as the book 

"Thinking in C++" is cited as the source.  

Except in classroom situations, you cannot copy 

and distribute this code; instead, the sole 

distribution point is http://www.BruceEckel.com  

(and official mirror sites) where it is 

available for free. You cannot remove this 

copyright and notice. You cannot distribute 

modified versions of the source code in this 

package. You cannot use this file in printed 

media without the express permission of the 

author. Bruce Eckel makes no representation about 

the suitability of this software for any purpose. 

It is provided "as is" without express or implied 

warranty of any kind, including any implied 

warranty of merchantability, fitness for a 

particular purpose, or non-infringement. The entire 

risk as to the quality and performance of the 

software is with you. Bruce Eckel and the 

publisher shall not be liable for any damages 

suffered by you or any third party as a result of 

using or distributing this software. In no event  

will Bruce Eckel or the publisher be liable for  

any lost revenue, profit, or data, or for direct, 

indirect, special, consequential, incidental, or 

punitive damages, however caused and regardless of 

the theory of liability, arising out of the use of 

or inability to use software, even if Bruce Eckel 

and the publisher have been advised of the 

possibility of such damages. Should the software 

prove defective, you assume the cost of all 

necessary servicing, repair, or correction. If you 

think you've found an error, please submit the 

correction using the form you will find at 

www.BruceEckel.com. (Please use the same 

form for non-code errors found in the book.) 

///:~ 
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You may use the code in your projects and in the classroom as long 
as the copyright notice is retained. 

Language standards 
Throughout this book, when referring to conformance to the ISO C 
standard, I will generally just say ‘C.’ Only if it is necessary to 
distinguish between Standard C and older, pre-Standard versions of  
C will I make a distinction. 

At this writing the C++ Standards Committee was finished working 
on the language. Thus, I will use the term Standard C++  to refer to 
the standardized language. If I simply refer to C++ you should 
assume I mean “Standard C++.” 

There is some confusion over the actual name of the C++ Standards 
Committee and the name of the standard itself. Steve Clamage, the 
committee chair, clarified this: 

There are two C++ standardization committees: The NCITS 
(formerly X3) J16 committee and the ISO JTC1/SC22/WG14 
committee. ANSI charters NCITS to create technical 
committees for developing American national standards.  

J16 was chartered in 1989 to create an American standard for 
C++. In about 1991 WG14 was chartered to create an 
international standard. The J16 project was converted to a 
"Type I" (International) project and subordinated to the ISO 
standardization effort.  

The two committees meet at the same time at the same location, 
and the J16 vote constitutes the American vote on WG14. WG14 
delegates technical work to J16. WG14 votes on the technical 
work of J16.  

The C++ standard was originally created as an ISO standard. 
ANSI later voted (as recommended by J16) to adopt the ISO 
C++ standard as the American standard for C++. 
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Thus, ‘ISO’ is the correct way to refer to the C++ Standard. 

Language support 
Your compiler may not support all of the features discussed in this 
book, especially if you don’t have the newest version of the 
compiler. Implementing a language like C++ is a Herculean task, 
and you can expect that the features will appear in pieces rather 
than all at once. But if you attempt one of the examples in the book 
and get a lot of errors from the compiler, it’s not necessarily a bug 
in the code or the compiler; it may simply not be implemented in 
your particular compiler yet. 

The book’s CD ROM 
The primary content of the CD ROM packaged in the back of this 
book is a “seminar on CD ROM” titled Thinking in C: Foundations 
for Java & C++ by Chuck Allison (published by MindView, Inc., 
and also available in quantities at www.BruceEckel.com). This 
contains many hours of audio lectures and slides, and can be viewed 
on most computers if you have a CD ROM player and a sound 
system.  

The goal of Thinking in C is to take you carefully through the 
fundamentals of the C language. It focuses on the knowledge 
necessary for you to be able to move on to the C++ or Java 
languages instead of trying to make you an expert in all the dark 
corners of C. (One of the reasons for using a higher-level language 
like C++ or Java is precisely so we can avoid many of these dark 
corners.) It also contains exercises and guided solutions. Keep in 
mind that because Chapter 3 of this book goes beyond the Thinking 
in C CD, the CD is not a replacement for that chapter, but should be 
used instead as a preparation for this book. 

Please note that the CD ROM is browser-based, so you should have 
a Web browser installed on your machine before using it. 
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CD ROMs, seminars, 

and consulting 
There are seminars-on-CD-ROM planned to cover Volume 1 and 
Volume 2 of this book. These comprise many hours of audio 
lectures by me that accompany slides that cover selected material 
from each chapter in the book. They can be viewed on most 
computers if you have a CD ROM player and a sound system. These 
CDs may be purchased at www.BruceEckel.com, where you will 
find more information and sample lectures. 

My company, MindView, Inc., provides public hands-on training 
seminars based on the material in this book and also on advanced 
topics. Selected material from each chapter represents a lesson, 
which is followed by a monitored exercise period so each student 
receives personal attention. We also provide on-site training, 
consulting, mentoring, and design and code walkthroughs. 
Information and sign-up forms for upcoming seminars and other 
contact information can be found at www.BruceEckel.com. 

I am sometimes available for design consulting, project evaluation 
and code walkthroughs. When I first began writing about 
computers, my primary motivation was to increase my consulting 
activities, because I find consulting to be challenging, educational, 
and one of my most enjoyable experiences, professionally. Thus I 
will try my best to fit you into my schedule, or to provide you with 
one of my associates (who are people that I know well and trust, 
and often people who co-develop and teach seminars with me). 

Errors 
No matter how many tricks a writer uses to detect errors, some 
always creep in and these often leap off the page to a fresh reader. If 
you discover anything you believe to be an error, please use the 
correction form you will find at www.BruceEckel.com. Your help is 
appreciated. 
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About the cover 
The first edition of this book had my face on the cover, but I 
originally wanted a cover for the second edition that was more of a 
work of art like the Thinking in Java cover. For some reason, C++ 
seems to me to suggest Art Deco with its simple curves and brushed 
chrome. I had in mind something like those posters of ships and 
airplanes with the long sweeping bodies. 

My friend Daniel Will-Harris, (www.Will-Harris.com) whom I first 
met in junior high school choir class, went on to become a world-
class designer and writer. He has done virtually all of my designs, 
including the cover for the first edition of this book. During the 
cover design process, Daniel, unsatisfied with the progress we were 
making, kept asking “How does this relate people to computers?” 
We were stuck. 

On a whim, with no particular outcome in mind, he asked me to put 
my face on the scanner. Daniel had one of his graphics programs 
(Corel Xara, his favorite) “autotrace” the scan of my face. As he 
describes it, “Autotracing is the computer's way to turn a picture 
into the kinds of lines and curves it really likes.” Then he played 
with it until he had something that looked like a topographic map of 
my face, an image that might be the way a computer could see 
people. 

I took this image and photocopied it onto watercolor paper (some 
color copiers can handle thick stock), and then started creating lots 
of experiments by adding watercolor to the image. We selected the 
ones we liked best, then Daniel scanned them back in and arranged 
them into the cover, adding the text and other design elements. The 
whole process happened over several months, mostly because of the 
time it took me to do the watercolors. But I’ve especially enjoyed it 
because I got to participate in the art on the cover, and because it 
gave me incentive to do more watercolors (what they say about 
practice really is true). 
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Book design and production 
The book’s interior design was created by Daniel Will-Harris, who 
used to play with rub-on letters in junior high school while he 
awaited the invention of computers and desktop publishing. 
However, I produced the camera-ready pages myself, so the 
typesetting errors are mine. Microsoft® Word for Windows 
Versions 8 and 9 were used to write the book and to create camera-
ready pages, including generating the table of contents and index. (I 
created a COM automation server in Python, called from Word VBA 
macros, to aid me in index marking.) Python (see 
www.Python.org) was used to create some of the tools for checking 
the code, and would have been use for the code extraction tool had I 
discovered it earlier. 

I created the diagrams using Visio® – thanks to Visio Corporation 
for creating a useful tool. 

The body typeface is Georgia and the headlines are in Verdana. The 
final camera-ready version was produced in Adobe® Acrobat 4 and 
taken directly to press from that file – thanks very much to Adobe 
for creating a tool that allows e-mailing camera-ready documents, 
as it enables multiple revisions to be made in a single day rather 
than relying on my laser printer and overnight express services. 
(We first tried the Acrobat process with Thinking in Java, and I was 
able to upload the final version of that book to the printer in the 
U.S. from South Africa.) 

The HTML version was created by exporting the Word document to 
RTF, then using RTF2HTML (see 
http://www.sunpack.com/RTF/) to do most of the work of the 
HTML conversion. (Thanks to Chris Hector for making such a 
useful, and especially reliable, tool.) The resulting files were cleaned 
up using a custom Python program that I hacked together, and the 
WMFs were converted to GIFs using JASC® PaintShop Pro 6 and its 
batch conversion tool (thanks to JASC for solving so many 
problems for me with their excellent product). The color syntax 
highlighting was added via a Perl script kindly contributed by Zafir 
Anjum. 
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1: Introduction to Objects 
The genesis of the computer revolution was in a 

machine. The genesis of our programming languages 

thus tends to look like that machine. 
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But computers are not so much machines as they are mind 
amplification tools (“bicycles for the mind,” as Steve Jobs is fond of 
saying) and a different kind of expressive medium. As a result, the 
tools are beginning to look less like machines and more like parts of 
our minds, and also like other expressive mediums such as writing, 
painting, sculpture, animation, and filmmaking. Object-oriented 
programming is part of this movement toward using the computer 
as an expressive medium. 

This chapter will introduce you to the basic concepts of object-
oriented programming (OOP), including an overview of OOP 
development methods. This chapter, and this book, assume that 
you have had experience in a procedural programming language, 
although not necessarily C. If you think you need more preparation 
in programming and the syntax of C before tackling this book, you 
should work through the “Thinking in C: Foundations for C++ and 
Java” training CD ROM, bound in with this book and also available 
at www.BruceEckel.com.  

This chapter is background and supplementary material. Many 
people do not feel comfortable wading into object-oriented 
programming without understanding the big picture first. Thus, 
there are many concepts that are introduced here to give you a solid 
overview of OOP. However, many other people don’t get the big 
picture concepts until they’ve seen some of the mechanics first; 
these people may become bogged down and lost without some code 
to get their hands on. If you’re part of this latter group and are 
eager to get to the specifics of the language, feel free to jump past 
this chapter – skipping it at this point will not prevent you from 
writing programs or learning the language. However, you will want 
to come back here eventually to fill in your knowledge so you can 
understand why objects are important and how to design with 
them. 

The progress of abstraction 
All programming languages provide abstractions. It can be argued 
that the complexity of the problems you’re able to solve is directly 
related to the kind and quality of abstraction. By “kind” I mean, 
“What is it that you are abstracting?” Assembly language is a small 
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abstraction of the underlying machine. Many so-called “imperative” 
languages that followed (such as Fortran, BASIC, and C) were 
abstractions of assembly language. These languages are big 
improvements over assembly language, but their primary 
abstraction still requires you to think in terms of the structure of 
the computer rather than the structure of the problem you are 
trying to solve. The programmer must establish the association 
between the machine model (in the “solution space,” which is the 
place where you’re modeling that problem, such as a computer) and 
the model of the problem that is actually being solved (in the 
“problem space,” which is the place where the problem exists). The 
effort required to perform this mapping, and the fact that it is 
extrinsic to the programming language, produces programs that are 
difficult to write and expensive to maintain, and as a side effect 
created the entire “programming methods” industry. 

The alternative to modeling the machine is to model the problem 
you’re trying to solve. Early languages such as LISP and APL chose 
particular views of the world (“All problems are ultimately lists” or 
“All problems are algorithmic”). PROLOG casts all problems into 
chains of decisions. Languages have been created for constraint-
based programming and for programming exclusively by 
manipulating graphical symbols. (The latter proved to be too 
restrictive.) Each of these approaches is a good solution to the 
particular class of problem they’re designed to solve, but when you 
step outside of that domain they become awkward.  

The object-oriented approach goes a step farther by providing tools 
for the programmer to represent elements in the problem space. 
This representation is general enough that the programmer is not 
constrained to any particular type of problem. We refer to the 
elements in the problem space and their representations in the 
solution space as “objects.” (Of course, you will also need other 
objects that don’t have problem-space analogs.) The idea is that the 
program is allowed to adapt itself to the lingo of the problem by 
adding new types of objects, so when you read the code describing 
the solution, you’re reading words that also express the problem. 
This is a more flexible and powerful language abstraction than what 
we’ve had before. Thus, OOP allows you to describe the problem in 
terms of the problem, rather than in terms of the computer where 
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the solution will run. There’s still a connection back to the 
computer, though. Each object looks quite a bit like a little 
computer; it has a state, and it has operations that you can ask it to 
perform. However, this doesn’t seem like such a bad analogy to 
objects in the real world; they all have characteristics and 
behaviors.  

Some language designers have decided that object-oriented 
programming by itself is not adequate to easily solve all 
programming problems, and advocate the combination of various 
approaches into multiparadigm programming languages.1 

Alan Kay summarized five basic characteristics of Smalltalk, the 
first successful object-oriented language and one of the languages 
upon which C++ is based. These characteristics represent a pure 
approach to object-oriented programming: 

1. Everything is an object. Think of an object as a fancy 
variable; it stores data, but you can “make requests” to that 
object, asking it to perform operations on itself. In theory, 
you can take any conceptual component in the problem 
you’re trying to solve (dogs, buildings, services, etc.) and 
represent it as an object in your program. 

2. A program is a bunch of objects telling each 
other what to do by sending messages. To make a 
request of an object, you “send a message” to that object. 
More concretely, you can think of a message as a request to 
call a function that belongs to a particular object. 

3. Each object has its own memory made up of 
other objects. Put another way, you create a new kind of 
object by making a package containing existing objects. Thus, 
you can build complexity in a program while hiding it behind 
the simplicity of objects. 

                                                   
1 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley 
1995). 

1: Introduction to Objects 25 

4. Every object has a type. Using the parlance, each 
object is an instance of a class, in which “class” is 
synonymous with “type.” The most important distinguishing 
characteristic of a class is “What messages can you send to 
it?” 

5. All objects of a particular type can receive the 

same messages. This is actually a loaded statement, as 
you will see later. Because an object of type “circle” is also an 
object of type “shape,” a circle is guaranteed to accept shape 
messages. This means you can write code that talks to shapes 
and automatically handles anything that fits the description 
of a shape. This substitutability is one of the most powerful 
concepts in OOP. 

An object has an interface 
Aristotle was probably the first to begin a careful study of the 
concept of type; he spoke of “the class of fishes and the class of 
birds.” The idea that all objects, while being unique, are also part of 
a class of objects that have characteristics and behaviors in common 
was used directly in the first object-oriented language, Simula-67, 
with its fundamental keyword class that introduces a new type into 
a program. 

Simula, as its name implies, was created for developing simulations 
such as the classic “bank teller problem2.” In this, you have a bunch 
of tellers, customers, accounts, transactions, and units of money – a 
lot of “objects.” Objects that are identical except for their state 
during a program’s execution are grouped together into “classes of 
objects” and that’s where the keyword class came from. Creating 
abstract data types (classes) is a fundamental concept in object-
oriented programming. Abstract data types work almost exactly like 
built-in types: You can create variables of a type (called objects or 
instances in object-oriented parlance) and manipulate those 
variables (called sending messages or requests; you send a message 

                                                   
2 You can find an interesting implementation of this problem in Volume 2 of this 
book, available at www.BruceEckel.com. 
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and the object figures out what to do with it). The members 
(elements) of each class share some commonality: every account 
has a balance, every teller can accept a deposit, etc. At the same 
time, each member has its own state, each account has a different 
balance, each teller has a name. Thus, the tellers, customers, 
accounts, transactions, etc., can each be represented with a unique 
entity in the computer program. This entity is the object, and each 
object belongs to a particular class that defines its characteristics 
and behaviors. 

So, although what we really do in object-oriented programming is 
create new data types, virtually all object-oriented programming 
languages use the “class” keyword. When you see the word “type” 
think “class” and vice versa3. 

Since a class describes a set of objects that have identical 
characteristics (data elements) and behaviors (functionality), a class 
is really a data type because a floating point number, for example, 
also has a set of characteristics and behaviors. The difference is that 
a programmer defines a class to fit a problem rather than being 
forced to use an existing data type that was designed to represent a 
unit of storage in a machine. You extend the programming language 
by adding new data types specific to your needs. The programming 
system welcomes the new classes and gives them all the care and 
type-checking that it gives to built-in types. 

The object-oriented approach is not limited to building simulations. 
Whether or not you agree that any program is a simulation of the 
system you’re designing, the use of OOP techniques can easily 
reduce a large set of problems to a simple solution. 

Once a class is established, you can make as many objects of that 
class as you like, and then manipulate those objects as if they are 
the elements that exist in the problem you are trying to solve. 
Indeed, one of the challenges of object-oriented programming is to 
create a one-to-one mapping between the elements in the problem 
space and objects in the solution space. 

                                                   
3 Some people make a distinction, stating that type determines the interface while 
class is a particular implementation of that interface. 
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But how do you get an object to do useful work for you? There must 
be a way to make a request of the object so that it will do something, 
such as complete a transaction, draw something on the screen or 
turn on a switch. And each object can satisfy only certain requests. 
The requests you can make of an object are defined by its interface, 
and the type is what determines the interface. A simple example 
might be a representation of a light bulb:  

Light

 on()

 off()

 brighten()

 dim()

Type Name

Interface

 
Light lt; 

lt.on(); 
 

The interface establishes what requests you can make for a 
particular object. However, there must be code somewhere to 
satisfy that request. This, along with the hidden data, comprises the 
implementation. From a procedural programming standpoint, it’s 
not that complicated. A type has a function associated with each 
possible request, and when you make a particular request to an 
object, that function is called. This process is usually summarized 
by saying that you “send a message” (make a request) to an object, 
and the object figures out what to do with that message (it executes 
code). 

Here, the name of the type/class is Light, the name of this 
particular Light object is lt, and the requests that you can make of 
a Light object are to turn it on, turn it off, make it brighter or make 
it dimmer. You create a Light object by declaring a name (lt) for 
that object. To send a message to the object, you state the name of 
the object and connect it to the message request with a period (dot). 
From the standpoint of the user of a pre-defined class, that’s pretty 
much all there is to programming with objects. 

The diagram shown above follows the format of the Unified 
Modeling Language (UML). Each class is represented by a box, 
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with the type name in the top portion of the box, any data members 
that you care to describe in the middle portion of the box, and the 
member functions (the functions that belong to this object, which 
receive any messages you send to that object) in the bottom portion 
of the box. Often, only the name of the class and the public member 
functions are shown in UML design diagrams, and so the middle 
portion is not shown. If you’re interested only in the class name, 
then the bottom portion doesn’t need to be shown, either. 

The hidden implementation 
It is helpful to break up the playing field into class creators (those 
who create new data types) and client programmers4 (the class 
consumers who use the data types in their applications). The goal of 
the client programmer is to collect a toolbox full of classes to use for 
rapid application development. The goal of the class creator is to 
build a class that exposes only what’s necessary to the client 
programmer and keeps everything else hidden. Why? Because if it’s 
hidden, the client programmer can’t use it, which means that the 
class creator can change the hidden portion at will without worrying 
about the impact to anyone else. The hidden portion usually 
represents the tender insides of an object that could easily be 
corrupted by a careless or uninformed client programmer, so hiding 
the implementation reduces program bugs. The concept of 
implementation hiding cannot be overemphasized. 

In any relationship it’s important to have boundaries that are 
respected by all parties involved. When you create a library, you 
establish a relationship with the client programmer, who is also a 
programmer, but one who is putting together an application by 
using your library, possibly to build a bigger library. 

If all the members of a class are available to everyone, then the 
client programmer can do anything with that class and there’s no 
way to enforce rules. Even though you might really prefer that the 
client programmer not directly manipulate some of the members of 

                                                   
4 I’m indebted to my friend Scott Meyers for this term. 
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your class, without access control there’s no way to prevent it. 
Everything’s naked to the world. 

So the first reason for access control is to keep client programmers’ 
hands off portions they shouldn’t touch – parts that are necessary 
for the internal machinations of the data type but not part of the 
interface that users need in order to solve their particular problems. 
This is actually a service to users because they can easily see what’s 
important to them and what they can ignore. 

The second reason for access control is to allow the library designer 
to change the internal workings of the class without worrying about 
how it will affect the client programmer. For example, you might 
implement a particular class in a simple fashion to ease 
development, and then later discover that you need to rewrite it in 
order to make it run faster. If the interface and implementation are 
clearly separated and protected, you can accomplish this easily and 
require only a relink by the user. 

C++ uses three explicit keywords to set the boundaries in a class: 
public, private, and protected. Their use and meaning are quite 
straightforward. These access specifiers determine who can use the 
definitions that follow. public means the following definitions are 
available to everyone. The private keyword, on the other hand, 
means that no one can access those definitions except you, the 
creator of the type, inside member functions of that type. private is 
a brick wall between you and the client programmer. If someone 
tries to access a private member, they’ll get a compile-time error. 
protected acts just like private, with the exception that an 
inheriting class has access to protected members, but not private 
members. Inheritance will be introduced shortly. 

Reusing the implementation 
Once a class has been created and tested, it should (ideally) 
represent a useful unit of code. It turns out that this reusability is 
not nearly so easy to achieve as many would hope; it takes 
experience and insight to produce a good design. But once you have 
such a design, it begs to be reused. Code reuse is one of the greatest 
advantages that object-oriented programming languages provide. 
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The simplest way to reuse a class is to just use an object of that class 
directly, but you can also place an object of that class inside a new 
class. We call this “creating a member object.” Your new class can 
be made up of any number and type of other objects, in any 
combination that you need to achieve the functionality desired in 
your new class. Because you are composing a new class from 
existing classes, this concept is called composition (or more 
generally, aggregation). Composition is often referred to as a “has-
a” relationship, as in “a car has an engine.” 

Car Engine

 

(The above UML diagram indicates composition with the filled 
diamond, which states there is one car. I will typically use a simpler 
form: just a line, without the diamond, to indicate an association.5) 

Composition comes with a great deal of flexibility. The member 
objects of your new class are usually private, making them 
inaccessible to the client programmers who are using the class. This 
allows you to change those members without disturbing existing 
client code. You can also change the member objects at runtime, to 
dynamically change the behavior of your program. Inheritance, 
which is described next, does not have this flexibility since the 
compiler must place compile-time restrictions on classes created 
with inheritance. 

Because inheritance is so important in object-oriented 
programming it is often highly emphasized, and the new 
programmer can get the idea that inheritance should be used 
everywhere. This can result in awkward and overly-complicated 
designs. Instead, you should first look to composition when creating 
new classes, since it is simpler and more flexible. If you take this 
approach, your designs will stay cleaner. Once you’ve had some 

                                                   
5 This is usually enough detail for most diagrams, and you don’t need to get specific 
about whether you’re using aggregation or composition. 
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experience, it will be reasonably obvious when you need 
inheritance. 

Inheritance: 

reusing the interface 
By itself, the idea of an object is a convenient tool. It allows you to 
package data and functionality together by concept, so you can 
represent an appropriate problem-space idea rather than being 
forced to use the idioms of the underlying machine. These concepts 
are expressed as fundamental units in the programming language 
by using the class keyword. 

It seems a pity, however, to go to all the trouble to create a class and 
then be forced to create a brand new one that might have similar 
functionality. It’s nicer if we can take the existing class, clone it, and 
then make additions and modifications to the clone. This is 
effectively what you get with inheritance, with the exception that if 
the original class (called the base or super or parent class) is 
changed, the modified “clone” (called the derived or inherited or 
sub or child class) also reflects those changes. 

Base

Derived

 

(The arrow in the above UML diagram points from the derived class 
to the base class. As you will see, there can be more than one 
derived class.) 

A type does more than describe the constraints on a set of objects; it 
also has a relationship with other types. Two types can have 
characteristics and behaviors in common, but one type may contain 
more characteristics than another and may also handle more 
messages (or handle them differently). Inheritance expresses this 
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similarity between types using the concept of base types and 
derived types. A base type contains all of the characteristics and 
behaviors that are shared among the types derived from it. You 
create a base type to represent the core of your ideas about some 
objects in your system. From the base type, you derive other types 
to express the different ways that this core can be realized. 

For example, a trash-recycling machine sorts pieces of trash. The 
base type is “trash,” and each piece of trash has a weight, a value, 
and so on, and can be shredded, melted, or decomposed. From this, 
more specific types of trash are derived that may have additional 
characteristics (a bottle has a color) or behaviors (an aluminum can 
may be crushed, a steel can is magnetic). In addition, some 
behaviors may be different (the value of paper depends on its type 
and condition). Using inheritance, you can build a type hierarchy 
that expresses the problem you’re trying to solve in terms of its 
types. 

A second example is the classic “shape” example, perhaps used in a 
computer-aided design system or game simulation. The base type is 
“shape,” and each shape has a size, a color, a position, and so on. 
Each shape can be drawn, erased, moved, colored, etc. From this, 
specific types of shapes are derived (inherited): circle, square, 
triangle, and so on, each of which may have additional 
characteristics and behaviors. Certain shapes can be flipped, for 
example. Some behaviors may be different, such as when you want 
to calculate the area of a shape. The type hierarchy embodies both 
the similarities and differences between the shapes. 
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Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Circle Square Triangle

 

Casting the solution in the same terms as the problem is 
tremendously beneficial because you don’t need a lot of 
intermediate models to get from a description of the problem to a 
description of the solution. With objects, the type hierarchy is the 
primary model, so you go directly from the description of the 
system in the real world to the description of the system in code. 
Indeed, one of the difficulties people have with object-oriented 
design is that it’s too simple to get from the beginning to the end. A 
mind trained to look for complex solutions is often stumped by this 
simplicity at first. 

When you inherit from an existing type, you create a new type. This 
new type contains not only all the members of the existing type 
(although the private ones are hidden away and inaccessible), but 
more importantly it duplicates the interface of the base class. That 
is, all the messages you can send to objects of the base class you can 
also send to objects of the derived class. Since we know the type of a 
class by the messages we can send to it, this means that the derived 
class is the same type as the base class. In the previous example, “a 
circle is a shape.” This type equivalence via inheritance is one of the 
fundamental gateways in understanding the meaning of object-
oriented programming. 
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Since both the base class and derived class have the same interface, 
there must be some implementation to go along with that interface. 
That is, there must be some code to execute when an object receives 
a particular message. If you simply inherit a class and don’t do 
anything else, the methods from the base-class interface come right 
along into the derived class. That means objects of the derived class 
have not only the same type, they also have the same behavior, 
which isn’t particularly interesting. 

You have two ways to differentiate your new derived class from the 
original base class. The first is quite straightforward: You simply 
add brand new functions to the derived class. These new functions 
are not part of the base class interface. This means that the base 
class simply didn’t do as much as you wanted it to, so you added 
more functions. This simple and primitive use for inheritance is, at 
times, the perfect solution to your problem. However, you should 
look closely for the possibility that your base class might also need 
these additional functions. This process of discovery and iteration 
of your design happens regularly in object-oriented programming. 

Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Circle Square Triangle

 FlipVertical()

 FlipHorizontal()  

Although inheritance may sometimes imply that you are going to 
add new functions to the interface, that’s not necessarily true. The 
second and more important way to differentiate your new class is to 
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change the behavior of an existing base-class function. This is 
referred to as overriding that function. 

Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Triangle

 draw()

 erase()

Circle

 draw()

 erase()

Square

 draw()

 erase()  

To override a function, you simply create a new definition for the 
function in the derived class. You’re saying, “I’m using the same 
interface function here, but I want it to do something different for 
my new type.” 

Is-a vs. is-like-a relationships 
There’s a certain debate that can occur about inheritance: Should 
inheritance override only base-class functions (and not add new 
member functions that aren’t in the base class)? This would mean 
that the derived type is exactly the same type as the base class since 
it has exactly the same interface. As a result, you can exactly 
substitute an object of the derived class for an object of the base 
class. This can be thought of as pure substitution, and it’s often 
referred to as the substitution principle. In a sense, this is the ideal 
way to treat inheritance. We often refer to the relationship between 
the base class and derived classes in this case as an is-a 
relationship, because you can say “a circle is a shape.” A test for 
inheritance is to determine whether you can state the is-a 
relationship about the classes and have it make sense. 
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There are times when you must add new interface elements to a 
derived type, thus extending the interface and creating a new type. 
The new type can still be substituted for the base type, but the 
substitution isn’t perfect because your new functions are not 
accessible from the base type. This can be described as an is-like-a 
relationship; the new type has the interface of the old type but it 
also contains other functions, so you can’t really say it’s exactly the 
same. For example, consider an air conditioner. Suppose your 
house is wired with all the controls for cooling; that is, it has an 
interface that allows you to control cooling. Imagine that the air 
conditioner breaks down and you replace it with a heat pump, 
which can both heat and cool. The heat pump is-like-an air 
conditioner, but it can do more. Because the control system of your 
house is designed only to control cooling, it is restricted to 
communication with the cooling part of the new object. The 
interface of the new object has been extended, and the existing 
system doesn’t know about anything except the original interface. 

Cooling System

 cool()

Air Conditioner

 cool()

Heat Pump

 cool()

 heat()

Thermostat

 lowerTemperature()

Controls

 

Of course, once you see this design it becomes clear that the base 
class “cooling system” is not general enough, and should be 
renamed to “temperature control system” so that it can also include 
heating – at which point the substitution principle will work. 
However, the diagram above is an example of what can happen in 
design and in the real world.  

When you see the substitution principle it’s easy to feel like this 
approach (pure substitution) is the only way to do things, and in 
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fact it is nice if your design works out that way. But you’ll find that 
there are times when it’s equally clear that you must add new 
functions to the interface of a derived class. With inspection both 
cases should be reasonably obvious. 

Interchangeable objects  

with polymorphism 
When dealing with type hierarchies, you often want to treat an 
object not as the specific type that it is but instead as its base type. 
This allows you to write code that doesn’t depend on specific types. 
In the shape example, functions manipulate generic shapes without 
respect to whether they’re circles, squares, triangles, and so on. All 
shapes can be drawn, erased, and moved, so these functions simply 
send a message to a shape object; they don’t worry about how the 
object copes with the message. 

Such code is unaffected by the addition of new types, and adding 
new types is the most common way to extend an object-oriented 
program to handle new situations. For example, you can derive a 
new subtype of shape called pentagon without modifying the 
functions that deal only with generic shapes. This ability to extend a 
program easily by deriving new subtypes is important because it 
greatly improves designs while reducing the cost of software 
maintenance. 

There’s a problem, however, with attempting to treat derived-type 
objects as their generic base types (circles as shapes, bicycles as 
vehicles, cormorants as birds, etc.). If a function is going to tell a 
generic shape to draw itself, or a generic vehicle to steer, or a 
generic bird to move, the compiler cannot know at compile-time 
precisely what piece of code will be executed. That’s the whole point 
– when the message is sent, the programmer doesn’t want to know 
what piece of code will be executed; the draw function can be 
applied equally to a circle, a square, or a triangle, and the object will 
execute the proper code depending on its specific type. If you don’t 
have to know what piece of code will be executed, then when you 
add a new subtype, the code it executes can be different without 
requiring changes to the function call. Therefore, the compiler 
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cannot know precisely what piece of code is executed, so what does 
it do? For example, in the following diagram the BirdController 
object just works with generic Bird objects, and does not know 
what exact type they are. This is convenient from 
BirdController’s perspective, because it doesn’t have to write 
special code to determine the exact type of Bird it’s working with, 
or that Bird’s behavior. So how does it happen that, when move( ) 
is called while ignoring the specific type of Bird, the right behavior 
will occur (a Goose runs, flies, or swims, and a Penguin runs or 
swims)? 

What happens

when move() is

called?

Bird

 move()

Goose

 move()

Penguin

 move()

BirdController

 reLocate()

 

The answer is the primary twist in object-oriented programming: 
The compiler cannot make a function call in the traditional sense. 
The function call generated by a non-OOP compiler causes what is 
called early binding, a term you may not have heard before because 
you’ve never thought about it any other way. It means the compiler 
generates a call to a specific function name, and the linker resolves 
this call to the absolute address of the code to be executed. In OOP, 
the program cannot determine the address of the code until 
runtime, so some other scheme is necessary when a message is sent 
to a generic object. 

To solve the problem, object-oriented languages use the concept of 
late binding. When you send a message to an object, the code being 
called isn’t determined until runtime. The compiler does ensure 
that the function exists and performs type checking on the 
arguments and return value (a language in which this isn’t true is 
called weakly typed), but it doesn’t know the exact code to execute. 
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To perform late binding, the C++ compiler inserts a special bit of 
code in lieu of the absolute call. This code calculates the address of 
the function body, using information stored in the object (this 
process is covered in great detail in Chapter 15). Thus, each object 
can behave differently according to the contents of that special bit 
of code. When you send a message to an object, the object actually 
does figure out what to do with that message. 

You state that you want a function to have the flexibility of late-
binding properties using the keyword virtual. You don’t need to 
understand the mechanics of virtual to use it, but without it you 
can’t do object-oriented programming in C++. In C++, you must 
remember to add the virtual keyword because, by default, member 
functions are not dynamically bound. Virtual functions allow you to 
express the differences in behavior of classes in the same family. 
Those differences are what cause polymorphic behavior. 

Consider the shape example. The family of classes (all based on the 
same uniform interface) was diagrammed earlier in the chapter. To 
demonstrate polymorphism, we want to write a single piece of code 
that ignores the specific details of type and talks only to the base 
class. That code is decoupled from type-specific information, and 
thus is simpler to write and easier to understand. And, if a new type 
– a Hexagon, for example – is added through inheritance, the 
code you write will work just as well for the new type of Shape as it 
did on the existing types. Thus, the program is extensible. 

If you write a function in C++ (as you will soon learn how to do): 

void doStuff(Shape& s) { 

  s.erase(); 

  // ... 

  s.draw(); 

} 
 

This function speaks to any Shape, so it is independent of the 
specific type of object that it’s drawing and erasing (the ‘&’ means 
“Take the address of the object that’s passed to doStuff( ),” but it’s 
not important that you understand the details of that right now). If 
in some other part of the program we use the doStuff( ) function: 

Circle c; 



40 Thinking in C++ www.BruceEckel.com 

Triangle t; 

Line l; 

doStuff(c); 

doStuff(t); 

doStuff(l); 
 

The calls to doStuff( ) automatically work right, regardless of the 
exact type of the object.  

This is actually a pretty amazing trick. Consider the line: 

doStuff(c); 
 

What’s happening here is that a Circle is being passed into a 
function that’s expecting a Shape. Since a Circle is a Shape it can 
be treated as one by doStuff( ). That is, any message that 
doStuff( ) can send to a Shape, a Circle can accept. So it is a 
completely safe and logical thing to do. 

We call this process of treating a derived type as though it were its 
base type upcasting. The name cast is used in the sense of casting 
into a mold and the up comes from the way the inheritance diagram 
is typically arranged, with the base type at the top and the derived 
classes fanning out downward. Thus, casting to a base type is 
moving up the inheritance diagram: “upcasting.” 

Shape

Circle Square Triangle

"Upcasting"

 

An object-oriented program contains some upcasting somewhere, 
because that’s how you decouple yourself from knowing about the 
exact type you’re working with. Look at the code in doStuff( ): 

  s.erase(); 

  // ... 
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  s.draw(); 
 

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a 
Square, do that, etc.” If you write that kind of code, which checks 
for all the possible types that a Shape can actually be, it’s messy 
and you need to change it every time you add a new kind of Shape. 
Here, you just say “You’re a shape, I know you can erase( ) and 
draw( ) yourself, do it, and take care of the details correctly.”  

What’s impressive about the code in doStuff( ) is that, somehow, 
the right thing happens. Calling draw( ) for Circle causes different 
code to be executed than when calling draw( ) for a Square or a 
Line, but when the draw( ) message is sent to an anonymous 
Shape, the correct behavior occurs based on the actual type of the 
Shape. This is amazing because, as mentioned earlier, when the 
C++ compiler is compiling the code for doStuff( ), it cannot know 
exactly what types it is dealing with. So ordinarily, you’d expect it to 
end up calling the version of erase( ) and draw( ) for Shape, and 
not for the specific Circle, Square, or Line. And yet the right 
thing happens because of polymorphism. The compiler and runtime 
system handle the details; all you need to know is that it happens 
and more importantly how to design with it. If a member function is 
virtual, then when you send a message to an object, the object will 
do the right thing, even when upcasting is involved. 

Creating and destroying objects 
Technically, the domain of OOP is abstract data typing, inheritance, 
and polymorphism, but other issues can be at least as important. 
This section gives an overview of these issues. 

Especially important is the way objects are created and destroyed. 
Where is the data for an object and how is the lifetime of that object 
controlled? Different programming languages use different 
philosophies here. C++ takes the approach that control of efficiency 
is the most important issue, so it gives the programmer a choice. 
For maximum runtime speed, the storage and lifetime can be 
determined while the program is being written, by placing the 
objects on the stack or in static storage. The stack is an area in 
memory that is used directly by the microprocessor to store data 
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during program execution. Variables on the stack are sometimes 
called automatic or scoped variables. The static storage area is 
simply a fixed patch of memory that is allocated before the program 
begins to run. Using the stack or static storage area places a priority 
on the speed of storage allocation and release, which can be 
valuable in some situations. However, you sacrifice flexibility 
because you must know the exact quantity, lifetime, and type of 
objects while you’re writing the program. If you are trying to solve a 
more general problem, such as computer-aided design, warehouse 
management, or air-traffic control, this is too restrictive. 

The second approach is to create objects dynamically in a pool of 
memory called the heap. In this approach you don’t know until 
runtime how many objects you need, what their lifetime is, or what 
their exact type is. Those decisions are made at the spur of the 
moment while the program is running. If you need a new object, 
you simply make it on the heap when you need it, using the new 
keyword. When you’re finished with the storage, you must release it 
using the delete keyword.  

Because the storage is managed dynamically at runtime, the 
amount of time required to allocate storage on the heap is 
significantly longer than the time to create storage on the stack. 
(Creating storage on the stack is often a single microprocessor 
instruction to move the stack pointer down, and another to move it 
back up.) The dynamic approach makes the generally logical 
assumption that objects tend to be complicated, so the extra 
overhead of finding storage and releasing that storage will not have 
an important impact on the creation of an object. In addition, the 
greater flexibility is essential to solve general programming 
problems. 

There’s another issue, however, and that’s the lifetime of an object. 
If you create an object on the stack or in static storage, the compiler 
determines how long the object lasts and can automatically destroy 
it. However, if you create it on the heap, the compiler has no 
knowledge of its lifetime. In C++, the programmer must determine 
programmatically when to destroy the object, and then perform the 
destruction using the delete keyword. As an alternative, the 
environment can provide a feature called a garbage collector that 
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automatically discovers when an object is no longer in use and 
destroys it. Of course, writing programs using a garbage collector is 
much more convenient, but it requires that all applications must be 
able to tolerate the existence of the garbage collector and the 
overhead for garbage collection. This does not meet the design 
requirements of the C++ language and so it was not included, 
although third-party garbage collectors exist for C++. 

Exception handling:  

dealing with errors 
Ever since the beginning of programming languages, error handling 
has been one of the most difficult issues. Because it’s so hard to 
design a good error-handling scheme, many languages simply 
ignore the issue, passing the problem on to library designers who 
come up with halfway measures that can work in many situations 
but can easily be circumvented, generally by just ignoring them. A 
major problem with most error-handling schemes is that they rely 
on programmer vigilance in following an agreed-upon convention 
that is not enforced by the language. If programmers are not 
vigilant, which often occurs when they are in a hurry, these schemes 
can easily be forgotten. 

Exception handling wires error handling directly into the 
programming language and sometimes even the operating system. 
An exception is an object that is “thrown” from the site of the error 
and can be “caught” by an appropriate exception handler designed 
to handle that particular type of error. It’s as if exception handling 
is a different, parallel path of execution that can be taken when 
things go wrong. And because it uses a separate execution path, it 
doesn’t need to interfere with your normally-executing code. This 
makes that code simpler to write since you aren’t constantly forced 
to check for errors. In addition, a thrown exception is unlike an 
error value that’s returned from a function or a flag that’s set by a 
function in order to indicate an error condition – these can be 
ignored. An exception cannot be ignored so it’s guaranteed to be 
dealt with at some point. Finally, exceptions provide a way to 
recover reliably from a bad situation. Instead of just exiting the 
program, you are often able to set things right and restore the 



44 Thinking in C++ www.BruceEckel.com 

execution of a program, which produces much more robust 
systems. 

It’s worth noting that exception handling isn’t an object-oriented 
feature, although in object-oriented languages the exception is 
normally represented with an object. Exception handling existed 
before object-oriented languages. 

Exception handling is only lightly introduced and used in this 
Volume; Volume 2 (available from www.BruceEckel.com) has 
thorough coverage of exception handling. 

Analysis and design 
The object-oriented paradigm is a new and different way of thinking 
about programming and many folks have trouble at first knowing 
how to approach an OOP project. Once you know that everything is 
supposed to be an object, and as you learn to think more in an 
object-oriented style, you can begin to create “good” designs that 
take advantage of all the benefits that OOP has to offer. 

A method (often called a methodology) is a set of processes and 
heuristics used to break down the complexity of a programming 
problem. Many OOP methods have been formulated since the dawn 
of object-oriented programming. This section will give you a feel for 
what you’re trying to accomplish when using a method. 

Especially in OOP, methodology is a field of many experiments, so 
it is important to understand what problem the method is trying to 
solve before you consider adopting one. This is particularly true 
with C++, in which the programming language is intended to 
reduce the complexity (compared to C) involved in expressing a 
program. This may in fact alleviate the need for ever-more-complex 
methodologies. Instead, simpler ones may suffice in C++ for a 
much larger class of problems than you could handle using simple 
methodologies with procedural languages. 

It’s also important to realize that the term “methodology” is often 
too grand and promises too much. Whatever you do now when you 
design and write a program is a method. It may be your own 
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method, and you may not be conscious of doing it, but it is a process 
you go through as you create. If it is an effective process, it may 
need only a small tune-up to work with C++. If you are not satisfied 
with your productivity and the way your programs turn out, you 
may want to consider adopting a formal method, or choosing pieces 
from among the many formal methods. 

While you’re going through the development process, the most 
important issue is this: Don’t get lost. It’s easy to do. Most of the 
analysis and design methods are intended to solve the largest of 
problems. Remember that most projects don’t fit into that category, 
so you can usually have successful analysis and design with a 
relatively small subset of what a method recommends6. But some 
sort of process, no matter how limited, will generally get you on 
your way in a much better fashion than simply beginning to code. 

It’s also easy to get stuck, to fall into “analysis paralysis,” where you 
feel like you can’t move forward because you haven’t nailed down 
every little detail at the current stage. Remember, no matter how 
much analysis you do, there are some things about a system that 
won’t reveal themselves until design time, and more things that 
won’t reveal themselves until you’re coding, or not even until a 
program is up and running. Because of this, it’s crucial to move 
fairly quickly through analysis and design, and to implement a test 
of the proposed system. 

This point is worth emphasizing. Because of the history we’ve had 
with procedural languages, it is commendable that a team will want 
to proceed carefully and understand every minute detail before 
moving to design and implementation. Certainly, when creating a 
DBMS, it pays to understand a customer’s needs thoroughly. But a 
DBMS is in a class of problems that is very well-posed and well-
understood; in many such programs, the database structure is the 
problem to be tackled. The class of programming problem 
discussed in this chapter is of the “wild-card” (my term) variety, in 
which the solution isn’t simply re-forming a well-known solution, 

                                                   
6 An excellent example of this is UML Distilled, by Martin Fowler (Addison-Wesley 
2000), which reduces the sometimes-overwhelming UML process to a manageable 
subset. 
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but instead involves one or more “wild-card factors” – elements for 
which there is no well-understood previous solution, and for which 
research is necessary7. Attempting to thoroughly analyze a wild-
card problem before moving into design and implementation 
results in analysis paralysis because you don’t have enough 
information to solve this kind of problem during the analysis phase. 
Solving such a problem requires iteration through the whole cycle, 
and that requires risk-taking behavior (which makes sense, because 
you’re trying to do something new and the potential rewards are 
higher). It may seem like the risk is compounded by “rushing” into 
a preliminary implementation, but it can instead reduce the risk in 
a wild-card project because you’re finding out early whether a 
particular approach to the problem is viable. Product development 
is risk management. 

It’s often proposed that you “build one to throw away.” With OOP, 
you may still throw part of it away, but because code is 
encapsulated into classes, during the first iteration you will 
inevitably produce some useful class designs and develop some 
worthwhile ideas about the system design that do not need to be 
thrown away. Thus, the first rapid pass at a problem not only 
produces critical information for the next analysis, design, and 
implementation iteration, it also creates a code foundation for that 
iteration. 

That said, if you’re looking at a methodology that contains 
tremendous detail and suggests many steps and documents, it’s still 
difficult to know when to stop. Keep in mind what you’re trying to 
discover: 

1. What are the objects? (How do you partition your project into 
its component parts?) 

2. What are their interfaces? (What messages do you need to be 
able to send to each object?) 

                                                   
7 My rule of thumb for estimating such projects: If there’s more than one wild card, 
don’t even try to plan how long it’s going to take or how much it will cost until you’ve 
created a working prototype. There are too many degrees of freedom. 
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If you come up with nothing more than the objects and their 
interfaces, then you can write a program. For various reasons you 
might need more descriptions and documents than this, but you 
can’t get away with any less. 

The process can be undertaken in five phases, and a phase 0 that is 
just the initial commitment to using some kind of structure. 

Phase 0: Make a plan 
You must first decide what steps you’re going to have in your 
process. It sounds simple (in fact, all of this sounds simple) and yet 
people often don’t make this decision before they start coding. If 
your plan is “let’s jump in and start coding,” fine. (Sometimes that’s 
appropriate when you have a well-understood problem.) At least 
agree that this is the plan. 

You might also decide at this phase that some additional process 
structure is necessary, but not the whole nine yards. 
Understandably enough, some programmers like to work in 
“vacation mode” in which no structure is imposed on the process of 
developing their work; “It will be done when it’s done.” This can be 
appealing for awhile, but I’ve found that having a few milestones 
along the way helps to focus and galvanize your efforts around 
those milestones instead of being stuck with the single goal of 
“finish the project.” In addition, it divides the project into more 
bite-sized pieces and makes it seem less threatening (plus the 
milestones offer more opportunities for celebration). 

When I began to study story structure (so that I will someday write 
a novel) I was initially resistant to the idea of structure, feeling that 
when I wrote I simply let it flow onto the page. But I later realized 
that when I write about computers the structure is clear enough so 
that I don’t think much about it. But I still structure my work, albeit 
only semi-consciously in my head. So even if you think that your 
plan is to just start coding, you still somehow go through the 
subsequent phases while asking and answering certain questions. 

The mission statement 
Any system you build, no matter how complicated, has a 
fundamental purpose, the business that it’s in, the basic need that it 
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satisfies. If you can look past the user interface, the hardware- or 
system-specific details, the coding algorithms and the efficiency 
problems, you will eventually find the core of its being, simple and 
straightforward. Like the so-called high concept from a Hollywood 
movie, you can describe it in one or two sentences. This pure 
description is the starting point. 

The high concept is quite important because it sets the tone for your 
project; it’s a mission statement. You won’t necessarily get it right 
the first time (you may be in a later phase of the project before it 
becomes completely clear), but keep trying until it feels right. For 
example, in an air-traffic control system you may start out with a 
high concept focused on the system that you’re building: “The tower 
program keeps track of the aircraft.” But consider what happens 
when you shrink the system to a very small airfield; perhaps there’s 
only a human controller or none at all. A more useful model won’t 
concern the solution you’re creating as much as it describes the 
problem: “Aircraft arrive, unload, service and reload, and depart.” 

Phase 1: What are we making? 
In the previous generation of program design (called procedural 
design), this is called “creating the requirements analysis and 
system specification.” These, of course, were places to get lost; 
intimidatingly-named documents that could become big projects in 
their own right. Their intention was good, however. The 
requirements analysis says “Make a list of the guidelines we will use 
to know when the job is done and the customer is satisfied.” The 
system specification says “Here’s a description of what the program 
will do (not how) to satisfy the requirements.” The requirements 
analysis is really a contract between you and the customer (even if 
the customer works within your company or is some other object or 
system). The system specification is a top-level exploration into the 
problem and in some sense a discovery of whether it can be done 
and how long it will take. Since both of these will require consensus 
among people (and because they will usually change over time), I 
think it’s best to keep them as bare as possible – ideally, to lists and 
basic diagrams – to save time. You might have other constraints 
that require you to expand them into bigger documents, but by 
keeping the initial document small and concise, it can be created in 
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a few sessions of group brainstorming with a leader who 
dynamically creates the description. This not only solicits input 
from everyone, it also fosters initial buy-in and agreement by 
everyone on the team. Perhaps most importantly, it can kick off a 
project with a lot of enthusiasm. 

It’s necessary to stay focused on the heart of what you’re trying to 
accomplish in this phase: determine what the system is supposed to 
do. The most valuable tool for this is a collection of what are called 
“use cases.” Use cases identify key features in the system that will 
reveal some of the fundamental classes you’ll be using. These are 
essentially descriptive answers to questions like8: 

�� "Who will use this system?"  

�� "What can those actors do with the system?"    

�� "How does this actor do that with this system?" 

�� "How else might this work if someone else were doing this, 
or if the same actor had a different objective?" (to reveal 
variations) 

�� "What problems might happen while doing this with the 
system?" (to reveal exceptions) 

If you are designing an auto-teller, for example, the use case for a 
particular aspect of the functionality of the system is able to 
describe what the auto-teller does in every possible situation. Each 
of these “situations” is referred to as a scenario, and a use case can 
be considered a collection of scenarios. You can think of a scenario 
as a question that starts with: “What does the system do if…?” For 
example, “What does the auto-teller do if a customer has just 
deposited a check within 24 hours and there’s not enough in the 
account without the check to provide the desired withdrawal?”  

Use case diagrams are intentionally simple to prevent you from 
getting bogged down in system implementation details 
prematurely: 

                                                   
8 Thanks for help from James H Jarrett. 
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Customer

Uses

Transfer

Between

Accounts

Teller

Bank

Make

Withdrawal

Get Account

Balance

Make

Deposit

ATM

 

Each stick person represents an “actor,” which is typically a human 
or some other kind of free agent. (These can even be other 
computer systems, as is the case with “ATM.”) The box represents 
the boundary of your system. The ellipses represent the use cases, 
which are descriptions of valuable work that can be performed with 
the system. The lines between the actors and the use cases 
represent the interactions. 

It doesn’t matter how the system is actually implemented, as long as 
it looks like this to the user. 

A use case does not need to be terribly complex, even if the 
underlying system is complex. It is only intended to show the 
system as it appears to the user. For example: 

Gardener

Maintain

Growing

Temperature

Greenhouse

 

The use cases produce the requirements specifications by 
determining all the interactions that the user may have with the 
system. You try to discover a full set of use cases for your system, 
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and once you’ve done that you have the core of what the system is 
supposed to do. The nice thing about focusing on use cases is that 
they always bring you back to the essentials and keep you from 
drifting off into issues that aren’t critical for getting the job done. 
That is, if you have a full set of use cases you can describe your 
system and move onto the next phase. You probably won’t get it all 
figured out perfectly on the first try, but that’s OK. Everything will 
reveal itself in time, and if you demand a perfect system 
specification at this point you’ll get stuck. 

If you get stuck, you can kick-start this phase by using a rough 
approximation tool: describe the system in a few paragraphs and 
then look for nouns and verbs. The nouns can suggest actors, 
context of the use case (e.g. “lobby”), or artifacts manipulated in the 
use case. Verbs can suggest interactions between actors and use 
cases, and specify steps within the use case. You’ll also discover that 
nouns and verbs produce objects and messages during the design 
phase (and note that use cases describe interactions between 
subsystems, so the “noun and verb” technique can be used only as a 
brainstorming tool as it does not generate use cases) 9. 

The boundary between a use case and an actor can point out the 
existence of a user interface, but it does not define such a user 
interface. For a process of defining and creating user interfaces, see 
Software for Use by Larry Constantine and Lucy Lockwood, 
(Addison Wesley Longman, 1999) or go to www.ForUse.com. 

Although it’s a black art, at this point some kind of basic scheduling 
is important. You now have an overview of what you’re building so 
you’ll probably be able to get some idea of how long it will take. A 
lot of factors come into play here. If you estimate a long schedule 
then the company might decide not to build it (and thus use their 
resources on something more reasonable – that’s a good thing). Or 
a manager might have already decided how long the project should 
take and will try to influence your estimate. But it’s best to have an 
honest schedule from the beginning and deal with the tough 

                                                   
9 More information on use cases can be found in Applying Use Cases by Schneider & 
Winters (Addison-Wesley 1998) and Use Case Driven Object Modeling with UML by 
Rosenberg (Addison-Wesley 1999). 
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decisions early. There have been a lot of attempts to come up with 
accurate scheduling techniques (like techniques to predict the stock 
market), but probably the best approach is to rely on your 
experience and intuition. Get a gut feeling for how long it will really 
take, then double that and add 10 percent. Your gut feeling is 
probably correct; you can get something working in that time. The 
“doubling” will turn that into something decent, and the 10 percent 
will deal with the final polishing and details10. However you want to 
explain it, and regardless of the moans and manipulations that 
happen when you reveal such a schedule, it just seems to work out 
that way. 

Phase 2: How will we build it? 
In this phase you must come up with a design that describes what 
the classes look like and how they will interact. An excellent 
technique in determining classes and interactions is the Class-
Responsibility-Collaboration (CRC) card. Part of the value of this 
tool is that it’s so low-tech: you start out with a set of blank 3” by 5” 
cards, and you write on them. Each card represents a single class, 
and on the card you write: 

1. The name of the class. It’s important that this name capture 
the essence of what the class does, so that it makes sense at a 
glance. 

2. The “responsibilities” of the class: what it should do. This can 
typically be summarized by just stating the names of the 
member functions (since those names should be descriptive 
in a good design), but it does not preclude other notes. If you 
need to seed the process, look at the problem from a lazy 
programmer’s standpoint: What objects would you like to 
magically appear to solve your problem? 

                                                   
10 My personal take on this has changed lately. Doubling and adding 10 percent will 
give you a reasonably accurate estimate (assuming there are not too many wild-card 
factors), but you still have to work quite diligently to finish in that time. If you want 
time to really make it elegant and to enjoy yourself in the process, the correct 
multiplier is more like three or four times, I believe. 
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3. The “collaborations” of the class: what other classes does it 
interact with? “Interact” is an intentionally broad term; it 
could mean aggregation or simply that some other object 
exists that will perform services for an object of the class. 
Collaborations should also consider the audience for this 
class. For example, if you create a class Firecracker, who is 
going to observe it, a Chemist or a Spectator? The former 
will want to know what chemicals go into the construction, 
and the latter will respond to the colors and shapes released 
when it explodes. 

You may feel like the cards should be bigger because of all the 
information you’d like to get on them, but they are intentionally 
small, not only to keep your classes small but also to keep you from 
getting into too much detail too early. If you can’t fit all you need to 
know about a class on a small card, the class is too complex (either 
you’re getting too detailed, or you should create more than one 
class). The ideal class should be understood at a glance. The idea of 
CRC cards is to assist you in coming up with a first cut of the design 
so that you can get the big picture and then refine your design. 

One of the great benefits of CRC cards is in communication. It’s 
best done real-time, in a group, without computers. Each person 
takes responsibility for several classes (which at first have no names 
or other information). You run a live simulation by solving one 
scenario at a time, deciding which messages are sent to the various 
objects to satisfy each scenario. As you go through this process, you 
discover the classes that you need along with their responsibilities 
and collaborations, and you fill out the cards as you do this. When 
you’ve moved through all the use cases, you should have a fairly 
complete first cut of your design. 

Before I began using CRC cards, the most successful consulting 
experiences I had when coming up with an initial design involved 
standing in front of a team, who hadn’t built an OOP project before, 
and drawing objects on a whiteboard. We talked about how the 
objects should communicate with each other, and erased some of 
them and replaced them with other objects. Effectively, I was 
managing all the “CRC cards” on the whiteboard. The team (who 
knew what the project was supposed to do) actually created the 
design; they “owned” the design rather than having it given to them. 
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All I was doing was guiding the process by asking the right 
questions, trying out the assumptions, and taking the feedback from 
the team to modify those assumptions. The true beauty of the 
process was that the team learned how to do object-oriented design 
not by reviewing abstract examples, but by working on the one 
design that was most interesting to them at that moment: theirs. 

Once you’ve come up with a set of CRC cards, you may want to 
create a more formal description of your design using UML11. You 
don’t need to use UML, but it can be helpful, especially if you want 
to put up a diagram on the wall for everyone to ponder, which is a 
good idea. An alternative to UML is a textual description of the 
objects and their interfaces, or, depending on your programming 
language, the code itself12. 

UML also provides an additional diagramming notation for 
describing the dynamic model of your system. This is helpful in 
situations in which the state transitions of a system or subsystem 
are dominant enough that they need their own diagrams (such as in 
a control system). You may also need to describe the data 
structures, for systems or subsystems in which data is a dominant 
factor (such as a database). 

You’ll know you’re done with phase 2 when you have described the 
objects and their interfaces. Well, most of them – there are usually 
a few that slip through the cracks and don’t make themselves 
known until phase 3. But that’s OK. All you are concerned with is 
that you eventually discover all of your objects. It’s nice to discover 
them early in the process but OOP provides enough structure so 
that it’s not so bad if you discover them later. In fact, the design of 
an object tends to happen in five stages, throughout the process of 
program development. 

Five stages of object design 
The design life of an object is not limited to the time when you’re 
writing the program. Instead, the design of an object appears over a 
sequence of stages. It’s helpful to have this perspective because you 

                                                   
11 For starters, I recommend the aforementioned UML Distilled. 
12 Python (www.Python.org) is often used as “executable pseudocode.” 
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stop expecting perfection right away; instead, you realize that the 
understanding of what an object does and what it should look like 
happens over time. This view also applies to the design of various 
types of programs; the pattern for a particular type of program 
emerges through struggling again and again with that problem 
(Design Patterns are covered in Volume 2). Objects, too, have their 
patterns that emerge through understanding, use, and reuse. 

1. Object discovery. This stage occurs during the initial 
analysis of a program. Objects may be discovered by looking for 
external factors and boundaries, duplication of elements in the 
system, and the smallest conceptual units. Some objects are obvious 
if you already have a set of class libraries. Commonality between 
classes suggesting base classes and inheritance may appear right 
away, or later in the design process. 

2. Object assembly. As you’re building an object you’ll 
discover the need for new members that didn’t appear during 
discovery. The internal needs of the object may require other 
classes to support it. 

3. System construction. Once again, more requirements for 
an object may appear at this later stage. As you learn, you evolve 
your objects. The need for communication and interconnection with 
other objects in the system may change the needs of your classes or 
require new classes. For example, you may discover the need for 
facilitator or helper classes, such as a linked list, that contain little 
or no state information and simply help other classes function. 

4. System extension. As you add new features to a system you 
may discover that your previous design doesn’t support easy system 
extension. With this new information, you can restructure parts of 
the system, possibly adding new classes or class hierarchies. 

5. Object reuse. This is the real stress test for a class. If 
someone tries to reuse it in an entirely new situation, they’ll 
probably discover some shortcomings. As you change a class to 
adapt to more new programs, the general principles of the class will 
become clearer, until you have a truly reusable type. However, don’t 
expect most objects from a system design to be reusable – it is 
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perfectly acceptable for the bulk of your objects to be system-
specific. Reusable types tend to be less common, and they must 
solve more general problems in order to be reusable. 

Guidelines for object development 
These stages suggest some guidelines when thinking about 
developing your classes: 

1. Let a specific problem generate a class, then let the class grow 
and mature during the solution of other problems. 

2. Remember, discovering the classes you need (and their 
interfaces) is the majority of the system design. If you already 
had those classes, this would be an easy project. 

3. Don’t force yourself to know everything at the beginning; 
learn as you go. This will happen anyway. 

4. Start programming; get something working so you can prove 
or disprove your design. Don’t fear that you’ll end up with 
procedural-style spaghetti code – classes partition the 
problem and help control anarchy and entropy. Bad classes 
do not break good classes. 

5. Always keep it simple. Little clean objects with obvious utility 
are better than big complicated interfaces. When decision 
points come up, use an Occam’s Razor approach: Consider 
the choices and select the one that is simplest, because simple 
classes are almost always best. Start small and simple, and 
you can expand the class interface when you understand it 
better, but as time goes on, it’s difficult to remove elements 
from a class. 

Phase 3: Build the core 
This is the initial conversion from the rough design into a compiling 
and executing body of code that can be tested, and especially that 
will prove or disprove your architecture. This is not a one-pass 
process, but rather the beginning of a series of steps that will 
iteratively build the system, as you’ll see in phase 4. 
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Your goal is to find the core of your system architecture that needs 
to be implemented in order to generate a running system, no matter 
how incomplete that system is in this initial pass. You’re creating a 
framework that you can build upon with further iterations. You’re 
also performing the first of many system integrations and tests, and 
giving the stakeholders feedback about what their system will look 
like and how it is progressing. Ideally, you are also exposing some 
of the critical risks. You’ll probably also discover changes and 
improvements that can be made to your original architecture – 
things you would not have learned without implementing the 
system. 

Part of building the system is the reality check that you get from 
testing against your requirements analysis and system specification 
(in whatever form they exist). Make sure that your tests verify the 
requirements and use cases. When the core of the system is stable, 
you’re ready to move on and add more functionality. 

Phase 4: Iterate the use cases 
Once the core framework is running, each feature set you add is a 
small project in itself. You add a feature set during an iteration, a 
reasonably short period of development. 

How big is an iteration? Ideally, each iteration lasts one to three 
weeks (this can vary based on the implementation language). At the 
end of that period, you have an integrated, tested system with more 
functionality than it had before. But what’s particularly interesting 
is the basis for the iteration: a single use case. Each use case is a 
package of related functionality that you build into the system all at 
once, during one iteration. Not only does this give you a better idea 
of what the scope of a use case should be, but it also gives more 
validation to the idea of a use case, since the concept isn’t discarded 
after analysis and design, but instead it is a fundamental unit of 
development throughout the software-building process.  

You stop iterating when you achieve target functionality or an 
external deadline arrives and the customer can be satisfied with the 
current version. (Remember, software is a subscription business.) 
Because the process is iterative, you have many opportunities to 
ship a product instead of a single endpoint; open-source projects 
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work exclusively in an iterative, high-feedback environment, which 
is precisely what makes them successful. 

An iterative development process is valuable for many reasons. You 
can reveal and resolve critical risks early, the customers have ample 
opportunity to change their minds, programmer satisfaction is 
higher, and the project can be steered with more precision. But an 
additional important benefit is the feedback to the stakeholders, 
who can see by the current state of the product exactly where 
everything lies. This may reduce or eliminate the need for mind-
numbing status meetings and increase the confidence and support 
from the stakeholders. 

Phase 5: Evolution 
This is the point in the development cycle that has traditionally 
been called “maintenance,” a catch-all term that can mean 
everything from “getting it to work the way it was really supposed to 
in the first place” to “adding features that the customer forgot to 
mention” to the more traditional “fixing the bugs that show up” and 
“adding new features as the need arises.” So many misconceptions 
have been applied to the term “maintenance” that it has taken on a 
slightly deceiving quality, partly because it suggests that you’ve 
actually built a pristine program and all you need to do is change 
parts, oil it, and keep it from rusting. Perhaps there’s a better term 
to describe what’s going on. 

I’ll use the term evolution13. That is, “You won’t get it right the first 
time, so give yourself the latitude to learn and to go back and make 
changes.” You might need to make a lot of changes as you learn and 
understand the problem more deeply. The elegance you’ll produce if 
you evolve until you get it right will pay off, both in the short and 
the long term. Evolution is where your program goes from good to 
great, and where those issues that you didn’t really understand in 
the first pass become clear. It’s also where your classes can evolve 
from single-project usage to reusable resources. 

                                                   
13 At least one aspect of evolution is covered in Martin Fowler’s book Refactoring: 
improving the design of existing code (Addison-Wesley 1999). Be forewarned that 
this book uses Java examples exclusively. 
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What it means to “get it right” isn’t just that the program works 
according to the requirements and the use cases. It also means that 
the internal structure of the code makes sense to you, and feels like 
it fits together well, with no awkward syntax, oversized objects, or 
ungainly exposed bits of code. In addition, you must have some 
sense that the program structure will survive the changes that it will 
inevitably go through during its lifetime, and that those changes can 
be made easily and cleanly. This is no small feat. You must not only 
understand what you’re building, but also how the program will 
evolve (what I call the vector of change14). Fortunately, object-
oriented programming languages are particularly adept at 
supporting this kind of continuing modification – the boundaries 
created by the objects are what tend to keep the structure from 
breaking down. They also allow you to make changes – ones that 
would seem drastic in a procedural program – without causing 
earthquakes throughout your code. In fact, support for evolution 
might be the most important benefit of OOP. 

With evolution, you create something that at least approximates 
what you think you’re building, and then you kick the tires, 
compare it to your requirements and see where it falls short. Then 
you can go back and fix it by redesigning and re-implementing the 
portions of the program that didn’t work right15. You might actually 
need to solve the problem, or an aspect of the problem, several 
times before you hit on the right solution. (A study of Design 
Patterns, described in Volume 2, is usually helpful here.) 

Evolution also occurs when you build a system, see that it matches 
your requirements, and then discover it wasn’t actually what you 
wanted. When you see the system in operation, you find that you 
really wanted to solve a different problem. If you think this kind of 
evolution is going to happen, then you owe it to yourself to build 

                                                   
14 This term is explored in the Design Patterns chapter in Volume 2. 
15 This is something like “rapid prototyping,” where you were supposed to build a 
quick-and-dirty version so that you could learn about the system, and then throw 
away your prototype and build it right. The trouble with rapid prototyping is that 
people didn’t throw away the prototype, but instead built upon it. Combined with the 
lack of structure in procedural programming, this often produced messy systems that 
were expensive to maintain. 
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your first version as quickly as possible so you can find out if it is 
indeed what you want. 

Perhaps the most important thing to remember is that by default – 
by definition, really – if you modify a class then its super- and 
subclasses will still function. You need not fear modification 
(especially if you have a built-in set of unit tests to verify the 
correctness of your modifications). Modification won’t necessarily 
break the program, and any change in the outcome will be limited 
to subclasses and/or specific collaborators of the class you change. 

Plans pay off 
Of course you wouldn’t build a house without a lot of carefully-
drawn plans. If you build a deck or a dog house, your plans won’t be 
so elaborate but you’ll probably still start with some kind of 
sketches to guide you on your way. Software development has gone 
to extremes. For a long time, people didn’t have much structure in 
their development, but then big projects began failing. In reaction, 
we ended up with methodologies that had an intimidating amount 
of structure and detail, primarily intended for those big projects. 
These methodologies were too scary to use – it looked like you’d 
spend all your time writing documents and no time programming. 
(This was often the case.) I hope that what I’ve shown you here 
suggests a middle path – a sliding scale. Use an approach that fits 
your needs (and your personality). No matter how minimal you 
choose to make it, some kind of plan will make a big improvement 
in your project as opposed to no plan at all. Remember that, by 
most estimates, over 50 percent of projects fail (some estimates go 
up to 70 percent!).  

By following a plan – preferably one that is simple and brief – and 
coming up with design structure before coding, you’ll discover that 
things fall together far more easily than if you dive in and start 
hacking, and you’ll also realize a great deal of satisfaction. It’s my 
experience that coming up with an elegant solution is deeply 
satisfying at an entirely different level; it feels closer to art than 
technology. And elegance always pays off; it’s not a frivolous 
pursuit. Not only does it give you a program that’s easier to build 
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and debug, but it’s also easier to understand and maintain, and 
that’s where the financial value lies. 

Extreme programming 
I have studied analysis and design techniques, on and off, since I 
was in graduate school. The concept of Extreme Programming 
(XP) is the most radical, and delightful, that I’ve seen. You can find 
it chronicled in Extreme Programming Explained by Kent Beck 
(Addison-Wesley 2000) and on the Web at 
www.xprogramming.com. 

XP is both a philosophy about programming work and a set of 
guidelines to do it. Some of these guidelines are reflected in other 
recent methodologies, but the two most important and distinct 
contributions, in my opinion, are “write tests first” and “pair 
programming.” Although he argues strongly for the whole process, 
Beck points out that if you adopt only these two practices you’ll 
greatly improve your productivity and reliability. 

Write tests first 
Testing has traditionally been relegated to the last part of a project, 
after you’ve “gotten everything working, but just to be sure.” It’s 
implicitly had a low priority, and people who specialize in it have 
not been given a lot of status and have often even been cordoned off 
in a basement, away from the “real programmers.” Test teams have 
responded in kind, going so far as to wear black clothing and 
cackling with glee whenever they broke something (to be honest, 
I’ve had this feeling myself when breaking C++ compilers). 

XP completely revolutionizes the concept of testing by giving it 
equal (or even greater) priority than the code. In fact, you write the 
tests before you write the code that’s being tested, and the tests stay 
with the code forever. The tests must be executed successfully every 
time you do an integration of the project (which is often, sometimes 
more than once a day). 

Writing tests first has two extremely important effects. 
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First, it forces a clear definition of the interface of a class. I’ve often 
suggested that people “imagine the perfect class to solve a 
particular problem” as a tool when trying to design the system. The 
XP testing strategy goes further than that – it specifies exactly what 
the class must look like, to the consumer of that class, and exactly 
how the class must behave. In no uncertain terms. You can write all 
the prose, or create all the diagrams you want describing how a 
class should behave and what it looks like, but nothing is as real as a 
set of tests. The former is a wish list, but the tests are a contract that 
is enforced by the compiler and the running program. It’s hard to 
imagine a more concrete description of a class than the tests. 

While creating the tests, you are forced to completely think out the 
class and will often discover needed functionality that might be 
missed during the thought experiments of UML diagrams, CRC 
cards, use cases, etc. 

The second important effect of writing the tests first comes from 
running the tests every time you do a build of your software. This 
activity gives you the other half of the testing that’s performed by 
the compiler. If you look at the evolution of programming languages 
from this perspective, you’ll see that the real improvements in the 
technology have actually revolved around testing. Assembly 
language checked only for syntax, but C imposed some semantic 
restrictions, and these prevented you from making certain types of 
mistakes. OOP languages impose even more semantic restrictions, 
which if you think about it are actually forms of testing. “Is this data 
type being used properly? Is this function being called properly?” 
are the kinds of tests that are being performed by the compiler or 
run-time system. We’ve seen the results of having these tests built 
into the language: people have been able to write more complex 
systems, and get them to work, with much less time and effort. I’ve 
puzzled over why this is, but now I realize it’s the tests: you do 
something wrong, and the safety net of the built-in tests tells you 
there’s a problem and points you to where it is. 

But the built-in testing afforded by the design of the language can 
only go so far. At some point, you must step in and add the rest of 
the tests that produce a full suite (in cooperation with the compiler 
and run-time system) that verifies all of your program. And, just 
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like having a compiler watching over your shoulder, wouldn’t you 
want these tests helping you right from the beginning? That’s why 
you write them first, and run them automatically with every build of 
your system. Your tests become an extension of the safety net 
provided by the language. 

One of the things that I’ve discovered about the use of more and 
more powerful programming languages is that I am emboldened to 
try more brazen experiments, because I know that the language will 
keep me from wasting my time chasing bugs. The XP test scheme 
does the same thing for your entire project. Because you know your 
tests will always catch any problems that you introduce (and you 
regularly add any new tests as you think of them), you can make big 
changes when you need to without worrying that you’ll throw the 
whole project into complete disarray. This is incredibly powerful. 

Pair programming 
Pair programming goes against the rugged individualism that we’ve 
been indoctrinated into from the beginning, through school (where 
we succeed or fail on our own, and working with our neighbors is 
considered “cheating”) and media, especially Hollywood movies in 
which the hero is usually fighting against mindless conformity16. 
Programmers, too, are considered paragons of individuality – 
“cowboy coders” as Larry Constantine likes to say. And yet XP, 
which is itself battling against conventional thinking, says that code 
should be written with two people per workstation. And that this 
should be done in an area with a group of workstations, without the 
barriers that the facilities design people are so fond of. In fact, Beck 
says that the first task of converting to XP is to arrive with 
screwdrivers and Allen wrenches and take apart everything that 
gets in the way.17 (This will require a manager who can deflect the 
ire of the facilities department.) 

                                                   
16 Although this may be a more American perspective, the stories of Hollywood reach 
everywhere. 
17 Including (especially) the PA system. I once worked in a company that insisted on 
broadcasting every phone call that arrived for every executive, and it constantly 
interrupted our productivity (but the managers couldn’t begin to conceive of stifling 
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The value of pair programming is that one person is actually doing 
the coding while the other is thinking about it. The thinker keeps 
the big picture in mind, not only the picture of the problem at hand, 
but the guidelines of XP. If two people are working, it’s less likely 
that one of them will get away with saying, “I don’t want to write the 
tests first,” for example. And if the coder gets stuck, they can swap 
places. If both of them get stuck, their musings may be overheard 
by someone else in the work area who can contribute. Working in 
pairs keeps things flowing and on track. Probably more important, 
it makes programming a lot more social and fun. 

I’ve begun using pair programming during the exercise periods in 
some of my seminars and it seems to significantly improve 
everyone’s experience. 

Why C++ succeeds 
Part of the reason C++ has been so successful is that the goal was 
not just to turn C into an OOP language (although it started that 
way), but also to solve many other problems facing developers 
today, especially those who have large investments in C. 
Traditionally, OOP languages have suffered from the attitude that 
you should abandon everything you know and start from scratch 
with a new set of concepts and a new syntax, arguing that it’s better 
in the long run to lose all the old baggage that comes with 
procedural languages. This may be true, in the long run. But in the 
short run, a lot of that baggage was valuable. The most valuable 
elements may not be the existing code base (which, given adequate 
tools, could be translated), but instead the existing mind base. If 
you’re a functioning C programmer and must drop everything you 
know about C in order to adopt a new language, you immediately 
become much less productive for many months, until your mind fits 
around the new paradigm. Whereas if you can leverage off of your 
existing C knowledge and expand on it, you can continue to be 
productive with what you already know while moving into the world 
of object-oriented programming. As everyone has his or her own 

                                                                                                                              
such an important service as the PA). Finally, when no one was looking I started 
snipping speaker wires. 
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mental model of programming, this move is messy enough as it is 
without the added expense of starting with a new language model 
from square one. So the reason for the success of C++, in a nutshell, 
is economic: It still costs to move to OOP, but C++ may cost less18. 

The goal of C++ is improved productivity. This productivity comes 
in many ways, but the language is designed to aid you as much as 
possible, while hindering you as little as possible with arbitrary 
rules or any requirement that you use a particular set of features. 
C++ is designed to be practical; C++ language design decisions 
were based on providing the maximum benefits to the programmer 
(at least, from the world view of C). 

A better C 
You get an instant win even if you continue to write C code because 
C++ has closed many holes in the C language and provides better 
type checking and compile-time analysis. You’re forced to declare 
functions so that the compiler can check their use. The need for the 
preprocessor has virtually been eliminated for value substitution 
and macros, which removes a set of difficult-to-find bugs. C++ has a 
feature called references that allows more convenient handling of 
addresses for function arguments and return values. The handling 
of names is improved through a feature called function 
overloading, which allows you to use the same name for different 
functions. A feature called namespaces also improves the control of 
names. There are numerous smaller features that improve the 
safety of C. 

You’re already on the learning curve 
The problem with learning a new language is productivity. No 
company can afford to suddenly lose a productive software engineer 
because he or she is learning a new language. C++ is an extension to 
C, not a complete new syntax and programming model. It allows 
you to continue creating useful code, applying the features 

                                                   
18 I say “may” because, due to the complexity of C++, it might actually be cheaper to 
move to Java. But the decision of which language to choose has many factors, and in 
this book I’ll assume that you’ve chosen C++. 
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gradually as you learn and understand them. This may be one of the 
most important reasons for the success of C++. 

In addition, all of your existing C code is still viable in C++, but 
because the C++ compiler is pickier, you’ll often find hidden C 
errors when recompiling the code in C++. 

Efficiency 
Sometimes it is appropriate to trade execution speed for 
programmer productivity. A financial model, for example, may be 
useful for only a short period of time, so it’s more important to 
create the model rapidly than to execute it rapidly. However, most 
applications require some degree of efficiency, so C++ always errs 
on the side of greater efficiency. Because C programmers tend to be 
very efficiency-conscious, this is also a way to ensure that they 
won’t be able to argue that the language is too fat and slow. A 
number of features in C++ are intended to allow you to tune for 
performance when the generated code isn’t efficient enough. 

Not only do you have the same low-level control as in C (and the 
ability to directly write assembly language within a C++ program), 
but anecdotal evidence suggests that the program speed for an 
object-oriented C++ program tends to be within ±10% of a program 
written in C, and often much closer19. The design produced for an 
OOP program may actually be more efficient than the C 
counterpart. 

Systems are easier  

to express and understand 
Classes designed to fit the problem tend to express it better. This 
means that when you write the code, you’re describing your 
solution in the terms of the problem space (“Put the grommet in the 
bin”) rather than the terms of the computer, which is the solution 
space (“Set the bit in the chip that means that the relay will close”). 

                                                   
19 However, look at Dan Saks’ columns in the C/C++ User’s Journal for some 
important investigations into C++ library performance. 
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You deal with higher-level concepts and can do much more with a 
single line of code. 

The other benefit of this ease of expression is maintenance, which 
(if reports can be believed) takes a huge portion of the cost over a 
program’s lifetime. If a program is easier to understand, then it’s 
easier to maintain. This can also reduce the cost of creating and 
maintaining the documentation. 

Maximal leverage with libraries 
The fastest way to create a program is to use code that’s already 
written: a library. A major goal in C++ is to make library use easier. 
This is accomplished by casting libraries into new data types 
(classes), so that bringing in a library means adding new types to 
the language. Because the C++ compiler takes care of how the 
library is used – guaranteeing proper initialization and cleanup, 
and ensuring that functions are called properly – you can focus on 
what you want the library to do, not how you have to do it.  

Because names can be sequestered to portions of your program via 
C++ namespaces, you can use as many libraries as you want 
without the kinds of name clashes you’d run into with C. 

Source-code reuse with templates 
There is a significant class of types that require source-code 
modification in order to reuse them effectively. The template 
feature in C++ performs the source code modification 
automatically, making it an especially powerful tool for reusing 
library code. A type that you design using templates will work 
effortlessly with many other types. Templates are especially nice 
because they hide the complexity of this kind of code reuse from the 
client programmer. 

Error handling 
Error handling in C is a notorious problem, and one that is often 
ignored – finger-crossing is usually involved. If you’re building a 
large, complex program, there’s nothing worse than having an error 
buried somewhere with no clue as to where it came from. C++ 
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exception handling (introduced in this Volume, and fully covered in 
Volume 2, which is downloadable from www.BruceEckel.com) is a 
way to guarantee that an error is noticed and that something 
happens as a result. 

Programming in the large 
Many traditional languages have built-in limitations to program 
size and complexity. BASIC, for example, can be great for pulling 
together quick solutions for certain classes of problems, but if the 
program gets more than a few pages long or ventures out of the 
normal problem domain of that language, it’s like trying to swim 
through an ever-more viscous fluid. C, too, has these limitations. 
For example, when a program gets beyond perhaps 50,000 lines of 
code, name collisions start to become a problem – effectively, you 
run out of function and variable names. Another particularly bad 
problem is the little holes in the C language – errors buried in a 
large program can be extremely difficult to find. 

There’s no clear line that tells you when your language is failing 
you, and even if there were, you’d ignore it. You don’t say, “My 
BASIC program just got too big; I’ll have to rewrite it in C!” Instead, 
you try to shoehorn a few more lines in to add that one new feature. 
So the extra costs come creeping up on you. 

C++ is designed to aid programming in the large, that is, to erase 
those creeping-complexity boundaries between a small program 
and a large one. You certainly don’t need to use OOP, templates, 
namespaces, and exception handling when you’re writing a hello-
world style utility program, but those features are there when you 
need them. And the compiler is aggressive about ferreting out bug-
producing errors for small and large programs alike. 

Strategies for transition 
If you buy into OOP, your next question is probably, “How can I get 
my manager/colleagues/department/peers to start using objects?” 
Think about how you – one independent programmer – would go 
about learning to use a new language and a new programming 
paradigm. You’ve done it before. First comes education and 
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examples; then comes a trial project to give you a feel for the basics 
without doing anything too confusing. Then comes a “real world” 
project that actually does something useful. Throughout your first 
projects you continue your education by reading, asking questions 
of experts, and trading hints with friends. This is the approach 
many experienced programmers suggest for the switch from C to 
C++. Switching an entire company will of course introduce certain 
group dynamics, but it will help at each step to remember how one 
person would do it.  

Guidelines 
Here are some guidelines to consider when making the transition to 
OOP and C++: 

1. Training 
The first step is some form of education. Remember the company’s 
investment in plain C code, and try not to throw everything into 
disarray for six to nine months while everyone puzzles over how 
multiple inheritance works. Pick a small group for indoctrination, 
preferably one composed of people who are curious, work well 
together, and can function as their own support network while 
they’re learning C++. 

An alternative approach that is sometimes suggested is the 
education of all company levels at once, including overview courses 
for strategic managers as well as design and programming courses 
for project builders. This is especially good for smaller companies 
making fundamental shifts in the way they do things, or at the 
division level of larger companies. Because the cost is higher, 
however, some may choose to start with project-level training, do a 
pilot project (possibly with an outside mentor), and let the project 
team become the teachers for the rest of the company. 

2. Low-risk project 
Try a low-risk project first and allow for mistakes. Once you’ve 
gained some experience, you can either seed other projects from 
members of this first team or use the team members as an OOP 
technical support staff. This first project may not work right the 
first time, so it should not be mission-critical for the company. It 
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should be simple, self-contained, and instructive; this means that it 
should involve creating classes that will be meaningful to the other 
programmers in the company when they get their turn to learn 
C++. 

3. Model from success 
Seek out examples of good object-oriented design before starting 
from scratch. There’s a good probability that someone has solved 
your problem already, and if they haven’t solved it exactly you can 
probably apply what you’ve learned about abstraction to modify an 
existing design to fit your needs. This is the general concept of 
design patterns, covered in Volume 2. 

4. Use existing class libraries 
The primary economic motivation for switching to OOP is the easy 
use of existing code in the form of class libraries (in particular, the 
Standard C++ libraries, which are covered in depth in Volume two 
of this book). The shortest application development cycle will result 
when you don’t have to write anything but main( ), creating and 
using objects from off-the-shelf libraries. However, some new 
programmers don’t understand this, are unaware of existing class 
libraries, or, through fascination with the language, desire to write 
classes that may already exist. Your success with OOP and C++ will 
be optimized if you make an effort to seek out and reuse other 
people’s code early in the transition process. 

5. Don’t rewrite existing code in C++ 
Although compiling your C code with a C++ compiler usually 
produces (sometimes tremendous) benefits by finding problems in 
the old code, it is not usually the best use of your time to take 
existing, functional code and rewrite it in C++. (If you must turn it 
into objects, you can “wrap” the C code in C++ classes.) There are 
incremental benefits, especially if the code is slated for reuse. But 
chances are you aren’t going to see the dramatic increases in 
productivity that you hope for in your first few projects unless that 
project is a new one. C++ and OOP shine best when taking a project 
from concept to reality. 
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Management obstacles 
If you’re a manager, your job is to acquire resources for your team, 
to overcome barriers to your team’s success, and in general to try to 
provide the most productive and enjoyable environment so your 
team is most likely to perform those miracles that are always being 
asked of you. Moving to C++ falls in all three of these categories, 
and it would be wonderful if it didn’t cost you anything as well. 
Although moving to C++ may be cheaper – depending on your 
constraints20 – than the OOP alternatives for a team of C 
programmers (and probably for programmers in other procedural 
languages), it isn’t free, and there are obstacles you should be aware 
of before trying to sell the move to C++ within your company and 
embarking on the move itself. 

Startup costs 
The cost of moving to C++ is more than just the acquisition of C++ 
compilers (the GNU C++ compiler, one of the very best, is free). 
Your medium- and long-term costs will be minimized if you invest 
in training (and possibly mentoring for your first project) and also if 
you identify and purchase class libraries that solve your problem 
rather than trying to build those libraries yourself. These are hard-
money costs that must be factored into a realistic proposal. In 
addition, there are the hidden costs in loss of productivity while 
learning a new language and possibly a new programming 
environment. Training and mentoring can certainly minimize these, 
but team members must overcome their own struggles to 
understand the new technology. During this process they will make 
more mistakes (this is a feature, because acknowledged mistakes 
are the fastest path to learning) and be less productive. Even then, 
with some types of programming problems, the right classes, and 
the right development environment, it’s possible to be more 
productive while you’re learning C++ (even considering that you’re 
making more mistakes and writing fewer lines of code per day) than 
if you’d stayed with C. 

                                                   
20 Because of its productivity improvements, the Java language should also be 
considered here. 
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Performance issues 
A common question is, “Doesn’t OOP automatically make my 
programs a lot bigger and slower?” The answer is, “It depends.” 
Most traditional OOP languages were designed with 
experimentation and rapid prototyping in mind rather than lean-
and-mean operation. Thus, they virtually guaranteed a significant 
increase in size and decrease in speed. C++, however, is designed 
with production programming in mind. When your focus is on 
rapid prototyping, you can throw together components as fast as 
possible while ignoring efficiency issues. If you’re using any third 
party libraries, these are usually already optimized by their vendors; 
in any case it’s not an issue while you’re in rapid-development 
mode. When you have a system that you like, if it’s small and fast 
enough, then you’re done. If not, you begin tuning with a profiling 
tool, looking first for speedups that can be done with simple 
applications of built-in C++ features. If that doesn’t help, you look 
for modifications that can be made in the underlying 
implementation so no code that uses a particular class needs to be 
changed. Only if nothing else solves the problem do you need to 
change the design. The fact that performance is so critical in that 
portion of the design is an indicator that it must be part of the 
primary design criteria. You have the benefit of finding this out 
early using rapid development. 

As mentioned earlier, the number that is most often given for the 
difference in size and speed between C and C++ is ±10%, and often 
much closer to par. You might even get a significant improvement 
in size and speed when using C++ rather than C because the design 
you make for C++ could be quite different from the one you’d make 
for C. 

The evidence for size and speed comparisons between C and C++ 
tends to be anecdotal and is likely to remain so. Regardless of the 
number of people who suggest that a company try the same project 
using C and C++, no company is likely to waste money that way 
unless it’s very big and interested in such research projects. Even 
then, it seems like the money could be better spent. Almost 
universally, programmers who have moved from C (or some other 
procedural language) to C++ (or some other OOP language) have 
had the personal experience of a great acceleration in their 
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programming productivity, and that’s the most compelling 
argument you can find. 

Common design errors 
When starting your team into OOP and C++, programmers will 
typically go through a series of common design errors. This often 
happens because of too little feedback from experts during the 
design and implementation of early projects, because no experts 
have been developed within the company and there may be 
resistance to retaining consultants. It’s easy to feel that you 
understand OOP too early in the cycle and go off on a bad tangent. 
Something that’s obvious to someone experienced with the 
language may be a subject of great internal debate for a novice. 
Much of this trauma can be skipped by using an experienced 
outside expert for training and mentoring. 

On the other hand, the fact that it is easy to make these design 
errors points to C++’s main drawback: its backward compatibility 
with C (of course, that’s also its main strength). To accomplish the 
feat of being able to compile C code, the language had to make some 
compromises, which have resulted in a number of “dark corners.” 
These are a reality, and comprise much of the learning curve for the 
language. In this book and the subsequent volume (and in other 
books; see Appendix C), I try to reveal most of the pitfalls you are 
likely to encounter when working with C++. You should always be 
aware that there are some holes in the safety net. 

Summary 
This chapter attempts to give you a feel for the broad issues of 
object-oriented programming and C++, including why OOP is 
different, and why C++ in particular is different, concepts of OOP 
methodologies, and finally the kinds of issues you will encounter 
when moving your own company to OOP and C++. 

OOP and C++ may not be for everyone. It’s important to evaluate 
your own needs and decide whether C++ will optimally satisfy those 
needs, or if you might be better off with another programming 
system (including the one you’re currently using). If you know that 
your needs will be very specialized for the foreseeable future and if 
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you have specific constraints that may not be satisfied by C++, then 
you owe it to yourself to investigate the alternatives21. Even if you 
eventually choose C++ as your language, you’ll at least understand 
what the options were and have a clear vision of why you took that 
direction. 

You know what a procedural program looks like: data definitions 
and function calls. To find the meaning of such a program you have 
to work a little, looking through the function calls and low-level 
concepts to create a model in your mind. This is the reason we need 
intermediate representations when designing procedural programs 
– by themselves, these programs tend to be confusing because the 
terms of expression are oriented more toward the computer than to 
the problem you’re solving. 

Because C++ adds many new concepts to the C language, your 
natural assumption may be that the main( ) in a C++ program will 
be far more complicated than for the equivalent C program. Here, 
you’ll be pleasantly surprised: A well-written C++ program is 
generally far simpler and much easier to understand than the 
equivalent C program. What you’ll see are the definitions of the 
objects that represent concepts in your problem space (rather than 
the issues of the computer representation) and messages sent to 
those objects to represent the activities in that space. One of the 
delights of object-oriented programming is that, with a well-
designed program, it’s easy to understand the code by reading it. 
Usually there’s a lot less code, as well, because many of your 
problems will be solved by reusing existing library code. 

                                                   
21 In particular, I recommend looking at Java (http://java.sun.com) and Python 
(http://www.Python.org). 
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2: Making & Using Objects  
This chapter will introduce enough C++ syntax and 

program construction concepts to allow you to write  

and run some simple object-oriented programs. In the 

subsequent chapter we will cover the basic syntax of C 

and C++ in detail. 
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By reading this chapter first, you’ll get the basic flavor of what it is 
like to program with objects in C++, and you’ll also discover some 
of the reasons for the enthusiasm surrounding this language. This 
should be enough to carry you through Chapter 3, which can be a 
bit exhausting since it contains most of the details of the C 
language. 

The user-defined data type, or class, is what distinguishes C++ from 
traditional procedural languages. A class is a new data type that you 
or someone else creates to solve a particular kind of problem. Once 
a class is created, anyone can use it without knowing the specifics of 
how it works, or even how classes are built. This chapter treats 
classes as if they are just another built-in data type available for use 
in programs.  

Classes that someone else has created are typically packaged into a 
library. This chapter uses several of the class libraries that come 
with all C++ implementations. An especially important standard 
library is iostreams, which (among other things) allow you to read 
from files and the keyboard, and to write to files and the display. 
You’ll also see the very handy string class, and the vector 
container from the Standard C++ Library. By the end of the 
chapter, you’ll see how easy it is to use a pre-defined library of 
classes. 

In order to create your first program you must understand the tools 
used to build applications. 

The process of language translation 
All computer languages are translated from something that tends to 
be easy for a human to understand (source code) into something 
that is executed on a computer (machine instructions). 
Traditionally, translators fall into two classes: interpreters and 
compilers. 
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Interpreters 
An interpreter translates source code into activities (which may 
comprise groups of machine instructions) and immediately 
executes those activities. BASIC, for example, has been a popular 
interpreted language. Traditional BASIC interpreters translate and 
execute one line at a time, and then forget that the line has been 
translated. This makes them slow, since they must re-translate any 
repeated code. BASIC has also been compiled, for speed. More 
modern interpreters, such as those for the Python language, 
translate the entire program into an intermediate language that is 
then executed by a much faster interpreter1. 

Interpreters have many advantages. The transition from writing 
code to executing code is almost immediate, and the source code is 
always available so the interpreter can be much more specific when 
an error occurs. The benefits often cited for interpreters are ease of 
interaction and rapid development (but not necessarily execution) 
of programs. 

Interpreted languages often have severe limitations when building 
large projects (Python seems to be an exception to this). The 
interpreter (or a reduced version) must always be in memory to 
execute the code, and even the fastest interpreter may introduce 
unacceptable speed restrictions. Most interpreters require that the 
complete source code be brought into the interpreter all at once. 
Not only does this introduce a space limitation, it can also cause 
more difficult bugs if the language doesn’t provide facilities to 
localize the effect of different pieces of code. 

Compilers 
A compiler translates source code directly into assembly language 
or machine instructions. The eventual end product is a file or files 
containing machine code. This is an involved process, and usually 

                                                   
1  The boundary between compilers and interpreters can tend to become a bit fuzzy, 
especially with Python, which has many of the features and power of a compiled 
language but the quick turnaround of an interpreted language. 
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takes several steps. The transition from writing code to executing 
code is significantly longer with a compiler. 

Depending on the acumen of the compiler writer, programs 
generated by a compiler tend to require much less space to run, and 
they run much more quickly. Although size and speed are probably 
the most often cited reasons for using a compiler, in many 
situations they aren’t the most important reasons. Some languages 
(such as C) are designed to allow pieces of a program to be 
compiled independently. These pieces are eventually combined into 
a final executable program by a tool called the linker. This process 
is called separate compilation. 

Separate compilation has many benefits. A program that, taken all 
at once, would exceed the limits of the compiler or the compiling 
environment can be compiled in pieces. Programs can be built and 
tested one piece at a time. Once a piece is working, it can be saved 
and treated as a building block. Collections of tested and working 
pieces can be combined into libraries for use by other 
programmers. As each piece is created, the complexity of the other 
pieces is hidden. All these features support the creation of large 
programs2. 

Compiler debugging features have improved significantly over time. 
Early compilers only generated machine code, and the programmer 
inserted print statements to see what was going on. This is not 
always effective. Modern compilers can insert information about 
the source code into the executable program. This information is 
used by powerful source-level debuggers to show exactly what is 
happening in a program by tracing its progress through the source 
code. 

Some compilers tackle the compilation-speed problem by 
performing in-memory compilation. Most compilers work with 
files, reading and writing them in each step of the compilation 
process. In-memory compilers keep the compiler program in RAM. 
For small programs, this can seem as responsive as an interpreter.  

                                                   
2 Python is again an exception, since it also provides separate compilation. 
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The compilation process 
To program in C and C++, you need to understand the steps and 
tools in the compilation process. Some languages (C and C++, in 
particular) start compilation by running a preprocessor on the 
source code. The preprocessor is a simple program that replaces 
patterns in the source code with other patterns the programmer has 
defined (using preprocessor directives). Preprocessor directives are 
used to save typing and to increase the readability of the code. 
(Later in the book, you’ll learn how the design of C++ is meant to 
discourage much of the use of the preprocessor, since it can cause 
subtle bugs.) The pre-processed code is often written to an 
intermediate file. 

Compilers usually do their work in two passes. The first pass parses 
the pre-processed code. The compiler breaks the source code into 
small units and organizes it into a structure called a tree. In the 
expression “A + B” the elements ‘A’, ‘+,’ and ‘B’ are leaves on the 
parse tree. 

A global optimizer is sometimes used between the first and second 
passes to produce smaller, faster code. 

In the second pass, the code generator walks through the parse tree 
and generates either assembly language code or machine code for 
the nodes of the tree. If the code generator creates assembly code, 
the assembler must then be run. The end result in both cases is an 
object module (a file that typically has an extension of .o or .obj). A 
peephole optimizer is sometimes used in the second pass to look for 
pieces of code containing redundant assembly-language statements. 

The use of the word “object” to describe chunks of machine code is 
an unfortunate artifact. The word came into use before object-
oriented programming was in general use. “Object” is used in the 
same sense as “goal” when discussing compilation, while in object-
oriented programming it means “a thing with boundaries.” 

The linker combines a list of object modules into an executable 
program that can be loaded and run by the operating system. When 
a function in one object module makes a reference to a function or 
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variable in another object module, the linker resolves these 
references; it makes sure that all the external functions and data 
you claimed existed during compilation do exist. The linker also 
adds a special object module to perform start-up activities. 

The linker can search through special files called libraries in order 
to resolve all its references. A library contains a collection of object 
modules in a single file. A library is created and maintained by a 
program called a librarian. 

Static type checking 
The compiler performs type checking during the first pass. Type 
checking tests for the proper use of arguments in functions and 
prevents many kinds of programming errors. Since type checking 
occurs during compilation instead of when the program is running, 
it is called static type checking.  

Some object-oriented languages (notably Java) perform some type 
checking at runtime (dynamic type checking). If combined with 
static type checking, dynamic type checking is more powerful than 
static type checking alone. However, it also adds overhead to 
program execution. 

C++ uses static type checking because the language cannot assume 
any particular runtime support for bad operations. Static type 
checking notifies the programmer about misuses of types during 
compilation, and thus maximizes execution speed. As you learn 
C++, you will see that most of the language design decisions favor 
the same kind of high-speed, production-oriented programming the 
C language is famous for. 

You can disable static type checking in C++. You can also do your 
own dynamic type checking – you just need to write the code.  

Tools for separate compilation 
Separate compilation is particularly important when building large 
projects. In C and C++, a program can be created in small, 
manageable, independently tested pieces. The most fundamental 
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tool for breaking a program up into pieces is the ability to create 
named subroutines or subprograms. In C and C++, a subprogram is 
called a function, and functions are the pieces of code that can be 
placed in different files, enabling separate compilation. Put another 
way, the function is the atomic unit of code, since you cannot have 
part of a function in one file and another part in a different file; the 
entire function must be placed in a single file (although files can 
and do contain more than one function). 

When you call a function, you typically pass it some arguments, 
which are values you’d like the function to work with during its 
execution. When the function is finished, you typically get back a 
return value, a value that the function hands back to you as a result. 
It’s also possible to write functions that take no arguments and 
return no values. 

To create a program with multiple files, functions in one file must 
access functions and data in other files. When compiling a file, the C 
or C++ compiler must know about the functions and data in the 
other files, in particular their names and proper usage. The 
compiler ensures that functions and data are used correctly. This 
process of “telling the compiler” the names of external functions 
and data and what they should look like is called declaration. Once 
you declare a function or variable, the compiler knows how to check 
to make sure it is used properly. 

Declarations vs. definitions 
It’s important to understand the difference between declarations 
and definitions because these terms will be used precisely 
throughout the book. Essentially all C and C++ programs require 
declarations. Before you can write your first program, you need to 
understand the proper way to write a declaration. 

A declaration introduces a name – an identifier – to the compiler. 
It tells the compiler “This function or this variable exists 
somewhere, and here is what it should look like.” A definition, on 
the other hand, says: “Make this variable here” or “Make this 
function here.” It allocates storage for the name. This meaning 
works whether you’re talking about a variable or a function; in 
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either case, at the point of definition the compiler allocates storage. 
For a variable, the compiler determines how big that variable is and 
causes space to be generated in memory to hold the data for that 
variable. For a function, the compiler generates code, which ends 
up occupying storage in memory.  

You can declare a variable or a function in many different places, 
but there must be only one definition in C and C++ (this is 
sometimes called the ODR: one-definition rule). When the linker is 
uniting all the object modules, it will usually complain if it finds 
more than one definition for the same function or variable. 

A definition can also be a declaration. If the compiler hasn’t seen 
the name x before and you define int x;, the compiler sees the 
name as a declaration and allocates storage for it all at once. 

Function declaration syntax 
A function declaration in C and C++ gives the function name, the 
argument types passed to the function, and the return value of the 
function. For example, here is a declaration for a function called 
func1( ) that takes two integer arguments (integers are denoted in 
C/C++ with the keyword int) and returns an integer: 

int func1(int,int); 
 

The first keyword you see is the return value all by itself: int. The 
arguments are enclosed in parentheses after the function name in 
the order they are used. The semicolon indicates the end of a 
statement; in this case, it tells the compiler “that’s all – there is no 
function definition here!”  

C and C++ declarations attempt to mimic the form of the item’s use. 
For example, if a is another integer the above function might be 
used this way: 

a = func1(2,3); 
 

Since func1( ) returns an integer, the C or C++ compiler will check 
the use of func1( ) to make sure that a can accept the return value 
and that the arguments are appropriate. 
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Arguments in function declarations may have names. The compiler 
ignores the names but they can be helpful as mnemonic devices for 
the user. For example, we can declare func1( ) in a different 
fashion that has the same meaning: 

int func1(int length, int width); 
 

A gotcha 
There is a significant difference between C and C++ for functions 
with empty argument lists. In C, the declaration: 

int func2(); 
 

means “a function with any number and type of argument.” This 
prevents type-checking, so in C++ it means “a function with no 
arguments.” 

Function definitions 
Function definitions look like function declarations except that they 
have bodies. A body is a collection of statements enclosed in braces. 
Braces denote the beginning and ending of a block of code. To give 
func1( ) a definition that is an empty body (a body containing no 
code), write: 

int func1(int length, int width) { } 
 

Notice that in the function definition, the braces replace the 
semicolon. Since braces surround a statement or group of 
statements, you don’t need a semicolon. Notice also that the 
arguments in the function definition must have names if you want 
to use the arguments in the function body (since they are never 
used here, they are optional). 

Variable declaration syntax 
The meaning attributed to the phrase “variable declaration” has 
historically been confusing and contradictory, and it’s important 
that you understand the correct definition so you can read code 
properly. A variable declaration tells the compiler what a variable 
looks like. It says, “I know you haven’t seen this name before, but I 
promise it exists someplace, and it’s a variable of X type.”  
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In a function declaration, you give a type (the return value), the 
function name, the argument list, and a semicolon. That’s enough 
for the compiler to figure out that it’s a declaration and what the 
function should look like. By inference, a variable declaration might 
be a type followed by a name. For example: 

int a; 
 

could declare the variable a as an integer, using the logic above. 
Here’s the conflict: there is enough information in the code above 
for the compiler to create space for an integer called a, and that’s 
what happens. To resolve this dilemma, a keyword was necessary 
for C and C++ to say “This is only a declaration; it’s defined 
elsewhere.” The keyword is extern. It can mean the definition is 
external to the file, or that the definition occurs later in the file. 

Declaring a variable without defining it means using the extern 
keyword before a description of the variable, like this: 

extern int a; 
 

extern can also apply to function declarations. For func1( ), it 
looks like this: 

extern int func1(int length, int width); 
 

This statement is equivalent to the previous func1( ) declarations. 
Since there is no function body, the compiler must treat it as a 
function declaration rather than a function definition. The extern 
keyword is thus superfluous and optional for function declarations. 
It is probably unfortunate that the designers of C did not require 
the use of extern for function declarations; it would have been 
more consistent and less confusing (but would have required more 
typing, which probably explains the decision). 

Here are some more examples of declarations: 

//: C02:Declare.cpp 

// Declaration & definition examples 

extern int i; // Declaration without definition 

extern float f(float); // Function declaration 
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float b;  // Declaration & definition 

float f(float a) {  // Definition 

  return a + 1.0; 

} 

 

int i; // Definition 

int h(int x) { // Declaration & definition 

  return x + 1; 

} 

 

int main() { 

  b = 1.0; 

  i = 2; 

  f(b); 

  h(i); 

} ///:~ 
 

In the function declarations, the argument identifiers are optional. 
In the definitions, they are required (the identifiers are required 
only in C, not C++). 

Including headers  
Most libraries contain significant numbers of functions and 
variables. To save work and ensure consistency when making the 
external declarations for these items, C and C++ use a device called 
the header file. A header file is a file containing the external 
declarations for a library; it conventionally has a file name 
extension of ‘h’, such as headerfile.h. (You may also see some 
older code using different extensions, such as .hxx or .hpp, but 
this is becoming rare.) 

The programmer who creates the library provides the header file. 
To declare the functions and external variables in the library, the 
user simply includes the header file. To include a header file, use 
the #include preprocessor directive. This tells the preprocessor to 
open the named header file and insert its contents where the 
#include statement appears. A #include may name a file in two 
ways: in angle brackets (< >) or in double quotes.  

File names in angle brackets, such as: 

#include <header> 
 



86 Thinking in C++ www.BruceEckel.com 

cause the preprocessor to search for the file in a way that is 
particular to your implementation, but typically there’s some kind 
of “include search path” that you specify in your environment or on 
the compiler command line. The mechanism for setting the search 
path varies between machines, operating systems, and C++ 
implementations, and may require some investigation on your part. 

File names in double quotes, such as: 

#include "local.h" 
 

tell the preprocessor to search for the file in (according to the 
specification) an “implementation-defined way.” What this typically 
means is to search for the file relative to the current directory. If the 
file is not found, then the include directive is reprocessed as if it had 
angle brackets instead of quotes.  

To include the iostream header file, you write: 

#include <iostream> 
 

The preprocessor will find the iostream header file (often in a 
subdirectory called “include”) and insert it.  

Standard C++ include format 
As C++ evolved, different compiler vendors chose different 
extensions for file names. In addition, various operating systems 
have different restrictions on file names, in particular on name 
length. These issues caused source code portability problems. To 
smooth over these rough edges, the standard uses a format that 
allows file names longer than the notorious eight characters and 
eliminates the extension. For example, instead of  the old style of 
including iostream.h, which looks like this: 

#include <iostream.h> 
 

you can now write: 

#include <iostream> 
 

The translator can implement the include statements in a way that 
suits the needs of that particular compiler and operating system, if 
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necessary truncating the name and adding an extension. Of course, 
you can also copy the headers given you by your compiler vendor to 
ones without extensions if you want to use this style before a vendor 
has provided support for it. 

The libraries that have been inherited from C are still available with 
the traditional ‘.h’ extension. However, you can also use them with 
the more modern C++ include style by prepending a “c” before the 
name. Thus:  

#include <stdio.h> 

#include <stdlib.h> 
 

become: 

#include <cstdio> 

#include <cstdlib> 
 

And so on, for all the Standard C headers. This provides a nice 
distinction to the reader indicating when you’re using C versus C++ 
libraries. 

The effect of the new include format is not identical to the old: 
using the .h gives you the older, non-template version, and omitting 
the .h gives you the new templatized version. You’ll usually have 
problems if you try to intermix the two forms in a single program. 

Linking  
The linker collects object modules (which often use file name 
extensions like .o or .obj), generated by the compiler, into an 
executable program the operating system can load and run. It is the 
last phase of the compilation process. 

Linker characteristics vary from system to system. In general, you 
just tell the linker the names of the object modules and libraries you 
want linked together, and the name of the executable, and it goes to 
work. Some systems require you to invoke the linker yourself. With 
most C++ packages you invoke the linker through the C++ 
compiler. In many situations, the linker is invoked for you invisibly. 
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Some older linkers won’t search object files and libraries more than 
once, and they search through the list you give them from left to 
right. This means that the order of object files and libraries can be 
important. If you have a mysterious problem that doesn’t show up 
until link time, one possibility is the order in which the files are 
given to the linker. 

Using libraries  
Now that you know the basic terminology, you can understand how 
to use a library. To use a library: 

1. Include the library’s header file. 

2. Use the functions and variables in the library. 

3. Link the library into the executable program. 

These steps also apply when the object modules aren’t combined 
into a library. Including a header file and linking the object modules 
are the basic steps for separate compilation in both C and C++. 

How the linker searches a library  
When you make an external reference to a function or variable in C 
or C++, the linker, upon encountering this reference, can do one of 
two things. If it has not already encountered the definition for the 
function or variable, it adds the identifier to its list of “unresolved 
references.” If the linker has already encountered the definition, the 
reference is resolved. 

If the linker cannot find the definition in the list of object modules, 
it searches the libraries. Libraries have some sort of indexing so the 
linker doesn’t need to look through all the object modules in the 
library – it just looks in the index. When the linker finds a 
definition in a library, the entire object module, not just the 
function definition, is linked into the executable program. Note that 
the whole library isn’t linked, just the object module in the library 
that contains the definition you want (otherwise programs would be 
unnecessarily large). If you want to minimize executable program 
size, you might consider putting a single function in each source 
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code file when you build your own libraries. This requires more 
editing3, but it can be helpful to the user. 

Because the linker searches files in the order you give them, you can 
pre-empt the use of a library function by inserting a file with your 
own function, using the same function name, into the list before the 
library name appears. Since the linker will resolve any references to 
this function by using your function before it searches the library, 
your function is used instead of the library function. Note that this 
can also be a bug, and the kind of thing C++ namespaces prevent. 

Secret additions 
When a C or C++ executable program is created, certain items are 
secretly linked in. One of these is the startup module, which 
contains initialization routines that must be run any time a C or 
C++ program begins to execute. These routines set up the stack and 
initialize certain variables in the program. 

The linker always searches the standard library for the compiled 
versions of any “standard” functions called in the program. Because 
the standard library is always searched, you can use anything in 
that library by simply including the appropriate header file in your 
program; you don’t have to tell it to search the standard library. The 
iostream functions, for example, are in the Standard C++ library. 
To use them, you just include the <iostream> header file. 

If you are using an add-on library, you must explicitly add the 
library name to the list of files handed to the linker. 

Using plain C libraries  
Just because you are writing code in C++, you are not prevented 
from using C library functions. In fact, the entire C library is 
included by default into Standard C++. There has been a 
tremendous amount of work done for you in these functions, so 
they can save you a lot of time. 

                                                   
3 I would recommend using Perl or Python to automate this task as part of your 
library-packaging process (see www.Perl.org or www.Python.org). 
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This book will use Standard C++ (and thus also Standard C) library 
functions when convenient, but only standard library functions will 
be used, to ensure the portability of programs. In the few cases in 
which library functions must be used that are not in the C++ 
standard, all attempts will be made to use POSIX-compliant 
functions. POSIX is a standard based on a Unix standardization 
effort that includes functions that go beyond the scope of the C++ 
library. You can generally expect to find POSIX functions on Unix 
(in particular, Linux) platforms, and often under DOS/Windows. 
For example, if you’re using multithreading you are better off using 
the POSIX thread library because your code will then be easier to 
understand, port and maintain (and the POSIX thread library will 
usually just use the underlying thread facilities of the operating 
system, if these are provided). 

Your first C++ program 
You now know almost enough of the basics to create and compile a 
program. The program will use the Standard C++ iostream classes. 
These read from and write to files and “standard” input and output 
(which normally comes from and goes to the console, but may be 
redirected to files or devices). In this simple program, a stream 
object will be used to print a message on the screen. 

Using the iostreams class  
To declare the functions and external data in the iostreams class, 
include the header file with the statement 

#include <iostream> 
 

The first program uses the concept of standard output, which 
means “a general-purpose place to send output.” You will see other 
examples using standard output in different ways, but here it will 
just go to the console. The iostream package automatically defines a 
variable (an object) called cout that accepts all data bound for 
standard output. 

To send data to standard output, you use the operator <<. C 
programmers know this operator as the “bitwise left shift,” which 
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will be described in the next chapter. Suffice it to say that a bitwise 
left shift has nothing to do with output. However, C++ allows 
operators to be overloaded. When you overload an operator, you 
give it a new meaning when that operator is used with an object of a 
particular type. With iostream objects, the operator << means 
“send to.” For example: 

cout << "howdy!"; 
 

sends the string “howdy!” to the object called cout (which is short 
for “console output”). 

That’s enough operator overloading to get you started. Chapter 12 
covers operator overloading in detail. 

Namespaces 
As mentioned in Chapter 1, one of the problems encountered in the 
C language is that you “run out of names” for functions and 
identifiers when your programs reach a certain size. Of course, you 
don’t really run out of names; it does, however, become harder to 
think of new ones after awhile. More importantly, when a program 
reaches a certain size it’s typically broken up into pieces, each of 
which is built and maintained by a different person or group. Since 
C effectively has a single arena where all the identifier and function 
names live, this means that all the developers must be careful not to 
accidentally use the same names in situations where they can 
conflict. This rapidly becomes tedious, time-wasting, and, 
ultimately, expensive. 

Standard C++ has a mechanism to prevent this collision: the 
namespace keyword. Each set of C++ definitions in a library or 
program is “wrapped” in a namespace, and if some other definition 
has an identical name, but is in a different namespace, then there is 
no collision. 

Namespaces are a convenient and helpful tool, but their presence 
means that you must be aware of them before you can write any 
programs. If you simply include a header file and use some 
functions or objects from that header, you’ll probably get strange-
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sounding errors when you try to compile the program, to the effect 
that the compiler cannot find any of the declarations for the items 
that you just included in the header file! After you see this message 
a few times you’ll become familiar with its meaning (which is “You 
included the header file but all the declarations are within a 
namespace and you didn’t tell the compiler that you wanted to use 
the declarations in that namespace”). 

There’s a keyword that allows you to say “I want to use the 
declarations and/or definitions in this namespace.” This keyword, 
appropriately enough, is using. All of the Standard C++ libraries 
are wrapped in a single namespace, which is std (for “standard”). 
As this book uses the standard libraries almost exclusively, you’ll 
see the following using directive in almost every program: 

using namespace std; 
 

This means that you want to expose all the elements from the 
namespace called std. After this statement, you don’t have to worry 
that your particular library component is inside a namespace, since 
the using directive makes that namespace available throughout the 
file where the using directive was written. 

Exposing all the elements from a namespace after someone has 
gone to the trouble to hide them may seem a bit counterproductive, 
and in fact you should be careful about thoughtlessly doing this (as 
you’ll learn later in the book). However, the using directive exposes 
only those names for the current file, so it is not quite as drastic as it 
first sounds. (But think twice about doing it in a header file – that is 
reckless.) 

There’s a relationship between namespaces and the way header files 
are included. Before the modern header file inclusion was 
standardized (without the trailing ‘.h’, as in <iostream>), the 
typical way to include a header file was with the ‘.h’, such as 
<iostream.h>. At that time, namespaces were not part of the 
language either. So to provide backward compatibility with existing 
code, if you say  

#include <iostream.h> 
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it means 

#include <iostream> 

using namespace std; 
 

However, in this book the standard include format will be used 
(without the ‘.h’) and so the using directive must be explicit. 

For now, that’s all you need to know about namespaces, but in 
Chapter 10 the subject is covered much more thoroughly. 

Fundamentals of program structure  
A C or C++ program is a collection of variables, function 
definitions, and function calls. When the program starts, it executes 
initialization code and calls a special function, “main( ).” You put 
the primary code for the program here. 

As mentioned earlier, a function definition consists of a return type 
(which must be specified in C++), a function name, an argument 
list in parentheses, and the function code contained in braces. Here 
is a sample function definition: 

int function() { 

  // Function code here (this is a comment) 

} 
 

The function above has an empty argument list and a body that 
contains only a comment.  

There can be many sets of braces within a function definition, but 
there must always be at least one set surrounding the function 
body. Since main( ) is a function, it must follow these rules. In 
C++, main( ) always has return type of int. 

C and C++ are free form languages. With few exceptions, the 
compiler ignores newlines and white space, so it must have some 
way to determine the end of a statement. Statements are delimited 
by semicolons. 
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C comments start with /* and end with */. They can include 
newlines. C++ uses C-style comments and has an additional type of 
comment: //. The // starts a comment that terminates with a 
newline. It is more convenient than /* */ for one-line comments, 
and is used extensively in this book. 

"Hello, world!" 
And now, finally, the first program: 

//: C02:Hello.cpp 

// Saying Hello with C++ 

#include <iostream> // Stream declarations 

using namespace std; 

 

int main() { 

  cout << "Hello, World! I am " 

       << 8 << " Today!" << endl; 

} ///:~ 
 

The cout object is handed a series of arguments via the ‘<<’ 
operators. It prints out these arguments in left-to-right order. The 
special iostream function endl outputs the line and a newline. With 
iostreams, you can string together a series of arguments like this, 
which makes the class easy to use.  

In C, text inside double quotes is traditionally called a “string.” 
However, the Standard C++ library has a powerful class called 
string for manipulating text, and so I shall use the more precise 
term character array for text inside double quotes. 

The compiler creates storage for character arrays and stores the 
ASCII equivalent for each character in this storage. The compiler 
automatically terminates this array of characters with an extra piece 
of storage containing the value 0 to indicate the end of the character 
array.  

Inside a character array, you can insert special characters by using 
escape sequences. These consist of a backslash (\) followed by a 
special code. For example \n means newline. Your compiler manual 
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or local C guide gives a complete set of escape sequences; others 
include \t (tab), \  (backslash), and \b (backspace). 

Notice that the statement can continue over multiple lines, and that 
the entire statement terminates with a semicolon 

Character array arguments and constant numbers are mixed 
together in the above cout statement. Because the operator << is 
overloaded with a variety of meanings when used with cout, you 
can send cout a variety of different arguments and it will “figure 
out what to do with the message.” 

Throughout this book you’ll notice that the first line of each file will 
be a comment that starts with the characters that start a comment 
(typically //), followed by a colon, and the last line of the listing will 
end with a comment followed by ‘/:~’. This is a technique I use to 
allow easy extraction of information from code files (the program to 
do this can be found in volume two of this book, at 
www.BruceEckel.com). The first line also has the name and 
location of the file, so it can be referred to in text and in other files, 
and so you can easily locate it in the source code for this book 
(which is downloadable from www.BruceEckel.com). 

Running the compiler  
After downloading and unpacking the book’s source code, find the 
program in the subdirectory CO2. Invoke the compiler with 
Hello.cpp as the argument. For simple, one-file programs like this 
one, most compilers will take you all the way through the process. 
For example, to use the GNU C++ compiler (which is freely 
available on the Internet), you write: 

g++ Hello.cpp 
 

Other compilers will have a similar syntax; consult your compiler’s 
documentation for details. 
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More about iostreams  
So far you have seen only the most rudimentary aspect of the 
iostreams class. The output formatting available with iostreams also 
includes features such as number formatting in decimal, octal, and 
hexadecimal. Here’s another example of the use of iostreams: 

//: C02:Stream2.cpp 

// More streams features 

#include <iostream> 

using namespace std; 

 

int main() { 

  // Specifying formats with manipulators: 

  cout << "a number in decimal: " 

       << dec << 15 << endl; 

  cout << "in octal: " << oct << 15 << endl; 

  cout << "in hex: " << hex << 15 << endl; 

  cout << "a floating-point number: " 

       << 3.14159 << endl; 

  cout << "non-printing char (escape): " 

       << char(27) << endl; 

} ///:~ 
 

This example shows the iostreams class printing numbers in 
decimal, octal, and hexadecimal using iostream manipulators 
(which don’t print anything, but change the state of the output 
stream). The formatting of floating-point numbers is determined 
automatically by the compiler. In addition, any character can be 
sent to a stream object using a cast to a char (a char is a data type 
that holds single characters). This cast looks like a function call: 
char( ), along with the character’s ASCII value. In the program 
above, the char(27) sends an “escape” to cout. 

Character array concatenation 
An important feature of the C preprocessor is character array 
concatenation. This feature is used in some of the examples in this 
book. If two quoted character arrays are adjacent, and no 
punctuation is between them, the compiler will paste the character 
arrays together into a single character array. This is particularly 
useful when code listings have width restrictions: 
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//: C02:Concat.cpp 

// Character array Concatenation 

#include <iostream> 

using namespace std; 

 

int main() { 

  cout << "This is far too long to put on a " 

    "single line but it can be broken up with " 

    "no ill effects\nas long as there is no " 

    "punctuation separating adjacent character " 

    "arrays.\n"; 

} ///:~ 
 

At first, the code above can look like an error because there’s no 
familiar semicolon at the end of each line. Remember that C and 
C++ are free-form languages, and although you’ll usually see a 
semicolon at the end of each line, the actual requirement is for a 
semicolon at the end of each statement, and it’s possible for a 
statement to continue over several lines. 

Reading input 
The iostreams classes provide the ability to read input. The object 
used for standard input is cin (for “console input”). cin normally 
expects input from the console, but this input can be redirected 
from other sources. An example of redirection is shown later in this 
chapter. 

The iostreams operator used with cin is >>. This operator waits for 
the same kind of input as its argument. For example, if you give it 
an integer argument, it waits for an integer from the console. Here’s 
an example: 

//: C02:Numconv.cpp 

// Converts decimal to octal and hex 

#include <iostream> 

using namespace std; 

 

int main() { 

  int number; 

  cout << "Enter a decimal number: "; 

  cin >> number; 

  cout << "value in octal = 0"  
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       << oct << number << endl; 

  cout << "value in hex = 0x"  

       << hex << number << endl; 

} ///:~ 
 

This program converts a number typed in by the user into octal and 
hexadecimal representations. 

Calling other programs 
While the typical way to use a program that reads from standard 
input and writes to standard output is within a Unix shell script or 
DOS batch file, any program can be called from inside a C or C++ 
program using the Standard C system( ) function, which is 
declared in the header file <cstdlib>: 

//: C02:CallHello.cpp 

// Call another program 

#include <cstdlib> // Declare "system()" 

using namespace std; 

 

int main() { 

  system("Hello"); 

} ///:~ 
 

To use the system( ) function, you give it a character array that 
you would normally type at the operating system command prompt. 
This can also include command-line arguments, and the character 
array can be one that you fabricate at run time (instead of just using 
a static character array as shown above). The command executes 
and control returns to the program. 

This program shows you how easy it is to use plain C library 
functions in C++; just include the header file and call the function. 
This upward compatibility from C to C++ is a big advantage if you 
are learning the language starting from a background in C. 

Introducing strings 
While a character array can be fairly useful, it is quite limited. It’s 
simply a group of characters in memory, but if you want to do 
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anything with it you must manage all the little details. For example, 
the size of a quoted character array is fixed at compile time. If you 
have a character array and you want to add some more characters 
to it, you’ll need to understand quite a lot (including dynamic 
memory management, character array copying, and concatenation) 
before you can get your wish. This is exactly the kind of thing we’d 
like to have an object do for us. 

The Standard C++ string class is designed to take care of (and 
hide) all the low-level manipulations of character arrays that were 
previously required of the C programmer. These manipulations 
have been a constant source of time-wasting and errors since the 
inception of the C language. So, although an entire chapter is 
devoted to the string class in Volume 2 of this book, the string is 
so important and it makes life so much easier that it will be 
introduced here and used in much of the early part of the book. 

To use strings you include the C++ header file <string>. The 
string class is in the namespace std so a using directive is 
necessary. Because of operator overloading, the syntax for using 
strings is quite intuitive: 

//: C02:HelloStrings.cpp 

// The basics of the Standard C++ string class 

#include <string> 

#include <iostream> 

using namespace std; 

 

int main() { 

  string s1, s2; // Empty strings 

  string s3 = "Hello, World."; // Initialized 

  string s4("I am"); // Also initialized 

  s2 = "Today"; // Assigning to a string 

  s1 = s3 + " " + s4; // Combining strings 

  s1 += " 8 "; // Appending to a string 

  cout << s1 + s2 + "!" << endl; 

} ///:~ 
 

The first two strings, s1 and s2, start out empty, while s3 and s4 
show two equivalent ways to initialize string objects from 
character arrays (you can just as easily initialize string objects 
from other string objects). 
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You can assign to any string object using ‘=’. This replaces the 
previous contents of the string with whatever is on the right-hand 
side, and you don’t have to worry about what happens to the 
previous contents – that’s handled automatically for you. To 
combine strings you simply use the ‘+’ operator, which also allows 
you to combine character arrays with strings. If you want to 
append either a string or a character array to another string, you 
can use the operator ‘+=’. Finally, note that iostreams already know 
what to do with strings, so you can just send a string (or an 
expression that produces a string, which happens with s1 + s2 + 
"!") directly to cout in order to print it. 

Reading and writing files 
In C, the process of opening and manipulating files requires a lot of 
language background to prepare you for the complexity of the 
operations. However, the C++ iostream library provides a simple 
way to manipulate files, and so this functionality can be introduced 
much earlier than it would be in C. 

To open files for reading and writing, you must include 
<fstream>. Although this will automatically include 
<iostream>, it’s generally prudent to explicitly include 
<iostream> if you’re planning to use cin, cout, etc. 

To open a file for reading, you create an ifstream object, which 
then behaves like cin. To open a file for writing, you create an 
ofstream object, which then behaves like cout. Once you’ve 
opened the file, you can read from it or write to it just as you would 
with any other iostream object. It’s that simple (which is, of course, 
the whole point). 

One of the most useful functions in the iostream library is 
getline( ), which allows you to read one line (terminated by a 
newline) into a string object4. The first argument is the ifstream 

                                                   
4 There are actually a number of variants of getline( ), which will be discussed 
thoroughly in the iostreams chapter in Volume 2. 
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object you’re reading from and the second argument is the string 
object. When the function call is finished, the string object will 
contain the line. 

Here’s a simple example, which copies the contents of one file into 
another: 

//: C02:Scopy.cpp 

// Copy one file to another, a line at a time 

#include <string> 

#include <fstream> 

using namespace std; 

 

int main() { 

  ifstream in("Scopy.cpp"); // Open for reading 

  ofstream out("Scopy2.cpp"); // Open for writing 

  string s; 

  while(getline(in, s)) // Discards newline char 

    out << s << "\n"; // ... must add it back 

} ///:~ 
 

To open the files, you just hand the ifstream and ofstream 
objects the file names you want to create, as seen above. 

There is a new concept introduced here, which is the while loop. 
Although this will be explained in detail in the next chapter, the 
basic idea is that the expression in parentheses following the while 
controls the execution of the subsequent statement (which can also 
be multiple statements, wrapped inside curly braces). As long as the 
expression in parentheses (in this case, getline(in, s)) produces a 
“true” result, then the statement controlled by the while will 
continue to execute. It turns out that getline( ) will return a value 
that can be interpreted as “true” if another line has been read 
successfully, and “false” upon reaching the end of the input. Thus, 
the above while loop reads every line in the input file and sends 
each line to the output file. 

getline( ) reads in the characters of each line until it discovers a 
newline (the termination character can be changed, but that won’t 
be an issue until the iostreams chapter in Volume 2). However, it 
discards the newline and doesn’t store it in the resulting string 
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object. Thus, if we want the copied file to look just like the source 
file, we must add the newline back in, as shown. 

Another interesting example is to copy the entire file into a single 
string object: 

//: C02:FillString.cpp 

// Read an entire file into a single string 

#include <string> 

#include <iostream> 

#include <fstream> 

using namespace std; 

 

int main() { 

  ifstream in("FillString.cpp"); 

  string s, line; 

  while(getline(in, line)) 

    s += line + "\n"; 

  cout << s; 

} ///:~ 
 

Because of the dynamic nature of strings, you don’t have to worry 
about how much storage to allocate for a string; you can just keep 
adding things and the string will keep expanding to hold whatever 
you put into it. 

One of the nice things about putting an entire file into a string is 
that the string class has many functions for searching and 
manipulation that would then allow you to modify the file as a 
single string. However, this has its limitations. For one thing, it is 
often convenient to treat a file as a collection of lines instead of just 
a big blob of text. For example, if you want to add line numbering 
it’s much easier if you have each line as a separate string object. To 
accomplish this, we’ll need another approach. 

Introducing vector 
With strings, we can fill up a string object without knowing how 
much storage we’re going to need. The problem with reading lines 
from a file into individual string objects is that you don’t know up 
front how many strings you’re going to need – you only know after 
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you’ve read the entire file. To solve this problem, we need some sort 
of holder that will automatically expand to contain as many string 
objects as we care to put into it. 

In fact, why limit ourselves to holding string objects? It turns out 
that this kind of problem – not knowing how many of something 
you have while you’re writing a program – happens a lot. And this 
“container” object sounds like it would be more useful if it would 
hold any kind of object at all! Fortunately, the Standard C++ 
Library has a ready-made solution: the standard container classes. 
The container classes are one of the real powerhouses of Standard 
C++. 

There is often a bit of confusion between the containers and 
algorithms in the Standard C++ Library, and the entity known as 
the STL. The Standard Template Library was the name Alex 
Stepanov (who was working at Hewlett-Packard at the time) used 
when he presented his library to the C++ Standards Committee at 
the meeting in San Diego, California in Spring 1994. The name 
stuck, especially after HP decided to make it available for public 
downloads. Meanwhile, the committee integrated it into the 
Standard C++ Library, making a large number of changes. STL's 
development continues at Silicon Graphics (SGI; see 
http://www.sgi.com/Technology/STL). The SGI STL diverges 
from the Standard C++ Library on many subtle points. So although 
it's a popular misconception, the C++ Standard does not “include” 
the STL. It can be a bit confusing since the containers and 
algorithms in the Standard C++ Library have the same root (and 
usually the same names) as the SGI STL. In this book, I will say 
“The Standard C++ Library” or “The Standard Library containers,” 
or something similar and will avoid the term “STL.” 

Even though the implementation of the Standard C++ Library 
containers and algorithms uses some advanced concepts and the 
full coverage takes two large chapters in Volume 2 of this book, this 
library can also be potent without knowing a lot about it. It’s so 
useful that the most basic of the standard containers, the vector, is 
introduced in this early chapter and used throughout the book. 
You’ll find that you can do a tremendous amount just by using the 
basics of vector and not worrying about the underlying 
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implementation (again, an important goal of OOP). Since you’ll 
learn much more about this and the other containers when you 
reach the Standard Library chapters in Volume 2, it seems 
forgivable if the programs that use vector in the early portion of 
the book aren’t exactly what an experienced C++ programmer 
would do. You’ll find that in most cases, the usage shown here is 
adequate. 

The vector class is a template, which means that it can be 
efficiently applied to different types. That is, we can create a vector 
of shapes, a vector of cats, a vector of strings, etc. Basically, 
with a template you can create a “class of anything.” To tell the 
compiler what it is that the class will work with (in this case, what 
the vector will hold), you put the name of the desired type in 
“angle brackets,” which means ‘<’ and ‘>’. So a vector of string 
would be denoted vector<string>. When you do this, you end up 
with a customized vector that will hold only string objects, and 
you’ll get an error message from the compiler if you try to put 
anything else into it. 

Since vector expresses the concept of a “container,” there must be 
a way to put things into the container and get things back out of the 
container. To add a brand-new element on the end of a vector, you 
use the member function push_back( ). (Remember that, since 
it’s a member function, you use a ‘.’ to call it for a particular object.) 
The reason the name of this member function might seem a bit 
verbose – push_back( ) instead of something simpler like “put” – 
is because there are other containers and other member functions 
for putting new elements into containers. For example, there is an 
insert( ) member function to put something in the middle of a 
container. vector supports this but its use is more complicated and 
we won’t need to explore it until Volume 2 of the book. There’s also 
a push_front( ) (not part of vector) to put things at the 
beginning. There are many more member functions in vector and 
many more containers in the Standard C++ Library, but you’ll be 
surprised at how much you can do just knowing about a few simple 
features. 

So you can put new elements into a vector with push_back( ), 
but how do you get these elements back out again? This solution is 
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more clever and elegant – operator overloading is used to make the 
vector look like an array. The array (which will be described more 
fully in the next chapter) is a data type that is available in virtually 
every programming language so you should already be somewhat 
familiar with it. Arrays are aggregates, which mean they consist of 
a number of elements clumped together. The distinguishing 
characteristic of an array is that these elements are the same size 
and are arranged to be one right after the other. Most importantly, 
these elements can be selected by “indexing,” which means you can 
say “I want element number n” and that element will be produced, 
usually quickly. Although there are exceptions in programming 
languages, the indexing is normally achieved using square brackets, 
so if you have an array a and you want to produce element five, you 
say a[4] (note that indexing always starts at zero). 

This very compact and powerful indexing notation is incorporated 
into the vector using operator overloading, just like ‘<<’ and ‘>>’ 
were incorporated into iostreams. Again, you don’t need to know 
how the overloading was implemented – that’s saved for a later 
chapter – but it’s helpful if you’re aware that there’s some magic 
going on under the covers in order to make the [ ] work with 
vector. 

With that in mind, you can now see a program that uses vector. To 
use a vector, you include the header file <vector>: 

//: C02:Fillvector.cpp 

// Copy an entire file into a vector of string 

#include <string> 

#include <iostream> 

#include <fstream> 

#include <vector> 

using namespace std; 

 

int main() { 

  vector<string> v; 

  ifstream in("Fillvector.cpp"); 

  string line; 

  while(getline(in, line)) 

    v.push_back(line); // Add the line to the end 

  // Add line numbers: 
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  for(int i = 0; i < v.size(); i++) 

    cout << i << ": " << v[i] << endl; 

} ///:~ 
 

Much of this program is similar to the previous one; a file is opened 
and lines are read into string objects one at a time. However, these 
string objects are pushed onto the back of the vector v. Once the 
while loop completes, the entire file is resident in memory, inside 
v. 

The next statement in the program is called a for loop. It is similar 
to a while loop except that it adds some extra control. After the 
for, there is a “control expression” inside of parentheses, just like 
the while loop. However, this control expression is in three parts: a 
part which initializes, one that tests to see if we should exit the loop, 
and one that changes something, typically to step through a 
sequence of items. This program shows the for loop in the way 
you’ll see it most commonly used: the initialization part int i = 0 
creates an integer i to use as a loop counter and gives it an initial 
value of zero. The testing portion says that to stay in the loop, i 
should be less than the number of elements in the vector v. (This is 
produced using the member function size( ), which I just sort of 
slipped in here, but you must admit it has a fairly obvious 
meaning.) The final portion uses a shorthand for C and C++, the 
“auto-increment” operator, to add one to the value of i. Effectively, 
i++ says “get the value of i, add one to it, and put the result back 
into i. Thus, the total effect of the for loop is to take a variable i and 
march it through the values from zero to one less than the size of 
the vector. For each value of i, the cout statement is executed and 
this builds a line that consists of the value of i (magically converted 
to a character array by cout), a colon and a space, the line from the 
file, and a newline provided by endl. When you compile and run it 
you’ll see the effect is to add line numbers to the file. 

Because of the way that the ‘>>’ operator works with iostreams, you 
can easily modify the program above so that it breaks up the input 
into whitespace-separated words instead of lines: 

//: C02:GetWords.cpp 

// Break a file into whitespace-separated words 

#include <string> 
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#include <iostream> 

#include <fstream> 

#include <vector> 

using namespace std; 

 

int main() { 

  vector<string> words; 

  ifstream in("GetWords.cpp"); 

  string word; 

  while(in >> word) 

    words.push_back(word);  

  for(int i = 0; i < words.size(); i++) 

    cout << words[i] << endl; 

} ///:~ 
 

The expression 

while(in >> word) 
 

is what gets the input one “word” at a time, and when this 
expression evaluates to “false” it means the end of the file has been 
reached. Of course, delimiting words by whitespace is quite crude, 
but it makes for a simple example. Later in the book you’ll see more 
sophisticated examples that let you break up input just about any 
way you’d like. 

To demonstrate how easy it is to use a vector with any type, here’s 
an example that creates a vector<int>: 

//: C02:Intvector.cpp 

// Creating a vector that holds integers 

#include <iostream> 

#include <vector> 

using namespace std; 

 

int main() { 

  vector<int> v; 

  for(int i = 0; i < 10; i++) 

    v.push_back(i); 

  for(int i = 0; i < v.size(); i++) 

    cout << v[i] << ", "; 

  cout << endl; 

  for(int i = 0; i < v.size(); i++) 

    v[i] = v[i] * 10; // Assignment   
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  for(int i = 0; i < v.size(); i++) 

    cout << v[i] << ", "; 

  cout << endl; 

} ///:~ 
 

To create a vector that holds a different type, you just put that type 
in as the template argument (the argument in angle brackets). 
Templates and well-designed template libraries are intended to be 
exactly this easy to use. 

This example goes on to demonstrate another essential feature of 
vector. In the expression 

v[i] = v[i] * 10; 
 

you can see that the vector is not limited to only putting things in 
and getting things out. You also have the ability to assign (and thus 
to change) to any element of a vector, also through the use of the 
square-brackets indexing operator. This means that vector is a 
general-purpose, flexible “scratchpad” for working with collections 
of objects, and we will definitely make use of it in coming chapters. 

Summary 
The intent of this chapter is to show you how easy object-oriented 
programming can be – if someone else has gone to the work of 
defining the objects for you. In that case, you include a header file, 
create the objects, and send messages to them. If the types you are 
using are powerful and well-designed, then you won’t have to do 
much work and your resulting program will also be powerful. 

In the process of showing the ease of OOP when using library 
classes, this chapter also introduced some of the most basic and 
useful types in the Standard C++ library: the family of iostreams (in 
particular, those that read from and write to the console and files), 
the string class, and the vector template. You’ve seen how 
straightforward it is to use these and can now probably imagine 
many things you can accomplish with them, but there’s actually a 
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lot more that they’re capable of5. Even though we’ll only be using a 
limited subset of the functionality of these tools in the early part of 
the book, they nonetheless provide a large step up from the 
primitiveness of learning a low-level language like C. and while 
learning the low-level aspects of C is educational, it’s also time 
consuming. In the end, you’ll be much more productive if you’ve got 
objects to manage the low-level issues. After all, the whole point of 
OOP is to hide the details so you can “paint with a bigger brush.” 

However, as high-level as OOP tries to be, there are some 
fundamental aspects of  C that you can’t avoid knowing, and these 
will be covered in the next chapter. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from http://www.BruceEckel.com 

1.  Modify Hello.cpp so that it prints out your name and 
age (or shoe size, or your dog’s age, if that makes you feel 
better). Compile and run the program. 

2.  Using Stream2.cpp and Numconv.cpp as guidelines, 
create a program that asks for the radius of a circle and 
prints the area of that circle. You can just use the ‘*’ 
operator to square the radius. Do not try to print out the 
value as octal or hex (these only work with integral 
types). 

3.  Create a program that opens a file and counts the 
whitespace-separated words in that file. 

4.  Create a program that counts the occurrence of a 
particular word in a file (use the string class’ operator 
‘==’ to find the word). 

5.  Change Fillvector.cpp so that it prints the lines 
(backwards) from last to first. 

                                                   
5 If you’re particularly eager to see all the things that can be done with these and other 
Standard library components, see Volume 2 of this book at  www.BruceEckel.com, 
and also www.dinkumware.com. 
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6.  Change Fillvector.cpp so that it concatenates all the 
elements in the vector into a single string before 
printing it out, but don’t try to add line numbering. 

7.  Display a file a line at a time, waiting for the user to press 
the “Enter” key after each line. 

8.  Create a vector<float> and put 25 floating-point 
numbers into it using a for loop. Display the vector. 

9.  Create three vector<float> objects and fill the first two 
as in the previous exercise. Write a for loop that adds 
each corresponding element in the first two vectors and 
puts the result in the corresponding element of the third 
vector. Display all three vectors. 

10.  Create a vector<float> and put 25 numbers into it as in 
the previous exercises. Now square each number and put 
the result back into the same location in the vector. 
Display the vector before and after the multiplication. 
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3: The C in C++ 
Since C++ is based on C, you must be familiar with the 

syntax of C in order to program in C++, just as you  

must be reasonably fluent in algebra in order to tackle 

calculus. 
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If you’ve never seen C before, this chapter will give you a decent 
background in the style of C used in C++. If you are familiar with 
the style of C described in the first edition of Kernighan & Ritchie 
(often called K&R C), you will find some new and different features 
in C++ as well as in Standard C. If you are familiar with Standard C, 
you should skim through this chapter looking for features that are 
particular to C++. Note that there are some fundamental C++ 
features introduced here, which are basic ideas that are akin to the 
features in C or often modifications to the way that C does things. 
The more sophisticated C++ features will not be introduced until 
later chapters. 

This chapter is a fairly fast coverage of C constructs and 
introduction to some basic C++ constructs, with the understanding 
that you’ve had some experience programming in another language. 
A more gentle introduction to C is found in the CD ROM packaged 
in the back of this book, titled Thinking in C: Foundations for Java 
& C++ by Chuck Allison (published by MindView, Inc., and also 
available at www.MindView.net). This is a seminar on a CD ROM 
with the goal of taking you carefully through the fundamentals of 
the C language. It focuses on the knowledge necessary for you to be 
able to move on to the C++ or Java languages rather than trying to 
make you an expert in all the dark corners of C (one of the reasons 
for using a higher-level language like C++ or Java is precisely so we 
can avoid many of these dark corners). It also contains exercises 
and guided solutions. Keep in mind that because this chapter goes 
beyond the Thinking in C CD, the CD is not a replacement for this 
chapter, but should be used instead as a preparation for this 
chapter and for the book. 

Creating functions 
In old (pre-Standard) C, you could call a function with any number 
or type of arguments and the compiler wouldn’t complain. 
Everything seemed fine until you ran the program. You got 
mysterious results (or worse, the program crashed) with no hints as 
to why. The lack of help with argument passing and the enigmatic 
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bugs that resulted is probably one reason why C was dubbed a 
“high-level assembly language.” Pre-Standard C programmers just 
adapted to it. 

Standard C and C++ use a feature called function prototyping. 
With function prototyping, you must use a description of the types 
of arguments when declaring and defining a function. This 
description is the “prototype.” When the function is called, the 
compiler uses the prototype to ensure that the proper arguments 
are passed in and that the return value is treated correctly. If the 
programmer makes a mistake when calling the function, the 
compiler catches the mistake. 

Essentially, you learned about function prototyping (without 
naming it as such) in the previous chapter, since the form of 
function declaration in C++ requires proper prototyping. In a 
function prototype, the argument list contains the types of 
arguments that must be passed to the function and (optionally for 
the declaration) identifiers for the arguments. The order and type of 
the arguments must match in the declaration, definition, and 
function call. Here’s an example of a function prototype in a 
declaration: 

int translate(float x, float y, float z); 
 

You do not use the same form when declaring variables in function 
prototypes as you do in ordinary variable definitions. That is, you 
cannot say: float x, y, z. You must indicate the type of each 
argument. In a function declaration, the following form is also 
acceptable: 

int translate(float, float, float); 
 

Since the compiler doesn’t do anything but check for types when the 
function is called, the identifiers are only included for clarity when 
someone is reading the code. 

In the function definition, names are required because the 
arguments are referenced inside the function: 

int translate(float x, float y, float z) { 
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  x = y = z; 

  // ... 

} 
 

It turns out this rule applies only to C. In C++, an argument may be 
unnamed in the argument list of the function definition. Since it is 
unnamed, you cannot use it in the function body, of course. 
Unnamed arguments are allowed to give the programmer a way to 
“reserve space in the argument list.” Whoever uses the function 
must still call the function with the proper arguments. However, the 
person creating the function can then use the argument in the 
future without forcing modification of code that calls the function. 
This option of ignoring an argument in the list is also possible if you 
leave the name in, but you will get an annoying warning message 
about the value being unused every time you compile the function. 
The warning is eliminated if you remove the name. 

C and C++ have two other ways to declare an argument list. If you 
have an empty argument list, you can declare it as func( ) in C++, 
which tells the compiler there are exactly zero arguments. You 
should be aware that this only means an empty argument list in 
C++. In C it means “an indeterminate number of arguments (which 
is a “hole” in C since it disables type checking in that case). In both 
C and C++, the declaration func(void); means an empty argument 
list. The void keyword means “nothing” in this case (it can also 
mean “no type” in the case of pointers, as you’ll see later in this 
chapter). 

The other option for argument lists occurs when you don’t know 
how many arguments or what type of arguments you will have; this 
is called a variable argument list. This “uncertain argument list” is 
represented by ellipses (...). Defining a function with a variable 
argument list is significantly more complicated than defining a 
regular function. You can use a variable argument list for a function 
that has a fixed set of arguments if (for some reason) you want to 
disable the error checks of function prototyping. Because of this, 
you should restrict your use of variable argument lists to C and 
avoid them in C++ (in which, as you’ll learn, there are much better 
alternatives). Handling variable argument lists is described in the 
library section of your local C guide. 
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Function return values 
A C++ function prototype must specify the return value type of the 
function (in C, if you leave off the return value type it defaults to 
int). The return type specification precedes the function name. To 
specify that no value is returned, use the void keyword. This will 
generate an error if you try to return a value from the function. 
Here are some complete function prototypes: 

int f1(void); // Returns an int, takes no arguments 

int f2(); // Like f1() in C++ but not in Standard C! 

float f3(float, int, char, double); // Returns a float 

void f4(void); // Takes no arguments, returns nothing 
 

To return a value from a function, you use the return statement. 
return exits the function back to the point right after the function 
call. If return has an argument, that argument becomes the return 
value of the function. If a function says that it will return a 
particular type, then each return statement must return that type. 
You can have more than one return statement in a function 
definition: 

//: C03:Return.cpp 

// Use of "return" 

#include <iostream> 

using namespace std; 

 

char cfunc(int i) { 

  if(i == 0) 

    return 'a'; 

  if(i == 1) 

    return 'g'; 

  if(i == 5) 

    return 'z'; 

  return 'c'; 

} 

 

int main() { 

  cout << "type an integer: "; 

  int val; 

  cin >> val; 

  cout << cfunc(val) << endl; 

} ///:~ 
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In cfunc( ), the first if that evaluates to true exits the function via 
the return statement. Notice that a function declaration is not 
necessary because the function definition appears before it is used 
in main( ), so the compiler knows about it from that function 
definition. 

Using the C function library 
All the functions in your local C function library are available while 
you are programming in C++. You should look hard at the function 
library before defining your own function – there’s a good chance 
that someone has already solved your problem for you, and 
probably given it a lot more thought and debugging. 

A word of caution, though: many compilers include a lot of extra 
functions that make life even easier and are tempting to use, but are 
not part of the Standard C library. If you are certain you will never 
want to move the application to another platform (and who is 
certain of that?), go ahead –use those functions and make your life 
easier. If you want your application to be portable, you should 
restrict yourself to Standard library functions. If you must perform 
platform-specific activities, try to isolate that code in one spot so it 
can be changed easily when porting to another platform. In C++, 
platform-specific activities are often encapsulated in a class, which 
is the ideal solution. 

The formula for using a library function is as follows: first, find the 
function in your programming reference (many programming 
references will index the function by category as well as 
alphabetically). The description of the function should include a 
section that demonstrates the syntax of the code. The top of this 
section usually has at least one #include line, showing you the 
header file containing the function prototype. Duplicate this 
#include line in your file so the function is properly declared. Now 
you can call the function in the same way it appears in the syntax 
section. If you make a mistake, the compiler will discover it by 
comparing your function call to the function prototype in the 
header and tell you about your error. The linker searches the 
Standard library by default, so that’s all you need to do: include the 
header file and call the function. 
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Creating your own libraries with the librarian  
You can collect your own functions together into a library. Most 
programming packages come with a librarian that manages groups 
of object modules. Each librarian has its own commands, but the 
general idea is this: if you want to create a library, make a header 
file containing the function prototypes for all the functions in your 
library. Put this header file somewhere in the preprocessor’s search 
path, either in the local directory (so it can be found by #include 
"header") or in the include directory (so it can be found by 
#include <header>). Now take all the object modules and hand 
them to the librarian along with a name for the finished library 
(most librarians require a common extension, such as .lib or .a). 
Place the finished library where the other libraries reside so the 
linker can find it. When you use your library, you will have to add 
something to the command line so the linker knows to search the 
library for the functions you call. You must find all the details in 
your local manual, since they vary from system to system. 

Controlling execution  
This section covers the execution control statements in C++. You 
must be familiar with these statements before you can read and 
write C or C++ code. 

C++ uses all of C’s execution control statements. These include if-
else, while, do-while, for, and a selection statement called 
switch. C++ also allows the infamous goto, which will be avoided 
in this book. 

True and false 
All conditional statements use the truth or falsehood of a 
conditional expression to determine the execution path. An 
example of a conditional expression is A == B. This uses the 
conditional operator == to see if the variable A is equivalent to the 
variable B. The expression produces a Boolean true or false (these 
are keywords only in C++; in C an expression is “true” if it evaluates 
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to a nonzero value). Other conditional operators are >, <, >=, etc. 
Conditional statements are covered more fully later in this chapter.  

if-else 
The if-else statement can exist in two forms: with or without the 
else. The two forms are: 

if(expression) 

    statement 
 

or 

if(expression) 

    statement 

else 

    statement 
 

The “expression” evaluates to true or false. The “statement” 
means either a simple statement terminated by a semicolon or a 
compound statement, which is a group of simple statements 
enclosed in braces. Any time the word “statement” is used, it always 
implies that the statement is simple or compound. Note that this 
statement can also be another if, so they can be strung together. 

//: C03:Ifthen.cpp 

// Demonstration of if and if-else conditionals 

#include <iostream> 

using namespace std; 

 

int main() { 

  int i; 

  cout << "type a number and 'Enter'" << endl; 

  cin >> i; 

  if(i > 5) 

    cout << "It's greater than 5" << endl; 

  else 

    if(i < 5) 

      cout << "It's less than 5 " << endl; 

    else 

      cout << "It's equal to 5 " << endl; 

 

  cout << "type a number and 'Enter'" << endl; 
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  cin >> i; 

  if(i < 10) 

    if(i > 5)  // "if" is just another statement 

      cout << "5 < i < 10" << endl; 

    else 

      cout << "i <= 5" << endl; 

  else // Matches "if(i < 10)" 

    cout << "i >= 10" << endl; 

} ///:~ 
 

It is conventional to indent the body of a control flow statement so 
the reader may easily determine where it begins and ends1. 

while 
while, do-while, and for control looping. A statement repeats 
until the controlling expression evaluates to false. The form of a 
while loop is 

while(expression) 

    statement 
 

The expression is evaluated once at the beginning of the loop and 
again before each further iteration of the statement. 

This example stays in the body of the while loop until you type the 
secret number or press control-C. 

//: C03:Guess.cpp 

// Guess a number (demonstrates "while") 

#include <iostream> 

using namespace std; 

 

int main() { 

  int secret = 15; 

  int guess = 0; 

  // "!=" is the "not-equal" conditional: 

  while(guess != secret) { // Compound statement 

    cout << "guess the number: "; 

                                                   
1 Note that all conventions seem to end after the agreement that some sort of 
indentation take place. The feud between styles of code formatting is unending. See 
Appendix A for the description of this book’s coding style. 
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    cin >> guess; 

  } 

  cout << "You guessed it!" << endl; 

} ///:~ 
 

The while’s conditional expression is not restricted to a simple test 
as in the example above; it can be as complicated as you like as long 
as it produces a true or false result. You will even see code where 
the loop has no body, just a bare semicolon: 

while(/* Do a lot here */) 

  ; 
 

In these cases, the programmer has written the conditional 
expression not only to perform the test but also to do the work. 

do-while 
The form of do-while is 

do 

    statement 

while(expression); 
 

The do-while is different from the while because the statement 
always executes at least once, even if the expression evaluates to 
false the first time. In a regular while, if the conditional is false the 
first time the statement never executes. 

If a do-while is used in Guess.cpp, the variable guess does not 
need an initial dummy value, since it is initialized by the cin 
statement before it is tested: 

//: C03:Guess2.cpp 

// The guess program using do-while 

#include <iostream> 

using namespace std; 

 

int main() { 

  int secret = 15; 

  int guess; // No initialization needed here 

  do { 

    cout << "guess the number: "; 
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    cin >> guess; // Initialization happens 

  }   while(guess != secret); 

  cout << "You got it!" << endl; 

} ///:~ 
 

For some reason, most programmers tend to avoid do-while and 
just work with while. 

for 
A for loop performs initialization before the first iteration. Then it 
performs conditional testing and, at the end of each iteration, some 
form of “stepping.” The form of the for loop is: 

for(initialization; conditional; step) 

    statement 
 

Any of the expressions initialization, conditional, or step may be 
empty. The initialization code executes once at the very beginning. 
The conditional is tested before each iteration (if it evaluates to 
false at the beginning, the statement never executes). At the end of 
each loop, the step executes. 

for loops are usually used for “counting” tasks: 

//: C03:Charlist.cpp 

// Display all the ASCII characters 

// Demonstrates "for" 

#include <iostream> 

using namespace std; 

 

int main() { 

  for(int i = 0; i < 128; i = i + 1) 

    if (i != 26)  // ANSI Terminal Clear screen 

      cout << " value: " << i  

           << " character: "  

           << char(i) // Type conversion 

           << endl; 

} ///:~ 
 

You may notice that the variable i is defined at the point where it is 
used, instead of at the beginning of the block denoted by the open 
curly brace ‘{’. This is in contrast to traditional procedural 
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languages (including C), which require that all variables be defined 
at the beginning of the block. This will be discussed later in this 
chapter. 

The break and continue keywords  
Inside the body of any of the looping constructs while, do-while, 
or for, you can control the flow of the loop using break and 
continue. break quits the loop without executing the rest of the 
statements in the loop. continue stops the execution of the current 
iteration and goes back to the beginning of the loop to begin a new 
iteration. 

As an example of break and continue, this program is a very 
simple menu system: 

//: C03:Menu.cpp 

// Simple menu program demonstrating 

// the use of "break" and "continue" 

#include <iostream> 

using namespace std; 

 

int main() { 

  char c; // To hold response 

  while(true) { 

    cout << "MAIN MENU:" << endl; 

    cout << "l: left, r: right, q: quit -> "; 

    cin >> c; 

    if(c == 'q') 

      break; // Out of "while(1)" 

    if(c == 'l') { 

      cout << "LEFT MENU:" << endl; 

      cout << "select a or b: "; 

      cin >> c; 

      if(c == 'a') { 

        cout << "you chose 'a'" << endl; 

        continue; // Back to main menu 

      } 

      if(c == 'b') { 

        cout << "you chose 'b'" << endl; 

        continue; // Back to main menu 

      } 

      else { 
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        cout << "you didn't choose a or b!" 

             << endl; 

        continue; // Back to main menu 

      } 

    } 

    if(c == 'r') { 

      cout << "RIGHT MENU:" << endl; 

      cout << "select c or d: "; 

      cin >> c; 

      if(c == 'c') { 

        cout << "you chose 'c'" << endl; 

        continue; // Back to main menu 

      } 

      if(c == 'd') { 

        cout << "you chose 'd'" << endl; 

        continue; // Back to main menu 

      } 

      else { 

        cout << "you didn't choose c or d!"  

             << endl; 

        continue; // Back to main menu 

      } 

    } 

    cout << "you must type l or r or q!" << endl; 

  } 

  cout << "quitting menu..." << endl; 

} ///:~ 
 

If the user selects ‘q’ in the main menu, the break keyword is used 
to quit, otherwise the program just continues to execute 
indefinitely. After each of the sub-menu selections, the continue 
keyword is used to pop back up to the beginning of the while loop. 

The while(true) statement is the equivalent of saying “do this loop 
forever.” The break statement allows you to break out of this 
infinite while loop when the user types a ‘q.’  

switch 
A switch statement selects from among pieces of code based on the 
value of an integral expression. Its form is: 

switch(selector) { 
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    case integral-value1 : statement; break; 

    case integral-value2 : statement; break; 

    case integral-value3 : statement; break; 

    case integral-value4 : statement; break; 

    case integral-value5 : statement; break; 

    (...) 

    default: statement; 

} 
 

Selector is an expression that produces an integral value. The 
switch compares the result of selector to each integral value. If it 
finds a match, the corresponding statement (simple or compound) 
executes. If no match occurs, the default statement executes. 

You will notice in the definition above that each case ends with a 
break, which causes execution to jump to the end of the switch 
body (the closing brace that completes the switch). This is the 
conventional way to build a switch statement, but the break is 
optional. If it is missing, your case “drops through” to the one after 
it. That is, the code for the following case statements execute until 
a break is encountered. Although you don’t usually want this kind 
of behavior, it can be useful to an experienced programmer. 

The switch statement is a clean way to implement multi-way 
selection (i.e., selecting from among a number of different 
execution paths), but it requires a selector that evaluates to an 
integral value at compile-time. If you want to use, for example, a 
string object as a selector, it won’t work in a switch statement. 
For a string selector, you must instead use a series of if statements 
and compare the string inside the conditional. 

The menu example shown above provides a particularly nice 
example of a switch: 

//: C03:Menu2.cpp 

// A menu using a switch statement 

#include <iostream> 

using namespace std; 

 

int main() { 

  bool quit = false;  // Flag for quitting 

  while(quit == false) { 
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    cout << "Select a, b, c or q to quit: "; 

    char response; 

    cin >> response; 

    switch(response) { 

      case 'a' : cout << "you chose 'a'" << endl; 

                 break; 

      case 'b' : cout << "you chose 'b'" << endl; 

                 break; 

      case 'c' : cout << "you chose 'c'" << endl; 

                 break; 

      case 'q' : cout << "quitting menu" << endl; 

                 quit = true; 

                 break; 

      default  : cout << "Please use a,b,c or q!" 

                 << endl; 

    } 

  } 

} ///:~ 
 

The quit flag is a bool, short for “Boolean,” which is a type you’ll 
find only in C++. It can have only the keyword values true or false. 
Selecting ‘q’ sets the quit flag to true. The next time the selector is 
evaluated, quit == false returns false so the body of the while 
does not execute. 

Using and misusing goto 
The goto keyword is supported in C++, since it exists in C. Using 
goto is often dismissed as poor programming style, and most of the 
time it is. Anytime you use goto, look at your code and see if there’s 
another way to do it. On rare occasions, you may discover goto can 
solve a problem that can’t be solved otherwise, but still, consider it 
carefully. Here’s an example that might make a plausible candidate: 

//: C03:gotoKeyword.cpp 

// The infamous goto is supported in C++ 

#include <iostream> 

using namespace std; 

 

int main() { 

  long val = 0; 

  for(int i = 1; i < 1000; i++) { 

    for(int j = 1; j < 100; j += 10) { 
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      val = i * j; 

      if(val > 47000) 

        goto bottom;  

        // Break would only go to the outer 'for' 

    } 

  } 

  bottom: // A label 

  cout << val << endl; 

} ///:~ 
 

The alternative would be to set a Boolean that is tested in the outer 
for loop, and then do a break from the inner for loop. However, if 
you have several levels of for or while this could get awkward. 

Recursion 
Recursion is an interesting and sometimes useful programming 
technique whereby you call the function that you’re in. Of course, if 
this is all you do, you’ll keep calling the function you’re in until you 
run out of memory, so there must be some way to “bottom out” the 
recursive call. In the following example, this “bottoming out” is 
accomplished by simply saying that the recursion will go only until 
the cat exceeds ‘Z’:2 

//: C03:CatsInHats.cpp 

// Simple demonstration of recursion 

#include <iostream> 

using namespace std; 

 

void removeHat(char cat) { 

  for(char c = 'A'; c < cat; c++) 

    cout << "  "; 

  if(cat <= 'Z') { 

    cout << "cat " << cat << endl; 

    removeHat(cat + 1); // Recursive call 

  } else 

    cout << "VOOM!!!" << endl; 

} 

 

int main() { 

                                                   
2 Thanks to Kris C. Matson for suggesting this exercise topic. 

3: The C in C++  127 

  removeHat('A'); 

} ///:~ 
 

In removeHat( ), you can see that as long as cat is less than ‘Z’, 
removeHat( ) will be called from within removeHat( ), thus 
effecting the recursion. Each time removeHat( ) is called, its 
argument is one greater than the current cat so the argument keeps 
increasing. 

Recursion is often used when evaluating some sort of arbitrarily 
complex problem, since you aren’t restricted to a particular “size” 
for the solution – the function can just keep recursing until it’s 
reached the end of the problem. 

 Introduction to operators 
You can think of operators as a special type of function (you’ll learn 
that C++ operator overloading treats operators precisely that way). 
An operator takes one or more arguments and produces a new 
value. The arguments are in a different form than ordinary function 
calls, but the effect is the same. 

From your previous programming experience, you should be 
reasonably comfortable with the operators that have been used so 
far. The concepts of addition (+), subtraction and unary minus (-), 
multiplication (*), division (/), and assignment(=) all have 
essentially the same meaning in any programming language. The 
full set of operators is enumerated later in this chapter. 

Precedence 
Operator precedence defines the order in which an expression 
evaluates when several different operators are present. C and C++ 
have specific rules to determine the order of evaluation. The easiest 
to remember is that multiplication and division happen before 
addition and subtraction. After that, if an expression isn’t 
transparent to you it probably won’t be for anyone reading the code, 
so you should use parentheses to make the order of evaluation 
explicit. For example: 
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A = X + Y - 2/2 + Z; 
 

has a very different meaning from the same statement with a 
particular grouping of parentheses: 

A = X + (Y - 2)/(2 + Z); 
 

(Try evaluating the result with X = 1, Y = 2, and Z = 3.) 

Auto increment and decrement 
C, and therefore C++, is full of shortcuts. Shortcuts can make code 
much easier to type, and sometimes much harder to read. Perhaps 
the C language designers thought it would be easier to understand a 
tricky piece of code if your eyes didn’t have to scan as large an area 
of print. 

One of the nicer shortcuts is the auto-increment and auto-
decrement operators. You often use these to change loop variables, 
which control the number of times a loop executes. 

The auto-decrement operator is ‘--’ and means “decrease by one 
unit.” The auto-increment operator is ‘++’ and means “increase by 
one unit.” If A is an int, for example, the expression ++A is 
equivalent to (A = A + 1). Auto-increment and auto-decrement 
operators produce the value of the variable as a result. If the 
operator appears before the variable, (i.e., ++A), the operation is 
first performed and the resulting value is produced. If the operator 
appears after the variable (i.e. A++), the current value is produced, 
and then the operation is performed. For example: 

//: C03:AutoIncrement.cpp 

// Shows use of auto-increment 

// and auto-decrement operators. 

#include <iostream> 

using namespace std; 

 

int main() { 

  int i = 0; 

  int j = 0; 

  cout << ++i << endl; // Pre-increment 

  cout << j++ << endl; // Post-increment 
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  cout << --i << endl; // Pre-decrement 

  cout << j-- << endl; // Post decrement 

} ///:~ 
 

If you’ve been wondering about the name “C++,” now you 
understand. It implies “one step beyond C.” 

Introduction to data types 
Data types define the way you use storage (memory) in the 
programs you write. By specifying a data type, you tell the compiler 
how to create a particular piece of storage, and also how to 
manipulate that storage. 

Data types can be built-in or abstract. A built-in data type is one 
that the compiler intrinsically understands, one that is wired 
directly into the compiler. The types of built-in data are almost 
identical in C and C++. In contrast, a user-defined data type is one 
that you or another programmer create as a class. These are 
commonly referred to as abstract data types. The compiler knows 
how to handle built-in types when it starts up; it “learns” how to 
handle abstract data types by reading header files containing class 
declarations (you’ll learn about this in later chapters). 

Basic built-in types 
The Standard C specification for built-in types (which C++ inherits) 
doesn’t say how many bits each of the built-in types must contain. 
Instead, it stipulates the minimum and maximum values that the 
built-in type must be able to hold. When a machine is based on 
binary, this maximum value can be directly translated into a 
minimum number of bits necessary to hold that value. However, if a 
machine uses, for example, binary-coded decimal (BCD) to 
represent numbers, then the amount of space in the machine 
required to hold the maximum numbers for each data type will be 
different. The minimum and maximum values that can be stored in 
the various data types are defined in the system header files 
limits.h and float.h (in C++ you will generally #include 
<climits> and <cfloat> instead). 
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C and C++ have four basic built-in data types, described here for 
binary-based machines. A char is for character storage and uses a 
minimum of 8 bits (one byte) of storage, although it may be larger. 
An int stores an integral number and uses a minimum of two bytes 
of storage. The float and double types store floating-point 
numbers, usually in IEEE floating-point format. float is for single-
precision floating point and double is for double-precision floating 
point. 

As mentioned previously, you can define variables anywhere in a 
scope, and you can define and initialize them at the same time. 
Here’s how to define variables using the four basic data types: 

//: C03:Basic.cpp 

// Defining the four basic data 

// types in C and C++ 

 

int main() { 

  // Definition without initialization: 

  char protein; 

  int carbohydrates; 

  float fiber; 

  double fat; 

  // Simultaneous definition & initialization: 

  char pizza = 'A', pop = 'Z'; 

  int dongdings = 100, twinkles = 150,  

    heehos = 200; 

  float chocolate = 3.14159; 

  // Exponential notation: 

  double fudge_ripple = 6e-4;  

} ///:~ 
 

The first part of the program defines variables of the four basic data 
types without initializing them. If you don’t initialize a variable, the 
Standard says that its contents are undefined (usually, this means 
they contain garbage). The second part of the program defines and 
initializes variables at the same time (it’s always best, if possible, to 
provide an initialization value at the point of definition). Notice the 
use of exponential notation in the constant 6e-4, meaning “6 times 
10 to the minus fourth power.” 
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bool, true, & false 
Before bool became part of Standard C++, everyone tended to use 
different techniques in order to produce Boolean-like behavior. 
These produced portability problems and could introduce subtle 
errors. 

The Standard C++ bool type can have two states expressed by the 
built-in constants true (which converts to an integral one) and 
false (which converts to an integral zero). All three names are 
keywords. In addition, some language elements have been adapted: 

Element Usage with bool 

&&   ||   ! Take bool arguments and 
produce bool results. 

<   >   <=  
>=  ==   != 

Produce bool results. 

if, for,  
while, do 

Conditional expressions 
convert to bool values. 

? : First operand converts to 
bool value. 

Because there’s a lot of existing code that uses an int to represent a 
flag, the compiler will implicitly convert from an int to a bool 
(nonzero values will produce true while zero values produce 
false). Ideally, the compiler will give you a warning as a suggestion 
to correct the situation. 

An idiom that falls under “poor programming style” is the use of ++ 
to set a flag to true. This is still allowed, but deprecated, which 
means that at some time in the future it will be made illegal. The 
problem is that you’re making an implicit type conversion from 
bool to int, incrementing the value (perhaps beyond the range of 
the normal bool values of zero and one), and then implicitly 
converting it back again. 

Pointers (which will be introduced later in this chapter) will also be 
automatically converted to bool when necessary. 
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Specifiers 
Specifiers modify the meanings of the basic built-in types and 
expand them to a much larger set. There are four specifiers: long, 
short, signed, and unsigned. 

long and short modify the maximum and minimum values that a 
data type will hold. A plain int must be at least the size of a short. 
The size hierarchy for integral types is: short int, int, long int. All 
the sizes could conceivably be the same, as long as they satisfy the 
minimum/maximum value requirements. On a machine with a 64-
bit word, for instance, all the data types might be 64 bits. 

The size hierarchy for floating point numbers is: float, double, 
and long double. “long float” is not a legal type. There are no 
short floating-point numbers. 

The signed and unsigned specifiers tell the compiler how to use 
the sign bit with integral types and characters (floating-point 
numbers always contain a sign). An unsigned number does not 
keep track of the sign and thus has an extra bit available, so it can 
store positive numbers twice as large as the positive numbers that 
can be stored in a signed number. signed is the default and is only 
necessary with char; char may or may not default to signed. By 
specifying signed char, you force the sign bit to be used.  

The following example shows the size of the data types in bytes by 
using the sizeof operator, introduced later in this chapter: 

//: C03:Specify.cpp 

// Demonstrates the use of specifiers 

#include <iostream> 

using namespace std; 

 

int main() { 

  char c; 

  unsigned char cu; 

  int i; 

  unsigned int iu; 

  short int is; 

  short iis; // Same as short int 

  unsigned short int isu; 
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  unsigned short iisu; 

  long int il; 

  long iil;  // Same as long int 

  unsigned long int ilu; 

  unsigned long iilu; 

  float f; 

  double d; 

  long double ld; 

  cout  

    << "\n char= " << sizeof(c) 

    << "\n unsigned char = " << sizeof(cu) 

    << "\n int = " << sizeof(i) 

    << "\n unsigned int = " << sizeof(iu) 

    << "\n short = " << sizeof(is) 

    << "\n unsigned short = " << sizeof(isu) 

    << "\n long = " << sizeof(il)  

    << "\n unsigned long = " << sizeof(ilu) 

    << "\n float = " << sizeof(f) 

    << "\n double = " << sizeof(d) 

    << "\n long double = " << sizeof(ld)  

    << endl; 

} ///:~ 
 

Be aware that the results you get by running this program will 
probably be different from one machine/operating system/compiler 
to the next, since (as mentioned previously) the only thing that 
must be consistent is that each different type hold the minimum 
and maximum values specified in the Standard. 

When you are modifying an int with short or long, the keyword 
int is optional, as shown above. 

Introduction to pointers 
Whenever you run a program, it is first loaded (typically from disk) 
into the computer’s memory. Thus, all elements of your program 
are located somewhere in memory. Memory is typically laid out as a 
sequential series of memory locations; we usually refer to these 
locations as eight-bit bytes but actually the size of each space 
depends on the architecture of the particular machine and is usually 
called that machine’s word size. Each space can be uniquely 
distinguished from all other spaces by its address. For the purposes 
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of this discussion, we’ll just say that all machines use bytes that 
have sequential addresses starting at zero and going up to however 
much memory you have in your computer. 

Since your program lives in memory while it’s being run, every 
element of your program has an address. Suppose we start with a 
simple program: 

//: C03:YourPets1.cpp 

#include <iostream> 

using namespace std; 

 

int dog, cat, bird, fish; 

 

void f(int pet) { 

  cout << "pet id number: " << pet << endl; 

} 

 

int main() { 

  int i, j, k; 

} ///:~ 
 

Each of the elements in this program has a location in storage when 
the program is running. Even the function occupies storage. As 
you’ll see, it turns out that what an element is and the way you 
define it usually determines the area of memory where that element 
is placed. 

There is an operator in C and C++ that will tell you the address of 
an element. This is the  ‘&’ operator. All you do is precede the 
identifier name with ‘&’ and it will produce the address of that 
identifier. YourPets1.cpp can be modified to print out the 
addresses of all its elements, like this: 

//: C03:YourPets2.cpp 

#include <iostream> 

using namespace std; 

 

int dog, cat, bird, fish; 

 

void f(int pet) { 

  cout << "pet id number: " << pet << endl; 

} 
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int main() { 

  int i, j, k; 

  cout << "f(): " << (long)&f << endl; 

  cout << "dog: " << (long)&dog << endl; 

  cout << "cat: " << (long)&cat << endl; 

  cout << "bird: " << (long)&bird << endl; 

  cout << "fish: " << (long)&fish << endl; 

  cout << "i: " << (long)&i << endl; 

  cout << "j: " << (long)&j << endl; 

  cout << "k: " << (long)&k << endl; 

} ///:~ 
 

The (long) is a cast. It says “Don’t treat this as if it’s normal type, 
instead treat it as a long.” The cast isn’t essential, but if it wasn’t 
there, the addresses would have been printed out in hexadecimal 
instead, so casting to a long makes things a little more readable. 

The results of this program will vary depending on your computer, 
OS, and all sorts of other factors, but it will always give you some 
interesting insights. For a single run on my computer, the results 
looked like this: 

f(): 4198736 

dog: 4323632 

cat: 4323636 

bird: 4323640 

fish: 4323644 

i: 6684160 

j: 6684156 

k: 6684152 
 

You can see how the variables that are defined inside main( ) are 
in a different area than the variables defined outside of main( ); 
you’ll understand why as you learn more about the language. Also, 
f( ) appears to be in its own area; code is typically separated from 
data in memory. 

Another interesting thing to note is that variables defined one right 
after the other appear to be placed contiguously in memory. They 
are separated by the number of bytes that are required by their data 
type. Here, the only data type used is int, and cat is four bytes away 
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from dog, bird is four bytes away from cat, etc. So it would appear 
that, on this machine, an int is four bytes long. 

Other than this interesting experiment showing how memory is 
mapped out, what can you do with an address? The most important 
thing you can do is store it inside another variable for later use. C 
and C++ have a special type of variable that holds an address. This 
variable is called a pointer. 

The operator that defines a pointer is the same as the one used for 
multiplication: ‘*’. The compiler knows that it isn’t multiplication 
because of the context in which it is used, as you will see. 

When you define a pointer, you must specify the type of variable it 
points to. You start out by giving the type name, then instead of 
immediately giving an identifier for the variable, you say “Wait, it’s 
a pointer” by inserting a star between the type and the identifier. So 
a pointer to an int looks like this: 

int* ip; // ip points to an int variable 
 

The association of the ‘*’ with the type looks sensible and reads 
easily, but it can actually be a bit deceiving. Your inclination might 
be to say “intpointer” as if it is a single discrete type. However, with 
an int or other basic data type, it’s possible to say: 

int a, b, c; 
 

whereas with a pointer, you’d like to say: 

int* ipa, ipb, ipc; 
 

C syntax (and by inheritance, C++ syntax) does not allow such 
sensible expressions. In the definitions above, only ipa is a pointer, 
but ipb and ipc are ordinary ints (you can say that “* binds more 
tightly to the identifier”). Consequently, the best results can be 
achieved by using only one definition per line; you still get the 
sensible syntax without the confusion: 

int* ipa; 

int* ipb; 

int* ipc; 
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Since a general guideline for C++ programming is that you should 
always initialize a variable at the point of definition, this form 
actually works better. For example, the variables above are not 
initialized to any particular value; they hold garbage. It’s much 
better to say something like: 

int a = 47; 

int* ipa = &a; 
 

Now both a and ipa have been initialized, and ipa holds the 
address of a. 

Once you have an initialized pointer, the most basic thing you can 
do with it is to use it to modify the value it points to. To access a 
variable through a pointer, you dereference the pointer using the 
same operator that you used to define it, like this: 

*ipa = 100; 
 

Now a contains the value 100 instead of 47. 

These are the basics of pointers: you can hold an address, and you 
can use that address to modify the original variable. But the 
question still remains: why do you want to modify one variable 
using another variable as a proxy? 

For this introductory view of pointers, we can put the answer into 
two broad categories: 

1. To change “outside objects” from within a function. This is 
perhaps the most basic use of pointers, and it will be 
examined here. 

2. To achieve many other clever programming techniques, 
which you’ll learn about in portions of the rest of the book. 

Modifying the outside object 
Ordinarily, when you pass an argument to a function, a copy of that 
argument is made inside the function. This is referred to as pass-
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by-value. You can see the effect of pass-by-value in the following 
program: 

//: C03:PassByValue.cpp 

#include <iostream> 

using namespace std; 

 

void f(int a) { 

  cout << "a = " << a << endl; 

  a = 5; 

  cout << "a = " << a << endl; 

} 

 

int main() { 

  int x = 47; 

  cout << "x = " << x << endl; 

  f(x); 

  cout << "x = " << x << endl; 

} ///:~ 
 

In f( ), a is a local variable, so it exists only for the duration of the 
function call to f( ). Because it’s a function argument, the value of a 
is initialized by the arguments that are passed when the function is 
called; in main( ) the argument is x, which has a value of 47, so 
this value is copied into a when f( ) is called. 

When you run this program you’ll see: 

x = 47 

a = 47 

a = 5 

x = 47 
 

Initially, of course, x is 47. When f( ) is called, temporary space is 
created to hold the variable a for the duration of the function call, 
and a is initialized by copying the value of x, which is verified by 
printing it out. Of course, you can change the value of a and show 
that it is changed. But when f( ) is completed, the temporary space 
that was created for a disappears, and we see that the only 
connection that ever existed between a and x happened when the 
value of x was copied into a. 
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When you’re inside f( ), x is the outside object (my terminology), 
and changing the local variable does not affect the outside object, 
naturally enough, since they are two separate locations in storage. 
But what if you do want to modify the outside object? This is where 
pointers come in handy. In a sense, a pointer is an alias for another 
variable. So if we pass a pointer into a function instead of an 
ordinary value, we are actually passing an alias to the outside 
object, enabling the function to modify that outside object, like this: 

//: C03:PassAddress.cpp 

#include <iostream> 

using namespace std; 

 

void f(int* p) { 

  cout << "p = " << p << endl; 

  cout << "*p = " << *p << endl; 

  *p = 5; 

  cout << "p = " << p << endl; 

} 

 

int main() { 

  int x = 47; 

  cout << "x = " << x << endl; 

  cout << "&x = " << &x << endl; 

  f(&x); 

  cout << "x = " << x << endl; 

} ///:~ 
 

Now f( ) takes a pointer as an argument and dereferences the 
pointer during assignment, and this causes the outside object x to 
be modified. The output is: 

x = 47 

&x = 0065FE00 

p = 0065FE00 

*p = 47 

p = 0065FE00 

x = 5 
 

Notice that the value contained in p is the same as the address of x 
– the pointer p does indeed point to x. If that isn’t convincing 
enough, when p is dereferenced to assign the value 5, we see that 
the value of x is now changed to 5 as well. 
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Thus, passing a pointer into a function will allow that function to 
modify the outside object. You’ll see plenty of other uses for 
pointers later, but this is arguably the most basic and possibly the 
most common use. 

Introduction to C++ references 
Pointers work roughly the same in C and in C++, but C++ adds an 
additional way to pass an address into a function. This is pass-by-
reference and it exists in several other programming languages so it 
was not a C++ invention. 

Your initial perception of references may be that they are 
unnecessary, that you could write all your programs without 
references. In general, this is true, with the exception of a few 
important places that you’ll learn about later in the book. You’ll also 
learn more about references later, but the basic idea is the same as 
the demonstration of pointer use above: you can pass the address of 
an argument using a reference. The difference between references 
and pointers is that calling a function that takes references is 
cleaner, syntactically, than calling a function that takes pointers 
(and it is exactly this syntactic difference that makes references 
essential in certain situations). If PassAddress.cpp is modified to 
use references, you can see the difference in the function call in 
main( ): 

//: C03:PassReference.cpp 

#include <iostream> 

using namespace std; 

 

void f(int& r) { 

  cout << "r = " << r << endl; 

  cout << "&r = " << &r << endl; 

  r = 5; 

  cout << "r = " << r << endl; 

} 

 

int main() { 

  int x = 47; 

  cout << "x = " << x << endl; 

  cout << "&x = " << &x << endl; 

  f(x); // Looks like pass-by-value,  
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        // is actually pass by reference 

  cout << "x = " << x << endl; 

} ///:~ 
 

In f( )’s argument list, instead of saying int* to pass a pointer, you 
say int& to pass a reference. Inside f( ), if you just say ‘r’ (which 
would produce the address if r were a pointer) you get the value in 
the variable that r references. If you assign to r, you actually assign 
to the variable that r references. In fact, the only way to get the 
address that’s held inside r is with the ‘&’ operator. 

In main( ), you can see the key effect of references in the syntax of 
the call to f( ), which is just f(x). Even though this looks like an 
ordinary pass-by-value, the effect of the reference is that it actually 
takes the address and passes it in, rather than making a copy of the 
value. The output is: 

x = 47 

&x = 0065FE00 

r = 47 

&r = 0065FE00 

r = 5 

x = 5 
 

So you can see that pass-by-reference allows a function to modify 
the outside object, just like passing a pointer does (you can also 
observe that the reference obscures the fact that an address is being 
passed; this will be examined later in the book). Thus, for this 
simple introduction you can assume that references are just a 
syntactically different way (sometimes referred to as “syntactic 
sugar”) to accomplish the same thing that pointers do: allow 
functions to change outside objects. 

Pointers and references as modifiers 
So far, you’ve seen the basic data types char, int, float, and 
double, along with the specifiers signed, unsigned, short, and 
long, which can be used with the basic data types in almost any 
combination. Now we’ve added pointers and references that are 
orthogonal to the basic data types and specifiers, so the possible 
combinations have just tripled: 
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//: C03:AllDefinitions.cpp 

// All possible combinations of basic data types,  

// specifiers, pointers and references 

#include <iostream> 

using namespace std; 

 

void f1(char c, int i, float f, double d); 

void f2(short int si, long int li, long double ld); 

void f3(unsigned char uc, unsigned int ui,  

  unsigned short int usi, unsigned long int uli); 

void f4(char* cp, int* ip, float* fp, double* dp); 

void f5(short int* sip, long int* lip,  

  long double* ldp); 

void f6(unsigned char* ucp, unsigned int* uip,  

  unsigned short int* usip,  

  unsigned long int* ulip); 

void f7(char& cr, int& ir, float& fr, double& dr); 

void f8(short int& sir, long int& lir,  

  long double& ldr); 

void f9(unsigned char& ucr, unsigned int& uir,  

  unsigned short int& usir,  

  unsigned long int& ulir); 

 

int main() {} ///:~ 
 

Pointers and references also work when passing objects into and 
out of functions; you’ll learn about this in a later chapter. 

There’s one other type that works with pointers: void. If you state 
that a pointer is a void*, it means that any type of address at all can 
be assigned to that pointer (whereas if you have an int*, you can 
assign only the address of an int variable to that pointer). For 
example: 

//: C03:VoidPointer.cpp 

int main() { 

  void* vp; 

  char c; 

  int i; 

  float f; 

  double d; 

  // The address of ANY type can be 

  // assigned to a void pointer: 

  vp = &c; 
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  vp = &i; 

  vp = &f; 

  vp = &d; 

} ///:~ 
 

Once you assign to a void* you lose any information about what 
type it is. This means that before you can use the pointer, you must 
cast it to the correct type: 

//: C03:CastFromVoidPointer.cpp 

int main() { 

  int i = 99; 

  void* vp = &i; 

  // Can't dereference a void pointer: 

  // *vp = 3; // Compile-time error 

  // Must cast back to int before dereferencing: 

  *((int*)vp) = 3; 

} ///:~ 
 

The cast (int*)vp takes the void* and tells the compiler to treat it 
as an int*, and thus it can be successfully dereferenced. You might 
observe that this syntax is ugly, and it is, but it’s worse than that – 
the void* introduces a hole in the language’s type system. That is, it 
allows, or even promotes, the treatment of one type as another type. 
In the example above, I treat an int as an int by casting vp to an 
int*, but there’s nothing that says I can’t cast it to a char* or 
double*, which would modify a different amount of storage that 
had been allocated for the int, possibly crashing the program. In 
general, void pointers should be avoided, and used only in rare 
special cases, the likes of which you won’t be ready to consider until 
significantly later in the book. 

You cannot have a void reference, for reasons that will be explained 
in Chapter 11. 

Scoping 
Scoping rules tell you where a variable is valid, where it is created, 
and where it gets destroyed (i.e., goes out of scope). The scope of a 
variable extends from the point where it is defined to the first 
closing brace that matches the closest opening brace before the 
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variable was defined. That is, a scope is defined by its “nearest” set 
of braces. To illustrate: 

//: C03:Scope.cpp 

// How variables are scoped 

int main() { 

  int scp1; 

  // scp1 visible here 

  { 

    // scp1 still visible here 

    //..... 

    int scp2; 

    // scp2 visible here 

    //..... 

    { 

      // scp1 & scp2 still visible here 

      //.. 

      int scp3; 

      // scp1, scp2 & scp3 visible here 

      // ... 

    } // <-- scp3 destroyed here 

    // scp3 not available here 

    // scp1 & scp2 still visible here 

    // ... 

  } // <-- scp2 destroyed here 

  // scp3 & scp2 not available here 

  // scp1 still visible here 

  //.. 

} // <-- scp1 destroyed here 

///:~ 
 

The example above shows when variables are visible and when they 
are unavailable (that is, when they go out of scope). A variable can 
be used only when inside its scope. Scopes can be nested, indicated 
by matched pairs of braces inside other matched pairs of braces. 
Nesting means that you can access a variable in a scope that 
encloses the scope you are in. In the example above, the variable 
scp1 is available inside all of the other scopes, while scp3 is 
available only in the innermost scope. 
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Defining variables on the fly 
As noted earlier in this chapter, there is a significant difference 
between C and C++ when defining variables. Both languages 
require that variables be defined before they are used, but C (and 
many other traditional procedural languages) forces you to define 
all the variables at the beginning of a scope, so that when the 
compiler creates a block it can allocate space for those variables.  

While reading C code, a block of variable definitions is usually the 
first thing you see when entering a scope. Declaring all variables at 
the beginning of the block requires the programmer to write in a 
particular way because of the implementation details of the 
language. Most people don’t know all the variables they are going to 
use before they write the code, so they must keep jumping back to 
the beginning of the block to insert new variables, which is awkward 
and causes errors. These variable definitions don’t usually mean 
much to the reader, and they actually tend to be confusing because 
they appear apart from the context in which they are used. 

C++ (not C) allows you to define variables anywhere in a scope, so 
you can define a variable right before you use it. In addition, you 
can initialize the variable at the point you define it, which prevents 
a certain class of errors. Defining variables this way makes the code 
much easier to write and reduces the errors you get from being 
forced to jump back and forth within a scope. It makes the code 
easier to understand because you see a variable defined in the 
context of its use. This is especially important when you are 
defining and initializing a variable at the same time – you can see 
the meaning of the initialization value by the way the variable is 
used. 

You can also define variables inside the control expressions of for 
loops and while loops, inside the conditional of an if statement, 
and inside the selector statement of a switch. Here’s an example 
showing on-the-fly variable definitions: 

//: C03:OnTheFly.cpp 

// On-the-fly variable definitions 

#include <iostream> 

using namespace std; 
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int main() { 

  //.. 

  { // Begin a new scope 

    int q = 0; // C requires definitions here 

    //.. 

    // Define at point of use: 

    for(int i = 0; i < 100; i++) {  

      q++; // q comes from a larger scope 

      // Definition at the end of the scope: 

      int p = 12;  

    } 

    int p = 1;  // A different p 

  } // End scope containing q & outer p 

  cout << "Type characters:" << endl; 

  while(char c = cin.get() != 'q') { 

    cout << c << " wasn't it" << endl; 

    if(char x = c == 'a' || c == 'b') 

      cout << "You typed a or b" << endl; 

    else 

      cout << "You typed " << x << endl; 

  } 

  cout << "Type A, B, or C" << endl; 

  switch(int i = cin.get()) { 

    case 'A': cout << "Snap" << endl; break; 

    case 'B': cout << "Crackle" << endl; break; 

    case 'C': cout << "Pop" << endl; break; 

    default: cout << "Not A, B or C!" << endl; 

  } 

} ///:~ 
 

In the innermost scope, p is defined right before the scope ends, so 
it is really a useless gesture (but it shows you can define a variable 
anywhere). The p in the outer scope is in the same situation. 

The definition of i in the control expression of the for loop is an 
example of being able to define a variable exactly at the point you 
need it (you can do this only in C++). The scope of i is the scope of 
the expression controlled by the for loop, so you can turn around 
and re-use i in the next for loop. This is a convenient and 
commonly-used idiom in C++; i is the classic name for a loop 
counter and you don’t have to keep inventing new names. 
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Although the example also shows variables defined within while, 
if, and switch statements, this kind of definition is much less 
common than those in for expressions, possibly because the syntax 
is so constrained. For example, you cannot have any parentheses. 
That is, you cannot say: 

while((char c = cin.get()) != 'q') 
 

The addition of the extra parentheses would seem like an innocent 
and useful thing to do, and because you cannot use them, the 
results are not what you might like. The problem occurs because 
‘!=’ has a higher precedence than ‘=’, so the char c ends up 
containing a bool converted to char. When that’s printed, on many 
terminals you’ll see a smiley-face character. 

In general, you can consider the ability to define variables within 
while, if, and switch statements as being there for completeness, 
but the only place you’re likely to use this kind of variable definition 
is in a for loop (where you’ll use it quite often). 

Specifying storage allocation 
When creating a variable, you have a number of options to specify 
the lifetime of the variable, how the storage is allocated for that 
variable, and how the variable is treated by the compiler. 

Global variables 
Global variables are defined outside all function bodies and are 
available to all parts of the program (even code in other files). 
Global variables are unaffected by scopes and are always available 
(i.e., the lifetime of a global variable lasts until the program ends). 
If the existence of a global variable in one file is declared using the 
extern keyword in another file, the data is available for use by the 
second file. Here’s an example of the use of global variables: 

//: C03:Global.cpp 

//{L} Global2 

// Demonstration of global variables 

#include <iostream> 
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using namespace std; 

 

int globe; 

void func(); 

int main() { 

  globe = 12; 

  cout << globe << endl; 

  func(); // Modifies globe 

  cout << globe << endl; 

} ///:~ 
 

Here’s a file that accesses globe as an extern: 

//: C03:Global2.cpp {O} 

// Accessing external global variables 

extern int globe;   

// (The linker resolves the reference) 

void func() { 

  globe = 47; 

} ///:~ 
 

Storage for the variable globe is created by the definition in 
Global.cpp, and that same variable is accessed by the code in 
Global2.cpp. Since the code in Global2.cpp is compiled 
separately from the code in Global.cpp, the compiler must be 
informed that the variable exists elsewhere by the declaration  

extern int globe; 
 

When you run the program, you’ll see that the call to func( ) does 
indeed affect the single global instance of globe. 

In Global.cpp, you can see the special comment tag (which is my 
own design): 

//{L} Global2 
 

This says that to create the final program, the object file with the 
name Global2 must be linked in (there is no extension because the 
extension names of object files differ from one system to the next). 
In Global2.cpp, the first line has another special comment tag 
{O}, which says “Don’t try to create an executable out of this file, 
it’s being compiled so that it can be linked into some other 
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executable.” The ExtractCode.cpp program in Volume 2 of this 
book (downloadable at www.BruceEckel.com) reads these tags and 
creates the appropriate makefile so everything compiles properly 
(you’ll learn about makefiles at the end of this chapter). 

Local variables 
Local variables occur within a scope; they are “local” to a function. 
They are often called automatic variables because they 
automatically come into being when the scope is entered and 
automatically go away when the scope closes. The keyword auto 
makes this explicit, but local variables default to auto so it is never 
necessary to declare something as an auto. 

Register variables 
A register variable is a type of local variable. The register keyword 
tells the compiler “Make accesses to this variable as fast as 
possible.” Increasing the access speed is implementation 
dependent, but, as the name suggests, it is often done by placing the 
variable in a register. There is no guarantee that the variable will be 
placed in a register or even that the access speed will increase. It is a 
hint to the compiler. 

There are restrictions to the use of register variables. You cannot 
take or compute the address of a register variable. A register 
variable can be declared only within a block (you cannot have global 
or static register variables). You can, however, use a register 
variable as a formal argument in a function (i.e., in the argument 
list). 

In general, you shouldn’t try to second-guess the compiler’s 
optimizer, since it will probably do a better job than you can. Thus, 
the register keyword is best avoided. 

static 
The static keyword has several distinct meanings. Normally, 
variables defined local to a function disappear at the end of the 
function scope. When you call the function again, storage for the 
variables is created anew and the values are re-initialized. If you 
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want a value to be extant throughout the life of a program, you can 
define a function’s local variable to be static and give it an initial 
value. The initialization is performed only the first time the function 
is called, and the data retains its value between function calls. This 
way, a function can “remember” some piece of information between 
function calls. 

You may wonder why a global variable isn’t used instead. The 
beauty of a static variable is that it is unavailable outside the scope 
of the function, so it can’t be inadvertently changed. This localizes 
errors. 

Here’s an example of the use of static variables: 

//: C03:Static.cpp 

// Using a static variable in a function 

#include <iostream> 

using namespace std; 

 

void func() { 

  static int i = 0; 

  cout << "i = " << ++i << endl; 

} 

 

int main() { 

  for(int x = 0; x < 10; x++) 

    func(); 

} ///:~ 
 

Each time func( ) is called in the for loop, it prints a different value. 
If the keyword static is not used, the value printed will always be 
‘1’. 

The second meaning of static is related to the first in the 
“unavailable outside a certain scope” sense. When static is applied 
to a function name or to a variable that is outside of all functions, it 
means “This name is unavailable outside of this file.” The function 
name or variable is local to the file; we say it has file scope. As a 
demonstration, compiling and linking the following two files will 
cause a linker error: 

//: C03:FileStatic.cpp 
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// File scope demonstration. Compiling and  

// linking this file with FileStatic2.cpp 

// will cause a linker error 

 

// File scope means only available in this file: 

static int fs;  

 

int main() { 

  fs = 1; 

} ///:~ 
 

Even though the variable fs is claimed to exist as an extern in the 
following file, the linker won’t find it because it has been declared 
static in FileStatic.cpp. 

//: C03:FileStatic2.cpp {O} 

// Trying to reference fs 

extern int fs; 

void func() { 

  fs = 100; 

} ///:~ 
 

The static specifier may also be used inside a class. This 
explanation will be delayed until you learn to create classes, later in 
the book. 

extern 
The extern keyword has already been briefly described and 
demonstrated. It tells the compiler that a variable or a function 
exists, even if the compiler hasn’t yet seen it in the file currently 
being compiled. This variable or function may be defined in another 
file or further down in the current file. As an example of the latter: 

//: C03:Forward.cpp 

// Forward function & data declarations 

#include <iostream> 

using namespace std; 

 

// This is not actually external, but the  

// compiler must be told it exists somewhere: 

extern int i;  

extern void func(); 
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int main() { 

  i = 0; 

  func(); 

} 

int i; // The data definition 

void func() { 

  i++; 

  cout << i; 

} ///:~ 
 

When the compiler encounters the declaration ‘extern int i’, it 
knows that the definition for i must exist somewhere as a global 
variable. When the compiler reaches the definition of i, no other 
declaration is visible, so it knows it has found the same i declared 
earlier in the file. If you were to define i as static, you would be 
telling the compiler that i is defined globally (via the extern), but it 
also has file scope (via the static), so the compiler will generate an 
error. 

Linkage 
To understand the behavior of C and C++ programs, you need to 
know about linkage. In an executing program, an identifier is 
represented by storage in memory that holds a variable or a 
compiled function body. Linkage describes this storage as it is seen 
by the linker. There are two types of linkage: internal linkage and 
external linkage. 

Internal linkage means that storage is created to represent the 
identifier only for the file being compiled. Other files may use the 
same identifier name with internal linkage, or for a global variable, 
and no conflicts will be found by the linker – separate storage is 
created for each identifier. Internal linkage is specified by the 
keyword static in C and C++. 

External linkage means that a single piece of storage is created to 
represent the identifier for all files being compiled. The storage is 
created once, and the linker must resolve all other references to that 
storage. Global variables and function names have external linkage. 
These are accessed from other files by declaring them with the 
keyword extern. Variables defined outside all functions (with the 
exception of const in C++) and function definitions default to 
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external linkage. You can specifically force them to have internal 
linkage using the static keyword. You can explicitly state that an 
identifier has external linkage by defining it with the extern 
keyword. Defining a variable or function with extern is not 
necessary in C, but it is sometimes necessary for const in C++. 

Automatic (local) variables exist only temporarily, on the stack, 
while a function is being called. The linker doesn’t know about 
automatic variables, and so these have no linkage. 

Constants 
In old (pre-Standard) C, if you wanted to make a constant, you had 
to use the preprocessor: 

#define PI 3.14159 
 

Everywhere you used PI, the value 3.14159 was substituted by the 
preprocessor (you can still use this method in C and C++).  

When you use the preprocessor to create constants, you place 
control of those constants outside the scope of the compiler. No 
type checking is performed on the name PI and you can’t take the 
address of PI (so you can’t pass a pointer or a reference to PI). PI 
cannot be a variable of a user-defined type. The meaning of PI lasts 
from the point it is defined to the end of the file; the preprocessor 
doesn’t recognize scoping. 

C++ introduces the concept of a named constant that is just like a 
variable, except that its value cannot be changed. The modifier 
const tells the compiler that a name represents a constant. Any 
data type, built-in or user-defined, may be defined as const. If you 
define something as const and then attempt to modify it, the 
compiler will generate an error. 

You must specify the type of a const, like this: 

const int x = 10; 
 

In Standard C and C++, you can use a named constant in an 
argument list, even if the argument it fills is a pointer or a reference 



154 Thinking in C++ www.BruceEckel.com 

(i.e., you can take the address of a const). A const has a scope, just 
like a regular variable, so you can “hide” a const inside a function 
and be sure that the name will not affect the rest of the program. 

The const was taken from C++ and incorporated into Standard C, 
albeit quite differently. In C, the compiler treats a const just like a 
variable that has a special tag attached that says “Don’t change me.” 
When you define a const in C, the compiler creates storage for it, 
so if you define more than one const with the same name in two 
different files (or put the definition in a header file), the linker will 
generate error messages about conflicts. The intended use of const 
in C is quite different from its intended use in C++ (in short, it’s 
nicer in C++). 

Constant values 
In C++, a const must always have an initialization value (in C, this 
is not true). Constant values for built-in types are expressed as 
decimal, octal, hexadecimal, or floating-point numbers (sadly, 
binary numbers were not considered important), or as characters. 

In the absence of any other clues, the compiler assumes a constant 
value is a decimal number. The numbers 47, 0, and 1101 are all 
treated as decimal numbers. 

A constant value with a leading 0 is treated as an octal number 
(base 8). Base 8 numbers can contain only digits 0-7; the compiler 
flags other digits as an error. A legitimate octal number is 017 (15 in 
base 10). 

A constant value with a leading 0x is treated as a hexadecimal 
number (base 16). Base 16 numbers contain the digits 0-9 and a-f or 
A-F. A legitimate hexadecimal number is 0x1fe (510 in base 10). 

Floating point numbers can contain decimal points and exponential 
powers (represented by e, which means “10 to the power of”). Both 
the decimal point and the e are optional. If you assign a constant to 
a floating-point variable, the compiler will take the constant value 
and convert it to a floating-point number (this process is one form 
of what’s called implicit type conversion). However, it is a good idea 
to use either a decimal point or an e to remind the reader that you 
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are using a floating-point number; some older compilers also need 
the hint. 

Legitimate floating-point constant values are: 1e4, 1.0001, 47.0, 
0.0, and -1.159e-77. You can add suffixes to force the type of 
floating-point number: f or F forces a float, L or l forces a long 
double; otherwise the number will be a double. 

Character constants are characters surrounded by single quotes, as: 
‘A’, ‘0’, ‘ ‘. Notice there is a big difference between the character ‘0’ 
(ASCII 96) and the value 0. Special characters are represented with 
the “backslash escape”: ‘\n’ (newline), ‘\t’ (tab), ‘\ ’ (backslash), ‘\r’ 
(carriage return), ‘\"’ (double quotes), ‘\'’ (single quote), etc. You 
can also express char constants in octal: ‘\17’ or hexadecimal: ‘\xff’. 

volatile 
Whereas the qualifier const tells the compiler “This never changes” 
(which allows the compiler to perform extra optimizations), the 
qualifier volatile tells the compiler “You never know when this will 
change,” and prevents the compiler from performing any 
optimizations based on the stability of that variable. Use this 
keyword when you read some value outside the control of your 
code, such as a register in a piece of communication hardware. A 
volatile variable is always read whenever its value is required, even 
if it was just read the line before. 

A special case of some storage being “outside the control of your 
code” is in a multithreaded program. If you’re watching a particular 
flag that is modified by another thread or process, that flag should 
be volatile so the compiler doesn’t make the assumption that it can 
optimize away multiple reads of the flag. 

Note that volatile may have no effect when a compiler is not 
optimizing, but may prevent critical bugs when you start optimizing 
the code (which is when the compiler will begin looking for 
redundant reads). 

The const and volatile keywords will be further illuminated in a 
later chapter. 
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Operators and their use 
This section covers all the operators in C and C++. 

All operators produce a value from their operands. This value is 
produced without modifying the operands, except with the 
assignment, increment, and decrement operators. Modifying an 
operand is called a side effect. The most common use for operators 
that modify their operands is to generate the side effect, but you 
should keep in mind that the value produced is available for your 
use just as in operators without side effects. 

Assignment 
Assignment is performed with the operator =. It means “Take the 
right-hand side (often called the rvalue) and copy it into the left-
hand side (often called the lvalue).” An rvalue is any constant, 
variable, or expression that can produce a value, but an lvalue must 
be a distinct, named variable (that is, there must be a physical space 
in which to store data). For instance, you can assign a constant 
value to a variable (A = 4;), but you cannot assign anything to 
constant value – it cannot be an lvalue (you can’t say 4 = A;). 

Mathematical operators 
The basic mathematical operators are the same as the ones 
available in most programming languages: addition (+), subtraction 
(-), division (/), multiplication (*), and modulus (%; this produces 
the remainder from integer division). Integer division truncates the 
result (it doesn’t round). The modulus operator cannot be used with 
floating-point numbers. 

C and C++ also use a shorthand notation to perform an operation 
and an assignment at the same time. This is denoted by an operator 
followed by an equal sign, and is consistent with all the operators in 
the language (whenever it makes sense). For example, to add 4 to 
the variable x and assign x to the result, you say: x += 4;.  

This example shows the use of the mathematical operators: 
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//: C03:Mathops.cpp 

// Mathematical operators 

#include <iostream> 

using namespace std; 

 

// A macro to display a string and a value. 

#define PRINT(STR, VAR) \ 

  cout << STR " = " << VAR << endl 

 

int main() { 

  int i, j, k; 

  float u, v, w;  // Applies to doubles, too 

  cout << "enter an integer: "; 

  cin >> j; 

  cout << "enter another integer: "; 

  cin >> k; 

  PRINT("j",j);  PRINT("k",k); 

  i = j + k; PRINT("j + k",i); 

  i = j - k; PRINT("j - k",i); 

  i = k / j; PRINT("k / j",i); 

  i = k * j; PRINT("k * j",i); 

  i = k % j; PRINT("k % j",i); 

  // The following only works with integers: 

  j %= k; PRINT("j %= k", j); 

  cout << "Enter a floating-point number: "; 

  cin >> v; 

  cout << "Enter another floating-point number:"; 

  cin >> w; 

  PRINT("v",v); PRINT("w",w); 

  u = v + w; PRINT("v + w", u); 

  u = v - w; PRINT("v - w", u); 

  u = v * w; PRINT("v * w", u); 

  u = v / w; PRINT("v / w", u); 

  // The following works for ints, chars,  

  // and doubles too: 

  PRINT("u", u); PRINT("v", v); 

  u += v; PRINT("u += v", u); 

  u -= v; PRINT("u -= v", u); 

  u *= v; PRINT("u *= v", u); 

  u /= v; PRINT("u /= v", u); 

} ///:~ 
 

The rvalues of all the assignments can, of course, be much more 
complex. 
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Introduction to preprocessor macros 
Notice the use of the macro PRINT( ) to save typing (and typing 
errors!). Preprocessor macros are traditionally named with all 
uppercase letters so they stand out – you’ll learn later that macros 
can quickly become dangerous (and they can also be very useful).  

The arguments in the parenthesized list following the macro name 
are substituted in all the code following the closing parenthesis. The 
preprocessor removes the name PRINT and substitutes the code 
wherever the macro is called, so the compiler cannot generate any 
error messages using the macro name, and it doesn’t do any type 
checking on the arguments (the latter can be beneficial, as shown in 
the debugging macros at the end of the chapter). 

Relational operators 
Relational operators establish a relationship between the values of 
the operands. They produce a Boolean (specified with the bool 
keyword in C++) true if the relationship is true, and false if the 
relationship is false. The relational operators are: less than (<), 
greater than (>), less than or equal to (<=), greater than or equal to 
(>=), equivalent (==), and not equivalent (!=). They may be used 
with all built-in data types in C and C++. They may be given special 
definitions for user-defined data types in C++ (you’ll learn about 
this in Chapter 12, which covers operator overloading). 

Logical operators 
The logical operators and (&&) and or (||) produce a true or false 
based on the logical relationship of its arguments. Remember that 
in C and C++, a statement is true if it has a non-zero value, and 
false if it has a value of zero. If you print a bool, you’ll typically see 
a ‘1’ for true and ‘0’ for false. 

This example uses the relational and logical operators: 

//: C03:Boolean.cpp 

// Relational and logical operators. 

#include <iostream> 

using namespace std; 
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int main() { 

  int i,j; 

  cout << "Enter an integer: "; 

  cin >> i; 

  cout << "Enter another integer: "; 

  cin >> j; 

  cout << "i > j is " << (i > j) << endl; 

  cout << "i < j is " << (i < j) << endl; 

  cout << "i >= j is " << (i >= j) << endl; 

  cout << "i <= j is " << (i <= j) << endl; 

  cout << "i == j is " << (i == j) << endl; 

  cout << "i != j is " << (i != j) << endl; 

  cout << "i && j is " << (i && j) << endl; 

  cout << "i || j is " << (i || j) << endl; 

  cout << " (i < 10) && (j < 10) is " 

       << ((i < 10) && (j < 10))  << endl; 

} ///:~ 
 

You can replace the definition for int with float or double in the 
program above. Be aware, however, that the comparison of a 
floating-point number with the value of zero is strict; a number that 
is the tiniest fraction different from another number is still “not 
equal.” A floating-point number that is the tiniest bit above zero is 
still true. 

Bitwise operators 
The bitwise operators allow you to manipulate individual bits in a 
number (since floating point values use a special internal format, 
the bitwise operators work only with integral types: char, int and 
long). Bitwise operators perform Boolean algebra on the 
corresponding bits in the arguments to produce the result. 

The bitwise and operator (&) produces a one in the output bit if 
both input bits are one; otherwise it produces a zero. The bitwise or 
operator (|) produces a one in the output bit if either input bit is a 
one and produces a zero only if both input bits are zero. The bitwise 
exclusive or, or xor (^) produces a one in the output bit if one or 
the other input bit is a one, but not both. The bitwise not (~, also 
called the ones complement operator) is a unary operator – it only 
takes one argument (all other bitwise operators are binary 
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operators). Bitwise not produces the opposite of the input bit – a 
one if the input bit is zero, a zero if the input bit is one. 

Bitwise operators can be combined with the = sign to unite the 
operation and assignment: &=, |=, and ^= are all legitimate 
operations (since ~ is a unary operator it cannot be combined with 
the = sign). 

Shift operators 
The shift operators also manipulate bits. The left-shift operator 
(<<) produces the operand to the left of the operator shifted to the 
left by the number of bits specified after the operator. The right-
shift operator (>>) produces the operand to the left of the operator 
shifted to the right by the number of bits specified after the 
operator. If the value after the shift operator is greater than the 
number of bits in the left-hand operand, the result is undefined. If 
the left-hand operand is unsigned, the right shift is a logical shift so 
the upper bits will be filled with zeros. If the left-hand operand is 
signed, the right shift may or may not be a logical shift (that is, the 
behavior is undefined). 

Shifts can be combined with the equal sign (<<= and >>=). The 
lvalue is replaced by the lvalue shifted by the rvalue. 

What follows is an example that demonstrates the use of all the 
operators involving bits. First, here’s a general-purpose function 
that prints a byte in binary format, created separately so that it may 
be easily reused. The header file declares the function: 

//: C03:printBinary.h 

// Display a byte in binary 

void printBinary(const unsigned char val); 

///:~ 
 

Here’s the implementation of the function: 

//: C03:printBinary.cpp {O} 

#include <iostream> 

void printBinary(const unsigned char val) { 

  for(int i = 7; i >= 0; i--) 
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    if(val & (1 << i)) 

      std::cout << "1"; 

    else 

      std::cout << "0"; 

} ///:~ 
 

The printBinary( ) function takes a single byte and displays it bit-
by-bit.  The expression  

(1 << i)  
 

produces a one in each successive bit position; in binary: 
00000001, 00000010, etc. If this bit is bitwise anded with val and 
the result is nonzero, it means there was a one in that position in 
val. 

Finally, the function is used in the example that shows the bit-
manipulation operators: 

//: C03:Bitwise.cpp 

//{L} printBinary 

// Demonstration of bit manipulation 

#include "printBinary.h" 

#include <iostream> 

using namespace std; 

 

// A macro to save typing: 

#define PR(STR, EXPR) \ 

  cout << STR; printBinary(EXPR); cout << endl;   

 

int main() { 

  unsigned int getval; 

  unsigned char a, b; 

  cout << "Enter a number between 0 and 255: "; 

  cin >> getval; a = getval; 

  PR("a in binary: ", a); 

  cout << "Enter a number between 0 and 255: "; 

  cin >> getval; b = getval; 

  PR("b in binary: ", b); 

  PR("a | b = ", a | b); 

  PR("a & b = ", a & b); 

  PR("a ^ b = ", a ^ b); 

  PR("~a = ", ~a); 

  PR("~b = ", ~b); 
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  // An interesting bit pattern: 

  unsigned char c = 0x5A;  

  PR("c in binary: ", c); 

  a |= c; 

  PR("a |= c; a = ", a); 

  b &= c; 

  PR("b &= c; b = ", b); 

  b ^= a; 

  PR("b ^= a; b = ", b); 

} ///:~ 
 

Once again, a preprocessor macro is used to save typing. It prints 
the string of your choice, then the binary representation of an 
expression, then a newline. 

In main( ), the variables are unsigned. This is because, in 
general, you don't want signs when you are working with bytes. An 
int must be used instead of a char for getval because the “cin >>” 
statement will otherwise treat the first digit as a character.  By 
assigning getval to a and b, the value is converted to a single byte 
(by truncating it). 

The << and >> provide bit-shifting behavior, but when they shift 
bits off the end of the number, those bits are lost (it’s commonly 
said that they fall into the mythical bit bucket, a place where 
discarded bits end up, presumably so they can be reused…). When 
manipulating bits you can also perform rotation, which means that 
the bits that fall off one end are inserted back at the other end, as if 
they’re being rotated around a loop. Even though most computer 
processors provide a machine-level rotate command (so you’ll see it 
in the assembly language for that processor), there is no direct 
support for “rotate” in C or C++. Presumably the designers of C felt 
justified in leaving “rotate” off (aiming, as they said, for a minimal 
language) because you can build your own rotate command. For 
example, here are functions to perform left and right rotations: 

//: C03:Rotation.cpp {O} 

// Perform left and right rotations 

 

unsigned char rol(unsigned char val) { 

  int highbit; 

  if(val & 0x80) // 0x80 is the high bit only 
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    highbit = 1; 

  else 

    highbit = 0; 

  // Left shift (bottom bit becomes 0): 

  val <<= 1; 

  // Rotate the high bit onto the bottom: 

  val |= highbit; 

  return val; 

} 

 

unsigned char ror(unsigned char val) { 

  int lowbit; 

  if(val & 1) // Check the low bit 

    lowbit = 1; 

  else 

    lowbit = 0; 

  val >>= 1; // Right shift by one position 

  // Rotate the low bit onto the top: 

  val |= (lowbit << 7); 

  return val; 

} ///:~ 
 

Try using these functions in Bitwise.cpp. Notice the definitions 
(or at least declarations) of rol( ) and ror( ) must be seen by the 
compiler in Bitwise.cpp before the functions are used. 

The bitwise functions are generally extremely efficient to use 
because they translate directly into assembly language statements. 
Sometimes a single C or C++ statement will generate a single line of 
assembly code. 

Unary operators 
Bitwise not isn’t the only operator that takes a single argument. Its 
companion, the logical not (!), will take a true value and produce a 
false value. The unary minus (-) and unary plus (+) are the same 
operators as binary minus and plus; the compiler figures out which 
usage is intended by the way you write the expression. For instance, 
the statement 

x = -a; 
 

has an obvious meaning. The compiler can figure out: 
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x = a * -b; 
 

but the reader might get confused, so it is safer to say: 

x = a * (-b); 
 

The unary minus produces the negative of the value. Unary plus 
provides symmetry with unary minus, although it doesn’t actually 
do anything. 

The increment and decrement operators (++ and --) were 
introduced earlier in this chapter. These are the only operators 
other than those involving assignment that have side effects. These 
operators increase or decrease the variable by one unit, although 
“unit” can have different meanings according to the data type – this 
is especially true with pointers. 

The last unary operators are the address-of (&), dereference (* and 
->), and cast operators in C and C++, and new and delete in C++. 
Address-of and dereference are used with pointers, described in this 
chapter. Casting is described later in this chapter, and new and 
delete are introduced in Chapter 4. 

The ternary operator 
The ternary if-else is unusual because it has three operands. It is 
truly an operator because it produces a value, unlike the ordinary 
if-else statement. It consists of three expressions: if the first 
expression (followed by a ?) evaluates to true, the expression 
following the ? is evaluated and its result becomes the value 
produced by the operator. If the first expression is false, the third 
expression (following a :) is executed and its result becomes the 
value produced by the operator. 

The conditional operator can be used for its side effects or for the 
value it produces. Here’s a code fragment that demonstrates both: 

a = --b ? b : (b = -99); 
 

Here, the conditional produces the rvalue. a is assigned to the value 
of b if the result of decrementing b is nonzero. If b became zero, a 
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and b are both assigned to -99. b is always decremented, but it is 
assigned to -99 only if the decrement causes b to become 0. A 
similar statement can be used without the “a =” just for its side 
effects: 

--b ? b : (b = -99); 
 

Here the second B is superfluous, since the value produced by the 
operator is unused. An expression is required between the ? and :. 
In this case, the expression could simply be a constant that might 
make the code run a bit faster. 

The comma operator 
The comma is not restricted to separating variable names in 
multiple definitions, such as  

int i, j, k; 
 

Of course, it’s also used in function argument lists. However, it can 
also be used as an operator to separate expressions – in this case it 
produces only the value of the last expression. All the rest of the 
expressions in the comma-separated list are evaluated only for their 
side effects. This example increments a list of variables and uses the 
last one as the rvalue: 

//: C03:CommaOperator.cpp 

#include <iostream> 

using namespace std; 

int main() { 

  int a = 0, b = 1, c = 2, d = 3, e = 4; 

  a = (b++, c++, d++, e++); 

  cout << "a = " << a << endl; 

  // The parentheses are critical here. Without 

  // them, the statement will evaluate to: 

  (a = b++), c++, d++, e++; 

  cout << "a = " << a << endl; 

} ///:~ 
 

In general, it’s best to avoid using the comma as anything other 
than a separator, since people are not used to seeing it as an 
operator. 
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Common pitfalls when using operators 
As illustrated above, one of the pitfalls when using operators is 
trying to get away without parentheses when you are even the least 
bit uncertain about how an expression will evaluate (consult your 
local C manual for the order of expression evaluation). 

Another extremely common error looks like this: 

//: C03:Pitfall.cpp 

// Operator mistakes 

 

int main() { 

  int a = 1, b = 1; 

  while(a = b) { 

    // .... 

  } 

} ///:~ 
 

The statement a = b will always evaluate to true when b is non-
zero. The variable a is assigned to the value of b, and the value of b 
is also produced by the operator =. In general, you want to use the 
equivalence operator == inside a conditional statement, not 
assignment. This one bites a lot of programmers (however, some 
compilers will point out the problem to you, which is helpful). 

A similar problem is using bitwise and and or instead of their 
logical counterparts. Bitwise and and or use one of the characters 
(& or |), while logical and and or use two (&& and ||). Just as with 
= and ==, it’s easy to just type one character instead of two. A 
useful mnemonic device is to observe that “Bits are smaller, so they 
don’t need as many characters in their operators.” 

Casting operators 
The word cast is used in the sense of “casting into a mold.” The 
compiler will automatically change one type of data into another if 
it makes sense. For instance, if you assign an integral value to a 
floating-point variable, the compiler will secretly call a function (or 
more probably, insert code) to convert the int to a float. Casting 
allows you to make this type conversion explicit, or to force it when 
it wouldn’t normally happen. 
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To perform a cast, put the desired data type (including all 
modifiers) inside parentheses to the left of the value. This value can 
be a variable, a constant, the value produced by an expression, or 
the return value of a function. Here’s an example: 

//: C03:SimpleCast.cpp 

int main() { 

  int b = 200; 

  unsigned long a = (unsigned long int)b; 

} ///:~ 
 

Casting is powerful, but it can cause headaches because in some 
situations it forces the compiler to treat data as if it were (for 
instance) larger than it really is, so it will occupy more space in 
memory; this can trample over other data. This usually occurs when 
casting pointers, not when making simple casts like the one shown 
above. 

C++ has an additional casting syntax, which follows the function 
call syntax. This syntax puts the parentheses around the argument, 
like a function call, rather than around the data type: 

//: C03:FunctionCallCast.cpp 

int main() { 

  float a = float(200); 

  // This is equivalent to: 

  float b = (float)200; 

} ///:~ 
 

Of course in the case above you wouldn’t really need a cast; you 
could just say 200f (in effect, that’s typically what the compiler will 
do for the above expression). Casts are generally used instead with 
variables, rather than constants. 

C++ explicit casts 
Casts should be used carefully, because what you are actually doing 
is saying to the compiler “Forget type checking – treat it as this 
other type instead.” That is, you’re introducing a hole in the C++ 
type system and preventing the compiler from telling you that 
you’re doing something wrong with a type. What’s worse, the 
compiler believes you implicitly and doesn’t perform any other 
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checking to catch errors. Once you start casting, you open yourself 
up for all kinds of problems. In fact, any program that uses a lot of 
casts should be viewed with suspicion, no matter how much you are 
told it simply “must” be done that way. In general, casts should be 
few and isolated to the solution of very specific problems. 

Once you understand this and are presented with a buggy program, 
your first inclination may be to look for casts as culprits. But how 
do you locate C-style casts? They are simply type names inside of 
parentheses, and if you start hunting for such things you’ll discover 
that it’s often hard to distinguish them from the rest of your code. 

Standard C++ includes an explicit cast syntax that can be used to 
completely replace the old C-style casts (of course, C-style casts 
cannot be outlawed without breaking code, but compiler writers 
could easily flag old-style casts for you). The explicit cast syntax is 
such that you can easily find them, as you can see by their names: 

static_cast For “well-behaved” and 
“reasonably well-behaved” casts, 
including things you might now 
do without a cast (such as an 
automatic type conversion). 

const_cast To cast away const and/or 
volatile. 

reinterpret_cast To cast to a completely different 
meaning. The key is that you’ll 
need to cast back to the original 
type to use it safely. The type you 
cast to is typically used only for 
bit twiddling or some other 
mysterious purpose. This is the 
most dangerous of all the casts. 

dynamic_cast For type-safe downcasting (this 
cast will be described in Chapter 
15). 

 
The first three explicit casts will be described more completely in 
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the following sections, while the last one can be demonstrated only 
after you’ve learned more, in Chapter 15. 

static_cast 
A static_cast is used for all conversions that are well-defined. 
These include “safe” conversions that the compiler would allow you 
to do without a cast and less-safe conversions that are nonetheless 
well-defined. The types of conversions covered by static_cast 
include typical castless conversions, narrowing (information-losing) 
conversions, forcing a conversion from a void*, implicit type 
conversions, and static navigation of class hierarchies (since you 
haven’t seen classes and inheritance yet, this last topic will be 
delayed until Chapter 15): 

//: C03:static_cast.cpp 

void func(int) {} 

 

int main() { 

  int i = 0x7fff; // Max pos value = 32767 

  long l; 

  float f; 

  // (1) Typical castless conversions: 

  l = i; 

  f = i; 

  // Also works: 

  l = static_cast<long>(i); 

  f = static_cast<float>(i); 

 

  // (2) Narrowing conversions: 

  i = l; // May lose digits 

  i = f; // May lose info 

  // Says "I know," eliminates warnings: 

  i = static_cast<int>(l); 

  i = static_cast<int>(f); 

  char c = static_cast<char>(i); 

 

  // (3) Forcing a conversion from void* : 

  void* vp = &i; 

  // Old way produces a dangerous conversion: 

  float* fp = (float*)vp; 

  // The new way is equally dangerous: 

  fp = static_cast<float*>(vp); 
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  // (4) Implicit type conversions, normally 

  // performed by the compiler: 

  double d = 0.0; 

  int x = d; // Automatic type conversion 

  x = static_cast<int>(d); // More explicit 

  func(d); // Automatic type conversion 

  func(static_cast<int>(d)); // More explicit 

} ///:~ 
 

In Section (1), you see the kinds of conversions you’re used to doing 
in C, with or without a cast. Promoting from an int to a long or 
float is not a problem because the latter can always hold every 
value that an int can contain. Although it’s unnecessary, you can 
use static_cast to highlight these promotions. 

Converting back the other way is shown in (2). Here, you can lose 
data because an int is not as “wide” as a long or a float; it won’t 
hold numbers of the same size. Thus these are called narrowing 
conversions. The compiler will still perform these, but will often 
give you a warning. You can eliminate this warning and indicate 
that you really did mean it using a cast. 

Assigning from a void* is not allowed without a cast in C++ (unlike 
C), as seen in (3). This is dangerous and requires that programmers 
know what they’re doing. The static_cast, at least, is easier to 
locate than the old standard cast when you’re hunting for bugs. 

Section (4) of the program shows the kinds of implicit type 
conversions that are normally performed automatically by the 
compiler. These are automatic and require no casting, but again 
static_cast highlights the action in case you want to make it clear 
what’s happening or hunt for it later. 

const_cast 
If you want to convert from a const to a nonconst or from a 
volatile to a nonvolatile, you use const_cast. This is the only 
conversion allowed with const_cast; if any other conversion is 
involved it must be done using a separate expression or you’ll get a 
compile-time error. 

//: C03:const_cast.cpp 
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int main() { 

  const int i = 0; 

  int* j = (int*)&i; // Deprecated form 

  j  = const_cast<int*>(&i); // Preferred 

  // Can't do simultaneous additional casting: 

//! long* l = const_cast<long*>(&i); // Error 

  volatile int k = 0; 

  int* u = const_cast<int*>(&k); 

} ///:~ 
 

If you take the address of a const object, you produce a pointer to a 
const, and this cannot be assigned to a nonconst pointer without a 
cast. The old-style cast will accomplish this, but the const_cast is 
the appropriate one to use. The same holds true for volatile. 

reinterpret_cast 
This is the least safe of the casting mechanisms, and the one most 
likely to produce bugs. A reinterpret_cast pretends that an 
object is just a bit pattern that can be treated (for some dark 
purpose) as if it were an entirely different type of object. This is the 
low-level bit twiddling that C is notorious for. You’ll virtually always 
need to reinterpret_cast back to the original type (or otherwise 
treat the variable as its original type) before doing anything else 
with it. 

//: C03:reinterpret_cast.cpp 

#include <iostream> 

using namespace std; 

const int sz = 100; 

 

struct X { int a[sz]; }; 

 

void print(X* x) { 

  for(int i = 0; i < sz; i++) 

    cout << x->a[i] << ' '; 

  cout << endl << "--------------------" << endl; 

} 

 

int main() { 

  X x; 

  print(&x); 

  int* xp = reinterpret_cast<int*>(&x); 

  for(int* i = xp; i < xp + sz; i++) 
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    *i = 0; 

  // Can't use xp as an X* at this point 

  // unless you cast it back: 

  print(reinterpret_cast<X*>(xp)); 

  // In this example, you can also just use 

  // the original identifier: 

  print(&x); 

} ///:~ 
 

In this simple example, struct X just contains an array of int, but 
when you create one on the stack as in X x, the values of each of the 
ints are garbage (this is shown using the print( ) function to 
display the contents of the struct). To initialize them, the address 
of the X is taken and cast to an int pointer, which is then walked 
through the array to set each int to zero. Notice how the upper 
bound for i is calculated by “adding” sz to xp; the compiler knows 
that you actually want sz pointer locations greater than xp and it 
does the correct pointer arithmetic for you. 

The idea of reinterpret_cast is that when you use it, what you get 
is so foreign that it cannot be used for the type’s original purpose 
unless you cast it back. Here, we see the cast back to an X* in the 
call to print, but of course since you still have the original identifier 
you can also use that. But the xp is only useful as an int*, which is 
truly a “reinterpretation” of the original X.  

A reinterpret_cast often indicates inadvisable and/or 
nonportable programming, but it’s available when you decide you 
have to use it. 

sizeof – an operator by itself  
The sizeof operator stands alone because it satisfies an unusual 
need. sizeof gives you information about the amount of memory 
allocated for data items. As described earlier in this chapter, sizeof 
tells you the number of bytes used by any particular variable. It can 
also give the size of a data type (with no variable name): 

//: C03:sizeof.cpp 

#include <iostream> 

using namespace std; 

int main() { 

3: The C in C++  173 

  cout << "sizeof(double) = " << sizeof(double); 

  cout << ", sizeof(char) = " << sizeof(char); 

} ///:~ 
 

By definition, the sizeof any type of char (signed, unsigned or 
plain) is always one, regardless of whether the underlying storage 
for a char is actually one byte. For all other types, the result is the 
size in bytes. 

Note that sizeof is an operator, not a function. If you apply it to a 
type, it must be used with the parenthesized form shown above, but 
if you apply it to a variable you can use it without parentheses: 

//: C03:sizeofOperator.cpp 

int main() { 

  int x; 

  int i = sizeof x; 

} ///:~ 
 

sizeof can also give you the sizes of user-defined data types. This is 
used later in the book. 

The asm keyword 
This is an escape mechanism that allows you to write assembly code 
for your hardware within a C++ program. Often you’re able to 
reference C++ variables within the assembly code, which means you 
can easily communicate with your C++ code and limit the assembly 
code to that necessary for efficiency tuning or to use special 
processor instructions. The exact syntax that you must use when 
writing the assembly language is compiler-dependent and can be 
discovered in your compiler’s documentation. 

Explicit operators 
These are keywords for bitwise and logical operators. Non-U.S. 
programmers without keyboard characters like &, |, ^, and so on, 
were forced to use C’s horrible trigraphs, which were not only 
annoying to type, but obscure when reading. This is repaired in C++ 
with additional keywords: 
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Keyword Meaning 

and && (logical and) 

or || (logical or) 

not ! (logical NOT) 

 not_eq != (logical not-equivalent) 

bitand & (bitwise and) 

and_eq &= (bitwise and-assignment) 

bitor | (bitwise or) 

or_eq |= (bitwise or-assignment)  

xor ^ (bitwise exclusive-or) 

xor_eq ^= (bitwise exclusive-or-
assignment) 

compl ~ (ones complement) 
 

If your compiler complies with Standard C++, it will support these 
keywords. 

Composite type creation 
The fundamental data types and their variations are essential, but 
rather primitive. C and C++ provide tools that allow you to compose 
more sophisticated data types from the fundamental data types. As 
you’ll see, the most important of these is struct, which is the 
foundation for class in C++. However, the simplest way to create 
more sophisticated types is simply to alias a name to another name 
via typedef. 

Aliasing names with typedef 
This keyword promises more than it delivers: typedef suggests 
“type definition” when “alias” would probably have been a more 
accurate description, since that’s what it really does. The syntax is: 
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typedef existing-type-description alias-name 

People often use typedef when data types get slightly complicated, 
just to prevent extra keystrokes. Here is a commonly-used typedef: 

typedef unsigned long ulong;  
 

Now if you say ulong the compiler knows that you mean 
unsigned long. You might think that this could as easily be 
accomplished using preprocessor substitution, but there are key 
situations in which the compiler must be aware that you’re treating 
a name as if it were a type, so typedef is essential. 

One place where typedef comes in handy is for pointer types. As 
previously mentioned, if you say: 

int* x, y; 
 

This actually produces an int* which is x and an int (not an int*) 
which is y. That is, the ‘*’ binds to the right, not the left. However, if 
you use a typedef: 

typedef int* IntPtr; 

IntPtr x, y; 
 

Then both x and y are of type int*. 

You can argue that it’s more explicit and therefore more readable to 
avoid typedefs for primitive types, and indeed programs rapidly 
become difficult to read when many typedefs are used. However, 
typedefs become especially important in C when used with struct. 

Combining variables with struct 
A struct is a way to collect a group of variables into a structure. 
Once you create a struct, then you can make many instances of this 
“new” type of variable you’ve invented.  For example: 

//: C03:SimpleStruct.cpp 

struct Structure1 { 

  char c; 

  int i; 
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  float f; 

  double d; 

}; 

 

int main() { 

  struct Structure1 s1, s2; 

  s1.c = 'a'; // Select an element using a '.' 

  s1.i = 1; 

  s1.f = 3.14; 

  s1.d = 0.00093; 

  s2.c = 'a'; 

  s2.i = 1; 

  s2.f = 3.14; 

  s2.d = 0.00093; 

} ///:~ 
 

The struct declaration must end with a semicolon. In main( ), two 
instances of Structure1 are created: s1 and s2. Each of these has 
their own separate versions of c, i, f, and d. So s1 and s2 represent 
clumps of completely independent variables. To select one of the 
elements within s1 or s2, you use a ‘.’, syntax you’ve seen in the 
previous chapter when using C++ class objects – since classes 
evolved from structs, this is where that syntax arose from. 

One thing you’ll notice is the awkwardness of the use of 
Structure1 (as it turns out, this is only required by C, not C++). In 
C, you can’t just say Structure1 when you’re defining variables, 
you must say struct Structure1. This is where typedef becomes 
especially handy in C: 

//: C03:SimpleStruct2.cpp 

// Using typedef with struct 

typedef struct { 

  char c; 

  int i; 

  float f; 

  double d; 

} Structure2; 

 

int main() { 

  Structure2 s1, s2; 

  s1.c = 'a'; 

  s1.i = 1; 
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  s1.f = 3.14; 

  s1.d = 0.00093; 

  s2.c = 'a'; 

  s2.i = 1; 

  s2.f = 3.14; 

  s2.d = 0.00093; 

} ///:~ 
 

By using typedef in this way, you can pretend (in C; try removing 
the typedef for C++) that Structure2 is a built-in type, like int or 
float, when you define s1 and s2 (but notice it only has data – 
characteristics – and does not include behavior, which is what we 
get with real objects in C++). You’ll notice that the struct identifier 
has been left off at the beginning, because the goal is to create the 
typedef. However, there are times when you might need to refer to 
the struct during its definition. In those cases, you can actually 
repeat the name of the struct as the struct name and as the 
typedef: 

//: C03:SelfReferential.cpp 

// Allowing a struct to refer to itself 

 

typedef struct SelfReferential { 

  int i; 

  SelfReferential* sr; // Head spinning yet? 

} SelfReferential; 

 

int main() { 

  SelfReferential sr1, sr2; 

  sr1.sr = &sr2; 

  sr2.sr = &sr1; 

  sr1.i = 47; 

  sr2.i = 1024; 

} ///:~ 
 

If you look at this for awhile, you’ll see that sr1 and sr2 point to 
each other, as well as each holding a piece of data.  

Actually, the struct name does not have to be the same as the 
typedef name, but it is usually done this way as it tends to keep 
things simpler. 
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Pointers and structs 
In the examples above, all the structs are manipulated as objects. 
However, like any piece of storage, you can take the address of a 
struct object (as seen in SelfReferential.cpp above). To select 
the elements of a particular struct object, you use a ‘.’, as seen 
above. However, if you have a pointer to a struct object, you must 
select an element of that object using a different operator: the ‘->’. 
Here’s an example: 

//: C03:SimpleStruct3.cpp 

// Using pointers to structs 

typedef struct Structure3 { 

  char c; 

  int i; 

  float f; 

  double d; 

} Structure3; 

 

int main() { 

  Structure3 s1, s2; 

  Structure3* sp = &s1; 

  sp->c = 'a'; 

  sp->i = 1; 

  sp->f = 3.14; 

  sp->d = 0.00093; 

  sp = &s2; // Point to a different struct object 

  sp->c = 'a'; 

  sp->i = 1; 

  sp->f = 3.14; 

  sp->d = 0.00093; 

} ///:~ 
 

In main( ), the struct pointer sp is initially pointing to s1, and the 
members of s1 are initialized by selecting them with the ‘->’ (and 
you use this same operator in order to read those members). But 
then sp is pointed to s2, and those variables are initialized the 
same way. So you can see that another benefit of pointers is that 
they can be dynamically redirected to point to different objects; this 
provides more flexibility in your programming, as you will learn. 

3: The C in C++  179 

For now, that’s all you need to know about structs, but you’ll 
become much more comfortable with them (and especially their 
more potent successors, classes) as the book progresses. 

Clarifying programs with enum 
An enumerated data type is a way of attaching names to numbers, 
thereby giving more meaning to anyone reading the code. The 
enum keyword (from C) automatically enumerates any list of 
identifiers you give it by assigning them values of 0, 1, 2, etc. You 
can declare enum variables (which are always represented as 
integral values). The declaration of an enum looks similar to a 
struct declaration. 

An enumerated data type is useful when you want to keep track of 
some sort of feature: 

//: C03:Enum.cpp 

// Keeping track of shapes 

 

enum ShapeType { 

  circle, 

  square, 

  rectangle 

};  // Must end with a semicolon like a struct 

 

int main() { 

  ShapeType shape = circle; 

  // Activities here.... 

  // Now do something based on what the shape is: 

  switch(shape) { 

    case circle:  /* circle stuff */ break; 

    case square:  /* square stuff */ break; 

    case rectangle:  /* rectangle stuff */ break; 

  } 

} ///:~ 
 

shape is a variable of the ShapeType enumerated data type, and 
its value is compared with the value in the enumeration. Since 
shape is really just an int, however, it can be any value an int can 
hold (including a negative number). You can also compare an int 
variable with a value in the enumeration. 
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You should be aware that the example above of switching on type 
turns out to be a problematic way to program. C++ has a much 
better way to code this sort of thing, the explanation of which must 
be delayed until much later in the book. 

If you don’t like the way the compiler assigns values, you can do it 
yourself, like this: 

enum ShapeType {  

  circle = 10, square = 20, rectangle = 50 

}; 
 

If you give values to some names and not to others, the compiler 
will use the next integral value. For example, 

enum snap { crackle = 25, pop }; 
 

The compiler gives pop the value 26. 

You can see how much more readable the code is when you use 
enumerated data types. However, to some degree this is still an 
attempt (in C) to accomplish the things that we can do with a class 
in C++, so you’ll see enum used less in C++. 

Type checking for enumerations 
C’s enumerations are fairly primitive, simply associating integral 
values with names, but they provide no type checking. In C++, as 
you may have come to expect by now, the concept of type is 
fundamental, and this is true with enumerations. When you create a 
named enumeration, you effectively create a new type just as you do 
with a class: The name of your enumeration becomes a reserved 
word for the duration of that translation unit.  

In addition, there’s stricter type checking for enumerations in C++ 
than in C. You’ll notice this in particular if you have an instance of 
an enumeration color called a. In C you can say a++, but in C++ 
you can’t. This is because incrementing an enumeration is 
performing two type conversions, one of them legal in C++ and one 
of them illegal. First, the value of the enumeration is implicitly cast 
from a color to an int, then the value is incremented, then the int 
is cast back into a color. In C++ this isn’t allowed, because color is 
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a distinct type and not equivalent to an int. This makes sense, 
because how do you know the increment of blue will even be in the 
list of colors? If you want to increment a color, then it should be a 
class (with an increment operation) and not an enum, because the 
class can be made to be much safer. Any time you write code that 
assumes an implicit conversion to an enum type, the compiler will 
flag this inherently dangerous activity. 

Unions (described next) have similar additional type checking in 
C++. 

Saving memory with union  
Sometimes a program will handle different types of data using the 
same variable. In this situation, you have two choices: you can 
create a struct containing all the possible different types you might 
need to store, or you can use a union. A union piles all the data 
into a single space; it figures out the amount of space necessary for 
the largest item you’ve put in the union, and makes that the size of 
the union. Use a union to save memory. 

Anytime you place a value in a union, the value always starts in the 
same place at the beginning of the union, but only uses as much 
space as is necessary. Thus, you create a “super-variable” capable of 
holding any of the union variables. All the addresses of the union 
variables are the same (in a class or struct, the addresses are 
different). 

Here’s a simple use of a union. Try removing various elements and 
see what effect it has on the size of the union. Notice that it makes 
no sense to declare more than one instance of a single data type in a 
union (unless you’re just doing it to use a different name). 

//: C03:Union.cpp 

// The size and simple use of a union 

#include <iostream> 

using namespace std; 

 

union Packed { // Declaration similar to a class 

  char i; 

  short j; 
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  int k; 

  long l; 

  float f; 

  double d;   

  // The union will be the size of a  

  // double, since that's the largest element 

};  // Semicolon ends a union, like a struct 

 

int main() { 

  cout << "sizeof(Packed) = "  

       << sizeof(Packed) << endl; 

  Packed x; 

  x.i = 'c'; 

  cout << x.i << endl; 

  x.d = 3.14159; 

  cout << x.d << endl; 

} ///:~ 
 

The compiler performs the proper assignment according to the 
union member you select. 

Once you perform an assignment, the compiler doesn’t care what 
you do with the union. In the example above, you could assign a 
floating-point value to x: 

x.f = 2.222; 
 

and then send it to the output as if it were an int: 

cout << x.i; 
 

This would produce garbage. 

Arrays 
Arrays are a kind of composite type because they allow you to 
clump a lot of variables together, one right after the other, under a 
single identifier name. If you say: 

int a[10]; 
 

You create storage for 10 int variables stacked on top of each other, 
but without unique identifier names for each variable. Instead, they 
are all lumped under the name a. 
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To access one of these array elements, you use the same square-
bracket syntax that you use to define an array: 

a[5] = 47; 
 

However, you must remember that even though the size of a is 10, 
you select array elements starting at zero (this is sometimes called 
zero indexing), so you can select only the array elements 0-9, like 
this: 

//: C03:Arrays.cpp 

#include <iostream> 

using namespace std; 

 

int main() { 

  int a[10]; 

  for(int i = 0; i < 10; i++) { 

    a[i] = i * 10; 

    cout << "a[" << i << "] = " << a[i] << endl; 

  } 

} ///:~ 
 

Array access is extremely fast. However, if you index past the end of 
the array, there is no safety net – you’ll step on other variables. The 
other drawback is that you must define the size of the array at 
compile time; if you want to change the size at runtime you can’t do 
it with the syntax above (C does have a way to create an array 
dynamically, but it’s significantly messier). The C++ vector, 
introduced in the previous chapter, provides an array-like object 
that automatically resizes itself, so it is usually a much better 
solution if your array size cannot be known at compile time. 

You can make an array of any type, even of structs: 

//: C03:StructArray.cpp 

// An array of struct 

 

typedef struct { 

  int i, j, k; 

} ThreeDpoint; 

 

int main() { 

  ThreeDpoint p[10]; 
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  for(int i = 0; i < 10; i++) { 

    p[i].i = i + 1; 

    p[i].j = i + 2; 

    p[i].k = i + 3; 

  } 

} ///:~ 
 

Notice how the struct identifier i is independent of the for loop’s i. 

To see that each element of an array is contiguous with the next, 
you can print out the addresses like this: 

//: C03:ArrayAddresses.cpp 

#include <iostream> 

using namespace std; 

 

int main() { 

  int a[10]; 

  cout << "sizeof(int) = "<< sizeof(int) << endl; 

  for(int i = 0; i < 10; i++) 

    cout << "&a[" << i << "] = "  

         << (long)&a[i] << endl; 

} ///:~ 
 

When you run this program, you’ll see that each element is one int 
size away from the previous one. That is, they are stacked one on 
top of the other. 

Pointers and arrays 
The identifier of an array is unlike the identifiers for ordinary 
variables. For one thing, an array identifier is not an lvalue; you 
cannot assign to it. It’s really just a hook into the square-bracket 
syntax, and when you give the name of an array, without square 
brackets, what you get is the starting address of the array: 

//: C03:ArrayIdentifier.cpp 

#include <iostream> 

using namespace std; 

 

int main() { 

  int a[10]; 

  cout << "a = " << a << endl; 

  cout << "&a[0] =" << &a[0] << endl; 
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} ///:~ 
 

When you run this program you’ll see that the two addresses (which 
will be printed in hexadecimal, since there is no cast to long) are 
the same. 

So one way to look at the array identifier is as a read-only pointer to 
the beginning of an array. And although we can’t change the array 
identifier to point somewhere else, we can create another pointer 
and use that to move around in the array. In fact, the square-
bracket syntax works with regular pointers as well: 

//: C03:PointersAndBrackets.cpp 

int main() { 

  int a[10]; 

  int* ip = a; 

  for(int i = 0; i < 10; i++) 

    ip[i] = i * 10; 

} ///:~ 
 

The fact that naming an array produces its starting address turns 
out to be quite important when you want to pass an array to a 
function. If you declare an array as a function argument, what 
you’re really declaring is a pointer. So in the following example, 
func1( ) and func2( ) effectively have the same argument lists: 

//: C03:ArrayArguments.cpp 

#include <iostream> 

#include <string> 

using namespace std; 

 

void func1(int a[], int size) { 

  for(int i = 0; i < size; i++) 

    a[i] = i * i - i; 

} 

 

void func2(int* a, int size) { 

  for(int i = 0; i < size; i++) 

    a[i] = i * i + i; 

} 

 

void print(int a[], string name, int size) { 

  for(int i = 0; i < size; i++) 
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    cout << name << "[" << i << "] = "  

         << a[i] << endl; 

} 

 

int main() { 

  int a[5], b[5]; 

  // Probably garbage values: 

  print(a, "a", 5); 

  print(b, "b", 5); 

  // Initialize the arrays: 

  func1(a, 5); 

  func1(b, 5); 

  print(a, "a", 5); 

  print(b, "b", 5); 

  // Notice the arrays are always modified: 

  func2(a, 5); 

  func2(b, 5); 

  print(a, "a", 5); 

  print(b, "b", 5); 

} ///:~ 
 

Even though func1( ) and func2( ) declare their arguments 
differently, the usage is the same inside the function. There are 
some other issues that this example reveals: arrays cannot be 
passed by value3, that is, you never automatically get a local copy of 
the array that you pass into a function. Thus, when you modify an 
array, you’re always modifying the outside object. This can be a bit 
confusing at first, if you’re expecting the pass-by-value provided 
with ordinary arguments. 

You’ll notice that print( ) uses the square-bracket syntax for array 
arguments. Even though the pointer syntax and the square-bracket 
syntax are effectively the same when passing arrays as arguments, 
the square-bracket syntax makes it clearer to the reader that you 
mean for this argument to be an array. 

                                                   
3 Unless you take the very strict approach that “all argument passing in C/C++ is by 
value, and the ‘value’ of an array is what is produced by the array identifier: it’s 
address.” This can be seen as true from the assembly-language standpoint, but I don’t 
think it helps when trying to work with higher-level concepts. The addition of 
references in C++ makes the “all passing is by value” argument more confusing, to the 
point where I feel it’s more helpful to think in terms of “passing by value” vs. “passing 
addresses.” 
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Also note that the size argument is passed in each case. Just 
passing the address of an array isn’t enough information; you must 
always be able to know how big the array is inside your function, so 
you don’t run off the end of that array. 

Arrays can be of any type, including arrays of pointers. In fact, 
when you want to pass command-line arguments into your 
program, C and C++ have a special argument list for main( ), 
which looks like this: 

int main(int argc, char* argv[]) { // ... 
 

The first argument is the number of elements in the array, which is 
the second argument. The second argument is always an array of 
char*, because the arguments are passed from the command line 
as character arrays (and remember, an array can be passed only as a 
pointer). Each whitespace-delimited cluster of characters on the 
command line is turned into a separate array argument. The 
following program prints out all its command-line arguments by 
stepping through the array: 

//: C03:CommandLineArgs.cpp 

#include <iostream> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  cout << "argc = " << argc << endl; 

  for(int i = 0; i < argc; i++) 

    cout << "argv[" << i << "] = "  

         << argv[i] << endl; 

} ///:~ 
 

You’ll notice that argv[0] is the path and name of the program 
itself. This allows the program to discover information about itself. 
It also adds one more to the array of program arguments, so a 
common error when fetching command-line arguments is to grab 
argv[0] when you want argv[1]. 

You are not forced to use argc and argv as identifiers in main( ); 
those identifiers are only conventions (but it will confuse people if 
you don’t use them). Also, there is an alternate way to declare argv: 
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int main(int argc, char** argv) { // ... 
 

Both forms are equivalent, but I find the version used in this book 
to be the most intuitive when reading the code, since it says, 
directly, “This is an array of character pointers.” 

All you get from the command-line is character arrays; if you want 
to treat an argument as some other type, you are responsible for 
converting it inside your program. To facilitate the conversion to 
numbers, there are some helper functions in the Standard C library, 
declared in <cstdlib>. The simplest ones to use are atoi( ), 
atol( ), and atof( ) to convert an ASCII character array to an int, 
long, and double floating-point value, respectively. Here’s an 
example using atoi( ) (the other two functions are called the same 
way): 

//: C03:ArgsToInts.cpp 

// Converting command-line arguments to ints 

#include <iostream> 

#include <cstdlib> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  for(int i = 1; i < argc; i++) 

    cout << atoi(argv[i]) << endl; 

} ///:~ 
 

In this program, you can put any number of arguments on the 
command line. You’ll notice that the for loop starts at the value 1 to 
skip over the program name at argv[0]. Also, if you put a floating-
point number containing a decimal point on the command line, 
atoi( ) takes only the digits up to the decimal point. If you put non-
numbers on the command line, these come back from atoi( ) as 
zero. 

Exploring floating-point format 
The printBinary( ) function introduced earlier in this chapter is 
handy for delving into the internal structure of various data types. 
The most interesting of these is the floating-point format that 
allows C and C++ to store numbers representing very large and very 
small values in a limited amount of space. Although the details can’t 
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be completely exposed here, the bits inside of floats and doubles 
are divided into three regions: the exponent, the mantissa, and the 
sign bit; thus it stores the values using scientific notation. The 
following program allows you to play around by printing out the 
binary patterns of various floating point numbers so you can deduce 
for yourself the scheme used in your compiler’s floating-point 
format (usually this is the IEEE standard for floating point 
numbers, but your compiler may not follow that): 

//: C03:FloatingAsBinary.cpp 

//{L} printBinary 

//{T} 3.14159 

#include "printBinary.h" 

#include <cstdlib> 

#include <iostream> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  if(argc != 2) { 

    cout << "Must provide a number" << endl; 

    exit(1); 

  } 

  double d = atof(argv[1]); 

  unsigned char* cp =  

    reinterpret_cast<unsigned char*>(&d); 

  for(int i = sizeof(double); i > 0 ; i -= 2) { 

    printBinary(cp[i-1]); 

    printBinary(cp[i]); 

  } 

} ///:~ 
 

First, the program guarantees that you’ve given it an argument by 
checking the value of argc, which is two if there’s a single argument 
(it’s one if there are no arguments, since the program name is 
always the first element of argv). If this fails, a message is printed 
and the Standard C Library function exit( ) is called to terminate 
the program. 

The program grabs the argument from the command line and 
converts the characters to a double using atof( ). Then the double 
is treated as an array of bytes by taking the address and casting it to 
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an unsigned char*. Each of these bytes is passed to 
printBinary( ) for display. 

This example has been set up to print the bytes in an order such 
that the sign bit appears first – on my machine. Yours may be 
different, so you might want to re-arrange the way things are 
printed. You should also be aware that floating-point formats are 
not trivial to understand; for example, the exponent and mantissa 
are not generally arranged on byte boundaries, but instead a 
number of bits is reserved for each one and they are packed into the 
memory as tightly as possible. To truly see what’s going on, you’d 
need to find out the size of each part of the number (sign bits are 
always one bit, but exponents and mantissas are of differing sizes) 
and print out the bits in each part separately. 

Pointer arithmetic 
If all you could do with a pointer that points at an array is treat it as 
if it were an alias for that array, pointers into arrays wouldn’t be 
very interesting. However, pointers are more flexible than this, 
since they can be modified to point somewhere else (but remember, 
the array identifier cannot be modified to point somewhere else). 

Pointer arithmetic refers to the application of some of the 
arithmetic operators to pointers. The reason pointer arithmetic is a 
separate subject from ordinary arithmetic is that pointers must 
conform to special constraints in order to make them behave 
properly. For example, a common operator to use with pointers is 
++, which “adds one to the pointer.” What this actually means is 
that the pointer is changed to move to “the next value,” whatever 
that means. Here’s an example: 

//: C03:PointerIncrement.cpp 

#include <iostream> 

using namespace std; 

 

int main() { 

  int i[10]; 

  double d[10]; 

  int* ip = i; 

  double* dp = d; 

  cout << "ip = " << (long)ip << endl; 
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  ip++; 

  cout << "ip = " << (long)ip << endl; 

  cout << "dp = " << (long)dp << endl; 

  dp++; 

  cout << "dp = " << (long)dp << endl; 

} ///:~ 
 

For one run on my machine, the output is: 

ip = 6684124 

ip = 6684128 

dp = 6684044 

dp = 6684052 
 

What’s interesting here is that even though the operation ++ 
appears to be the same operation for both the int* and the 
double*, you can see that the pointer has been changed only 4 
bytes for the int* but 8 bytes for the double*. Not coincidentally, 
these are the sizes of int and double on my machine. And that’s 
the trick of pointer arithmetic: the compiler figures out the right 
amount to change the pointer so that it’s pointing to the next 
element in the array (pointer arithmetic is only meaningful within 
arrays). This even works with arrays of structs: 

//: C03:PointerIncrement2.cpp 

#include <iostream> 

using namespace std; 

 

typedef struct { 

  char c; 

  short s; 

  int i; 

  long l; 

  float f; 

  double d; 

  long double ld; 

} Primitives; 

 

int main() { 

  Primitives p[10]; 

  Primitives* pp = p; 

  cout << "sizeof(Primitives) = "  

       << sizeof(Primitives) << endl; 

  cout << "pp = " << (long)pp << endl; 
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  pp++; 

  cout << "pp = " << (long)pp << endl; 

} ///:~ 
 

The output for one run on my machine was: 

sizeof(Primitives) = 40 

pp = 6683764 

pp = 6683804 
 

So you can see the compiler also does the right thing for pointers to 
structs (and classes and unions). 

Pointer arithmetic also works with the operators --, +, and -, but 
the latter two operators are limited: you cannot add two pointers, 
and if you subtract pointers the result is the number of elements 
between the two pointers. However, you can add or subtract an 
integral value and a pointer. Here’s an example demonstrating the 
use of pointer arithmetic: 

//: C03:PointerArithmetic.cpp 

#include <iostream> 

using namespace std; 

 

#define P(EX) cout << #EX << ": " << EX << endl; 

 

int main() { 

  int a[10]; 

  for(int i = 0; i < 10; i++) 

    a[i] = i; // Give it index values 

  int* ip = a; 

  P(*ip); 

  P(*++ip); 

  P(*(ip + 5)); 

  int* ip2 = ip + 5; 

  P(*ip2); 

  P(*(ip2 - 4)); 

  P(*--ip2); 

  P(ip2 - ip); // Yields number of elements 

} ///:~ 
 

It begins with another macro, but this one uses a preprocessor 
feature called stringizing (implemented with the ‘#’ sign before an 
expression) that takes any expression and turns it into a character 
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array. This is quite convenient, since it allows the expression to be 
printed, followed by a colon, followed by the value of the 
expression. In main( ) you can see the useful shorthand that is 
produced. 

Although pre- and postfix versions of ++ and -- are valid with 
pointers, only the prefix versions are used in this example because 
they are applied before the pointers are dereferenced in the 
expressions above, so they allow us to see the effects of the 
operations. Note that only integral values are being added and 
subtracted; if two pointers were combined this way the compiler 
would not allow it.  

Here is the output of the program above: 

*ip: 0 

*++ip: 1 

*(ip + 5): 6 

*ip2: 6 

*(ip2 - 4): 2 

*--ip2: 5 
 

In all cases, the pointer arithmetic results in the pointer being 
adjusted to point to the “right place,” based on the size of the 
elements being pointed to. 

If pointer arithmetic seems a bit overwhelming at first, don’t worry. 
Most of the time you’ll only need to create arrays and index into 
them with [ ], and the most sophisticated pointer arithmetic you’ll 
usually need is ++ and --. Pointer arithmetic is generally reserved 
for more clever and complex programs, and many of the containers 
in the Standard C++ library hide most of these clever details so you 
don’t have to worry about them. 

Debugging hints 
In an ideal environment, you have an excellent debugger available 
that easily makes the behavior of your program transparent so you 
can quickly discover errors. However, most debuggers have blind 
spots, and these will require you to embed code snippets in your 
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program to help you understand what’s going on. In addition, you 
may be developing in an environment (such as an embedded 
system, which is where I spent my formative years) that has no 
debugger available, and perhaps very limited feedback (i.e. a one-
line LED display). In these cases you become creative in the ways 
you discover and display information about the execution of your 
program. This section suggests some techniques for doing this. 

Debugging flags 
If you hard-wire debugging code into a program, you can run into 
problems. You start to get too much information, which makes the 
bugs difficult to isolate. When you think you’ve found the bug you 
start tearing out debugging code, only to find you need to put it 
back in again. You can solve these problems with two types of flags: 
preprocessor debugging flags and runtime debugging flags. 

Preprocessor debugging flags 
By using the preprocessor to #define one or more debugging flags 
(preferably in a header file), you can test a flag using an #ifdef 
statement and conditionally include debugging code. When you 
think your debugging is finished, you can simply #undef the flag(s) 
and the code will automatically be removed (and you’ll reduce the 
size and runtime overhead of your executable file). 

It is best to decide on names for debugging flags before you begin 
building your project so the names will be consistent. Preprocessor 
flags are traditionally distinguished from variables by writing them 
in all upper case. A common flag name is simply DEBUG (but be 
careful you don’t use NDEBUG, which is reserved in C). The 
sequence of statements might be: 

#define DEBUG // Probably in a header file 

//... 

#ifdef DEBUG // Check to see if flag is defined 

/* debugging code here */ 

#endif // DEBUG 
 

Most C and C++ implementations will also let you #define and 
#undef flags from the compiler command line, so you can re-
compile code and insert debugging information with a single 
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command (preferably via the makefile, a tool that will be described 
shortly). Check your local documentation  for details. 

Runtime debugging flags 
In some situations it is more convenient to turn debugging flags on 
and off during program execution, especially by setting them when 
the program starts up using the command line. Large programs are 
tedious to recompile just to insert debugging code. 

To turn debugging code on and off dynamically, create bool flags: 

//: C03:DynamicDebugFlags.cpp 

#include <iostream> 

#include <string> 

using namespace std; 

// Debug flags aren't necessarily global: 

bool debug = false; 

 

int main(int argc, char* argv[]) { 

  for(int i = 0; i < argc; i++) 

    if(string(argv[i]) == "--debug=on") 

      debug = true; 

  bool go = true; 

  while(go) { 

    if(debug) { 

      // Debugging code here 

      cout << "Debugger is now on!" << endl; 

    } else { 

      cout << "Debugger is now off." << endl; 

    }   

    cout << "Turn debugger [on/off/quit]: "; 

    string reply; 

    cin >> reply; 

    if(reply == "on") debug = true; // Turn it on 

    if(reply == "off") debug = false; // Off 

    if(reply == "quit") break; // Out of 'while' 

  } 

} ///:~ 
 

This program continues to allow you to turn the debugging flag on 
and off until you type “quit” to tell it you want to exit. Notice it 
requires that full words are typed in, not just letters (you can 
shorten it to letter if you wish). Also, a command-line argument can 
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optionally be used to turn debugging on at startup – this argument 
can appear anyplace in the command line, since the startup code in 
main( ) looks at all the arguments. The testing is quite simple 
because of the expression: 

string(argv[i]) 
 

This takes the argv[i] character array and creates a string, which 
then can be easily compared to the right-hand side of the ==. The 
program above searches for the entire string --debug=on. You can 
also look for --debug= and then see what’s after that, to provide 
more options. Volume 2 (available from www.BruceEckel.com) 
devotes a chapter to the Standard C++ string class. 

Although a debugging flag is one of the relatively few areas where it 
makes a lot of sense to use a global variable, there’s nothing that 
says it must be that way. Notice that the variable is in lower case 
letters to remind the reader it isn’t a preprocessor flag. 

Turning variables and expressions into strings 
When writing debugging code, it is tedious to write print 
expressions consisting of a character array containing the variable 
name, followed by the variable. Fortunately, Standard C includes 
the stringize operator ‘#’, which was used earlier in this chapter. 
When you put a # before an argument in a preprocessor macro, the 
preprocessor turns that argument into a character array. This, 
combined with the fact that character arrays with no intervening 
punctuation are concatenated into a single character array, allows 
you to make a very convenient macro for printing the values of 
variables during debugging: 

#define PR(x) cout << #x " = " << x << "\n"; 
 

If you print the variable a by calling the macro PR(a), it will have 
the same effect as the code: 

cout << "a = " << a << "\n"; 
 

This same process works with entire expressions. The following 
program uses a macro to create a shorthand that prints the 
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stringized expression and then evaluates the expression and prints 
the result: 

//: C03:StringizingExpressions.cpp 

#include <iostream> 

using namespace std; 

 

#define P(A) cout << #A << ": " << (A) << endl; 

 

int main() { 

  int a = 1, b = 2, c = 3; 

  P(a); P(b); P(c); 

  P(a + b); 

  P((c - a)/b); 

} ///:~ 
 

You can see how a technique like this can quickly become 
indispensable, especially if you have no debugger (or must use 
multiple development environments). You can also insert an #ifdef 
to cause P(A) to be defined as “nothing” when you want to strip out 
debugging. 

The C assert( ) macro 
In the standard header file <cassert> you’ll find assert( ), which 
is a convenient debugging macro. When you use assert( ), you give 
it an argument that is an expression you are “asserting to be true.” 
The preprocessor generates code that will test the assertion. If the 
assertion isn’t true, the program will stop after issuing an error 
message telling you what the assertion was and that it failed. Here’s 
a trivial example: 

//: C03:Assert.cpp 

// Use of the assert() debugging macro 

#include <cassert>  // Contains the macro 

using namespace std; 

 

int main() { 

  int i = 100; 

  assert(i != 100); // Fails 

} ///:~ 
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The macro originated in Standard C, so it’s also available in the 
header file assert.h.  

When you are finished debugging, you can remove the code 
generated by the macro by placing the line: 

#define NDEBUG 
 

in the program before the inclusion of <cassert>, or by defining 
NDEBUG on the compiler command line. NDEBUG is a flag used in 
<cassert> to change the way code is generated by the macros. 

Later in this book, you’ll see some more sophisticated alternatives 
to assert( ). 

Function addresses 
Once a function is compiled and loaded into the computer to be 
executed, it occupies a chunk of memory. That memory, and thus 
the function, has an address. 

C has never been a language to bar entry where others fear to tread. 
You can use function addresses with pointers just as you can use 
variable addresses. The declaration and use of function pointers 
looks a bit opaque at first, but it follows the format of the rest of the 
language. 

Defining a function pointer 
To define a pointer to a function that has no arguments and no 
return value, you say: 

void (*funcPtr)(); 
 

When you are looking at a complex definition like this, the best way 
to attack it is to start in the middle and work your way out. “Starting 
in the middle” means starting at the variable name, which is 
funcPtr. “Working your way out” means looking to the right for 
the nearest item (nothing in this case; the right parenthesis stops 
you short), then looking to the left (a pointer denoted by the 
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asterisk), then looking to the right (an empty argument list 
indicating a function that takes no arguments), then looking to the 
left (void, which indicates the function has no return value). This 
right-left-right motion works with most declarations. 

To review, “start in the middle” (“funcPtr is a ...”), go to the right 
(nothing there – you're stopped by the right parenthesis), go to the 
left and find the ‘*’ (“... pointer to a ...”), go to the right and find the 
empty argument list (“... function that takes no arguments ... ”), go 
to the left and find the void (“funcPtr is a pointer to a function 
that takes no arguments and returns void”). 

You may wonder why *funcPtr requires parentheses. If you didn't 
use them, the compiler would see: 

void *funcPtr(); 
 

You would be declaring a function (that returns a void*) rather 
than defining a variable. You can think of the compiler as going 
through the same process you do when it figures out what a 
declaration or definition is supposed to be. It needs those 
parentheses to “bump up against” so it goes back to the left and 
finds the ‘*’, instead of continuing to the right and finding the 
empty argument list. 

Complicated declarations & definitions 
As an aside, once you figure out how the C and C++ declaration 
syntax works you can create much more complicated items. For 
instance: 

//: C03:ComplicatedDefinitions.cpp 

 

/* 1. */     void * (*(*fp1)(int))[10]; 

 

/* 2. */     float (*(*fp2)(int,int,float))(int); 

 

/* 3. */     typedef double (*(*(*fp3)())[10])(); 

             fp3 a; 

 

/* 4. */     int (*(*f4())[10])(); 
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int main() {} ///:~ 
 

Walk through each one and use the right-left guideline to figure it 
out. Number 1 says “fp1 is a pointer to a function that takes an 
integer argument and returns a pointer to an array of 10 void 
pointers.” 

Number 2 says “fp2 is a pointer to a function that takes three 
arguments (int, int, and float) and returns a pointer to a function 
that takes an integer argument and returns a float.” 

If you are creating a lot of complicated definitions, you might want 
to use a typedef. Number 3 shows how a typedef saves typing the 
complicated description every time. It says “An fp3 is a pointer to a 
function that takes no arguments and returns a pointer to an array 
of 10 pointers to functions that take no arguments and return 
doubles.” Then it says “a is one of these fp3 types.” typedef is 
generally useful for building complicated descriptions from simple 
ones. 

Number 4 is a function declaration instead of a variable definition. 
It says “f4 is a function that returns a pointer to an array of 10 
pointers to functions that return integers.” 

You will rarely if ever need such complicated declarations and 
definitions as these. However, if you go through the exercise of 
figuring them out you will not even be mildly disturbed with the 
slightly complicated ones you may encounter in real life. 

Using a function pointer 
Once you define a pointer to a function, you must assign it to a 
function address before you can use it. Just as the address of an 
array arr[10] is produced by the array name without the brackets 
(arr), the address of a function func() is produced by the function 
name without the argument list (func). You can also use the more 
explicit syntax &func(). To call the function, you dereference the 
pointer in the same way that you declared it (remember that C and 
C++ always try to make definitions look the same as the way they 
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are used). The following example shows how a pointer to a function 
is defined and used: 

//: C03:PointerToFunction.cpp 

// Defining and using a pointer to a function 

#include <iostream> 

using namespace std; 

 

void func() { 

  cout << "func() called..." << endl; 

} 

 

int main() { 

  void (*fp)();  // Define a function pointer 

  fp = func;  // Initialize it 

  (*fp)();    // Dereferencing calls the function 

  void (*fp2)() = func;  // Define and initialize 

  (*fp2)(); 

} ///:~ 
 

After the pointer to function fp is defined, it is assigned to the 
address of a function func() using fp = func (notice the argument 
list is missing on the function name). The second case shows 
simultaneous definition and initialization. 

Arrays of pointers to functions 
One of the more interesting constructs you can create is an array of 
pointers to functions. To select a function, you just index into the 
array and dereference the pointer. This supports the concept of 
table-driven code; instead of using conditionals or case statements, 
you select functions to execute based on a state variable (or a 
combination of state variables). This kind of design can be useful if 
you often add or delete functions from the table (or if you want to 
create or change such a table dynamically). 

The following example creates some dummy functions using a 
preprocessor macro, then creates an array of pointers to those 
functions using automatic aggregate initialization. As you can see, it 
is easy to add or remove functions from the table (and thus, 
functionality from the program) by changing a small amount of 
code: 
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//: C03:FunctionTable.cpp 

// Using an array of pointers to functions 

#include <iostream> 

using namespace std; 

 

// A macro to define dummy functions: 

#define DF(N) void N() { \ 

   cout << "function " #N " called..." << endl; } 

 

DF(a); DF(b); DF(c); DF(d); DF(e); DF(f); DF(g); 

 

void (*func_table[])() = { a, b, c, d, e, f, g }; 

 

int main() { 

  while(1) { 

    cout << "press a key from 'a' to 'g' " 

      "or q to quit" << endl; 

    char c, cr; 

    cin.get(c); cin.get(cr); // second one for CR 

    if ( c == 'q' )  

      break; // ... out of while(1) 

    if ( c < 'a' || c > 'g' )  

      continue; 

    (*func_table[c - 'a'])(); 

  } 

} ///:~ 
 

At this point, you might be able to imagine how this technique 
could be useful when creating some sort of interpreter or list 
processing program. 

Make: managing separate 

compilation 
When using separate compilation (breaking code into a number of 
translation units), you need some way to automatically compile 
each file and to tell the linker to build all the pieces – along with the 
appropriate libraries and startup code – into an executable file. 
Most compilers allow you to do this with a single command-line 
statement. For the GNU C++ compiler, for example, you might say 

g++ SourceFile1.cpp SourceFile2.cpp 
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The problem with this approach is that the compiler will first 
compile each individual file, regardless of whether that file needs to 
be rebuilt or not. With many files in a project, it can become 
prohibitive to recompile everything if you’ve changed only a single 
file. 

The solution to this problem, developed on Unix but available 
everywhere in some form, is a program called make. The make 
utility manages all the individual files in a project by following the 
instructions in a text file called a makefile. When you edit some of 
the files in a project and type make, the make program follows the 
guidelines in the makefile to compare the dates on the source code 
files to the dates on the corresponding target files, and if a source 
code file date is more recent than its target file, make invokes the 
compiler on the source code file. make only recompiles the source 
code files that were changed, and any other source-code files that 
are affected by the modified files. By using make, you don’t have to 
re-compile all the files in your project every time you make a 
change, nor do you have to check to see that everything was built 
properly. The makefile contains all the commands to put your 
project together. Learning to use make will save you a lot of time 
and frustration. You’ll also discover that make is the typical way 
that you install new software on a Linux/Unix machine (although 
those makefiles tend to be far more complicated than the ones 
presented in this book, and you’ll often automatically generate a 
makefile for your particular machine as part of the installation 
process). 

Because make is available in some form for virtually all C++ 
compilers (and even if it isn’t, you can use freely-available makes 
with any compiler), it will be the tool used throughout this book. 
However, compiler vendors have also created their own project 
building tools. These tools ask you which files are in your project 
and determine all the relationships themselves. These tools use 
something similar to a makefile, generally called a project file, but 
the programming environment maintains this file so you don’t have 
to worry about it. The configuration and use of project files varies 
from one development environment to another, so you must find 
the appropriate documentation on how to use them (although 
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project file tools provided by compiler vendors are usually so simple 
to use that you can learn them by playing around – my favorite 
form of education).  

The makefiles used within this book should work even if you are 
also using a specific vendor’s project-building tool. 

Make activities 
When you type make (or whatever the name of your “make” 
program happens to be), the make program looks in the current 
directory for a file named makefile, which you’ve created if it’s 
your project. This file lists dependencies between source code files. 
make looks at the dates on files. If a dependent file has an older 
date than a file it depends on, make executes the rule given after 
the dependency. 

All comments in makefiles start with a # and continue to the end 
of the line. 

As a simple example, the makefile for a program called “hello” 
might contain: 

# A comment 

hello.exe: hello.cpp 

        mycompiler hello.cpp 
 

This says that hello.exe (the target) depends on hello.cpp. When 
hello.cpp has a newer date than hello.exe, make executes the 
“rule” mycompiler hello.cpp. There may be multiple 
dependencies and multiple rules. Many make programs require 
that all the rules begin with a tab. Other than that, whitespace is 
generally ignored so you can format for readability. 

The rules are not restricted to being calls to the compiler; you can 
call any program you want from within make. By creating groups 
of interdependent dependency-rule sets, you can modify your 
source code files, type make and be certain that all the affected 
files will be rebuilt correctly. 

3: The C in C++  205 

Macros 
A makefile may contain macros (note that these are completely 
different from C/C++ preprocessor macros). Macros allow 
convenient string replacement. The makefiles in this book use a 
macro to invoke the C++ compiler. For example, 

CPP = mycompiler 

hello.exe: hello.cpp 

        $(CPP) hello.cpp 
 

The = is used to identify CPP as a macro, and the $ and 
parentheses expand the macro. In this case, the expansion means 
that the macro call $(CPP) will be replaced with the string 
mycompiler. With the macro above, if you want to change to a 
different compiler called cpp, you just change the macro to: 

CPP = cpp 
 

You can also add compiler flags, etc., to the macro, or use separate 
macros to add compiler flags. 

Suffix Rules 
It becomes tedious to tell make how to invoke the compiler for 
every single cpp file in your project, when you know it’s the same 
basic process each time. Since make is designed to be a time-saver, 
it also has a way to abbreviate actions, as long as they depend on file 
name suffixes. These abbreviations are called suffix rules. A suffix 
rule is the way to teach make how to convert a file with one type of 
extension (.cpp, for example) into a file with another type of 
extension (.obj or .exe). Once you teach make the rules for 
producing one kind of file from another, all you have to do is tell 
make which files depend on which other files. When make finds a 
file with a date earlier than the file it depends on, it uses the rule to 
create a new file.  

The suffix rule tells make that it doesn’t need explicit rules to build 
everything, but instead it can figure out how to build things based 
on their file extension. In this case it says “To build a file that ends 
in exe from one that ends in cpp, invoke the following command.” 
Here’s what it looks like for the example above: 
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CPP = mycompiler 

.SUFFIXES: .exe .cpp 

.cpp.exe: 

        $(CPP) $< 
 

The .SUFFIXES directive tells make that it should watch out for 
any of the following file-name extensions because they have special 
meaning for this particular makefile. Next you see the suffix rule 
.cpp.exe, which says “Here’s how to convert any file with an 
extension of cpp to one with an extension of exe” (when the cpp 
file is more recent than the exe file). As before, the $(CPP) macro 
is used, but then you see something new: $<. Because this begins 
with a ‘$’ it’s a macro, but this is one of make’s special built-in 
macros. The $< can be used only in suffix rules, and it means 
“whatever prerequisite triggered the rule” (sometimes called the 
dependent), which in this case translates to “the cpp file that needs 
to be compiled.” 

Once the suffix rules have been set up, you can simply say, for 
example, “make Union.exe,” and the suffix rule will kick in, even 
though there’s no mention of “Union” anywhere in the makefile.  

Default targets 
After the macros and suffix rules, make looks for the first “target” 
in a file, and builds that, unless you specify differently. So for the 
following makefile: 

CPP = mycompiler 

.SUFFIXES: .exe .cpp 

.cpp.exe: 

        $(CPP) $< 

target1.exe: 

target2.exe: 
 

If you just type ‘make’, then target1.exe will be built (using the 
default suffix rule) because that’s the first target that make 
encounters. To build target2.exe you’d have to explicitly say 
‘make target2.exe’. This becomes tedious, so you normally create 
a default “dummy” target that depends on all the rest of the targets, 
like this: 

CPP = mycompiler 
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.SUFFIXES: .exe .cpp 

.cpp.exe: 

        $(CPP) $< 

all: target1.exe target2.exe 
 

Here, ‘all’ does not exist and there’s no file called ‘all’, so every time 
you type make, the program sees ‘all’ as the first target in the list 
(and thus the default target), then it sees that ‘all’ does not exist so 
it had better make it by checking all the dependencies. So it looks at 
target1.exe and (using the suffix rule) sees whether (1) 
target1.exe exists and (2) whether target1.cpp is more recent 
than target1.exe, and if so runs the suffix rule (if you provide an 
explicit rule for a particular target, that rule is used instead). Then it 
moves on to the next file in the default target list. Thus, by creating 
a default target list (typically called ‘all’ by convention, but you can 
call it anything) you can cause every executable in your project to be 
made simply by typing ‘make’. In addition, you can have other 
non-default target lists that do other things – for example, you 
could set it up so that typing ‘make debug’ rebuilds all your files 
with debugging wired in. 

Makefiles in this book 
Using the program ExtractCode.cpp from Volume 2 of this book, 
all the code listings in this book are automatically extracted from 
the ASCII text version of this book and placed in subdirectories 
according to their chapters. In addition, ExtractCode.cpp creates 
several makefiles in each subdirectory (with different names) so 
you can simply move into that subdirectory and type make -f 
mycompiler.makefile (substituting the name of your compiler 
for ‘mycompiler’, the ‘-f’ flag says “use what follows as the 
makefile”). Finally, ExtractCode.cpp creates a “master” 
makefile in the root directory where the book’s files have been 
expanded, and this makefile descends into each subdirectory and 
calls make with the appropriate makefile. This way you can 
compile all the code in the book by invoking a single make 
command, and the process will stop whenever your compiler is 
unable to handle a particular file (note that a Standard C++ 
conforming compiler should be able to compile all the files in this 
book). Because implementations of make vary from system to 
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system, only the most basic, common features are used in the 
generated makefiles.  

An example makefile 
As mentioned, the code-extraction tool ExtractCode.cpp 
automatically generates makefiles for each chapter. Because of 
this, the makefiles for each chapter will not be placed in the book 
(all the makefiles are packaged with the source code, which you can 
download from www.BruceEckel.com). However, it’s useful to see 
an example of a makefile. What follows is a shortened version of 
the one that was automatically generated for this chapter by the 
book’s extraction tool. You’ll find more than one makefile in each 
subdirectory (they have different names; you invoke a specific one 
with ‘make -f’). This one is for GNU C++: 

CPP = g++ 

OFLAG = -o 

.SUFFIXES : .o .cpp .c 

.cpp.o : 

  $(CPP) $(CPPFLAGS) -c $< 

.c.o : 

  $(CPP) $(CPPFLAGS) -c $< 

 

all: \ 

  Return \ 

  Declare \ 

  Ifthen \ 

  Guess \ 

  Guess2 

# Rest of the files for this chapter not shown 

 

Return: Return.o  

  $(CPP) $(OFLAG)Return Return.o  

 

Declare: Declare.o  

  $(CPP) $(OFLAG)Declare Declare.o  

 

Ifthen: Ifthen.o  

  $(CPP) $(OFLAG)Ifthen Ifthen.o  

 

Guess: Guess.o  

  $(CPP) $(OFLAG)Guess Guess.o  
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Guess2: Guess2.o  

  $(CPP) $(OFLAG)Guess2 Guess2.o  

 

Return.o: Return.cpp  

Declare.o: Declare.cpp  

Ifthen.o: Ifthen.cpp  

Guess.o: Guess.cpp  

Guess2.o: Guess2.cpp 
 

The macro CPP is set to the name of the compiler. To use a different 
compiler, you can either edit the makefile or change the value of 
the macro on the command line, like this: 

make CPP=cpp 
 

Note, however, that ExtractCode.cpp has an automatic scheme to 
automatically build makefiles for additional compilers. 

The second macro OFLAG is the flag that’s used to indicate the 
name of the output file. Although many compilers automatically 
assume the output file has the same base name as the input file, 
others don’t (such as Linux/Unix compilers, which default to 
creating a file called a.out). 

You can see that there are two suffix rules here, one for cpp files 
and one for .c files (in case any C source code needs to be 
compiled). The default target is all, and each line for this target is 
“continued” by using the backslash, up until Guess2, which is the 
last one in the list and thus has no backslash. There are many more 
files in this chapter, but only these are shown here for the sake of 
brevity. 

The suffix rules take care of creating object files (with a .o 
extension) from cpp files, but in general you need to explicitly state 
rules for creating the executable, because normally an executable is 
created by linking many different object files and make cannot 
guess what those are. Also, in this case (Linux/Unix) there is no 
standard extension for executables so a suffix rule won’t work for 
these simple situations. Thus, you see all the rules for building the 
final executables explicitly stated. 
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This makefile takes the absolute safest route of using as few make 
features as possible; it only uses the basic make concepts of targets 
and dependencies, as well as macros. This way it is virtually assured 
of working with as many make programs as possible. It tends to 
produce a larger makefile, but that’s not so bad since it’s 
automatically generated by ExtractCode.cpp. 

There are lots of other make features that this book will not use, as 
well as newer and cleverer versions and variations of make with 
advanced shortcuts that can save a lot of time. Your local 
documentation may describe the further features of your particular 
make, and you can learn more about make from Managing 
Projects with Make by Oram and Talbott (O’Reilly, 1993). Also, if 
your compiler vendor does not supply a make or it uses a non-
standard make, you can find GNU make for virtually any platform 
in existence by searching the Internet for GNU archives (of which 
there are many). 

Summary 
This chapter was a fairly intense tour through all the fundamental 
features of C++ syntax, most of which are inherited from and in 
common with C (and result in C++’s vaunted backwards 
compatibility with C). Although some C++ features were introduced 
here, this tour is primarily intended for people who are conversant 
in programming, and simply need to be given an introduction to the 
syntax basics of C and C++. If you’re already a C programmer, you 
may have even seen one or two things about C here that were 
unfamiliar, aside from the C++ features that were most likely new 
to you. However, if this chapter has still seemed a bit 
overwhelming, you should go through the CD ROM course 
Thinking in C: Foundations for C++ and Java (which contains 
lectures, exercises, and guided solutions), which is bound into this 
book, and also available at www.BruceEckel.com. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 
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1.  Create a header file (with an extension of ‘.h’). In this file, 
declare a group of functions by varying the argument lists 
and return values from among the following: void, char, 
int, and float. Now create a .cpp file that includes your 
header file and creates definitions for all of these 
functions. Each definition should simply print out the 
function name, argument list, and return type so you 
know it’s been called. Create a second .cpp file that 
includes your header file and defines int main( ), 
containing calls to all of your functions. Compile and run 
your program. 

2.  Write a program that uses two nested for loops and the 
modulus operator (%) to detect and print prime numbers 
(integral numbers that are not evenly divisible by any 
other numbers except for themselves and 1). 

3.  Write a program that uses a while loop to read words 
from standard input (cin) into a string. This is an 
“infinite” while loop, which you break out of (and exit 
the program) using a break statement. For each word 
that is read, evaluate it by first using a sequence of if 
statements to “map” an integral value to the word, and 
then use a switch statement that uses that integral value 
as its selector (this sequence of events is not meant to be 
good programming style; it’s just supposed to give you 
exercise with control flow). Inside each case, print 
something meaningful. You must decide what the 
“interesting” words are and what the meaning is. You 
must also decide what word will signal the end of the 
program. Test the program by redirecting a file into the 
program’s standard input (if you want to save typing, this 
file can be your program’s source file). 

4.  Modify Menu.cpp to use switch statements instead of 
if statements. 

5.  Write a program that evaluates the two expressions in the 
section labeled “precedence.” 

6.  Modify YourPets2.cpp so that it uses various different 
data types (char, int, float, double, and their variants). 
Run the program and create a map of the resulting 
memory layout. If you have access to more than one kind 
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of machine, operating system, or compiler, try this 
experiment with as many variations as you can manage. 

7.  Create two functions, one that takes a string* and one 
that takes a string&. Each of these functions should 
modify the outside string object in its own unique way. 
In main( ), create and initialize a string object, print it, 
then pass it to each of the two functions, printing the 
results. 

8.  Write a program that uses all the trigraphs to see if your 
compiler supports them. 

9.  Compile and run Static.cpp. Remove the static 
keyword from the code, compile and run it again, and 
explain what happens. 

10.  Try to compile and link FileStatic.cpp with 
FileStatic2.cpp. What does the resulting error message 
mean? 

11.  Modify Boolean.cpp so that it works with double 
values instead of ints. 

12.  Modify Boolean.cpp and Bitwise.cpp so they use the 
explicit operators (if your compiler is conformant to the 
C++ Standard it will support these). 

13.  Modify Bitwise.cpp to use the functions from 
Rotation.cpp. Make sure you display the results in such 
a way that it’s clear what’s happening during rotations. 

14.  Modify Ifthen.cpp to use the ternary if-else operator 
(?:). 

15.  Create a struct that holds two string objects and one 
int. Use a typedef for the struct name. Create an 
instance of the struct, initialize all three values in your 
instance, and print them out. Take the address of your 
instance and assign it to a pointer to your struct type. 
Change the three values in your instance and print them 
out, all using the pointer. 

16.  Create a program that uses an enumeration of colors. 
Create a variable of this enum type and print out all the 
numbers that correspond with the color names, using a 
for loop. 
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17.  Experiment with Union.cpp by removing various 
union elements to see the effects on the size of the 
resulting union. Try assigning to one element (thus one 
type) of the union and printing out a via a different 
element (thus a different type) to see what happens. 

18.  Create a program that defines two int arrays, one right 
after the other. Index off the end of the first array into the 
second, and make an assignment. Print out the second 
array to see the changes cause by this. Now try defining a 
char variable between the first array definition and the 
second, and repeat the experiment. You may want to 
create an array printing function to simplify your coding. 

19.  Modify ArrayAddresses.cpp to work with the data 
types char, long int, float, and double. 

20.  Apply the technique in ArrayAddresses.cpp to print 
out the size of the struct and the addresses of the array 
elements in StructArray.cpp. 

21.  Create an array of string objects and assign a string to 
each element. Print out the array using a for loop. 

22.  Create two new programs starting from ArgsToInts.cpp 
so they use atol( ) and atof( ), respectively. 

23.  Modify PointerIncrement2.cpp so it uses a union 
instead of a struct. 

24.  Modify PointerArithmetic.cpp to work with long and 
long double. 

25.  Define a float variable. Take its address, cast that 
address to an unsigned char, and assign it to an 
unsigned char pointer. Using this pointer and [ ], 
index into the float variable and use the printBinary( ) 
function defined in this chapter to print out a map of the 
float (go from 0 to sizeof(float)). Change the value of 
the float and see if you can figure out what’s going on 
(the float contains encoded data). 

26.  Define an array of int. Take the starting address of that 
array and use static_cast to convert it into an void*. 
Write a function that takes a void*, a number (indicating 
a number of bytes), and a value (indicating the value to 
which each byte should be set) as arguments. The 
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function should set each byte in the specified range to the 
specified value. Try out the function on your array of int. 

27.  Create a const array of double and a volatile array of 
double. Index through each array and use const_cast 
to cast each element to non-const and non-volatile, 
respectively, and assign a value to each element. 

28.  Create a function that takes a pointer to an array of 
double and a value indicating the size of that array. The 
function should print each element in the array. Now 
create an array of double and initialize each element to 
zero, then use your function to print the array. Next use 
reinterpret_cast to cast the starting address of your 
array to an unsigned char*, and set each byte of the 
array to 1 (hint: you’ll need to use sizeof to calculate the 
number of bytes in a double). Now use your array-
printing function to print the results. Why do you think 
each element was not set to the value 1.0? 

29.  (Challenging) Modify FloatingAsBinary.cpp so that it 
prints out each part of the double as a separate group of 
bits. You’ll have to replace the calls to printBinary( ) 
with your own specialized code (which you can derive 
from printBinary( )) in order to do this, and you’ll also 
have to look up and understand the floating-point format 
along with the byte ordering for your compiler (this is the 
challenging part). 

30.  Create a makefile that not only compiles YourPets1.cpp 
and YourPets2.cpp (for your particular compiler) but 
also executes both programs as part of the default target 
behavior. Make sure you use suffix rules. 

31.  Modify StringizingExpressions.cpp so that P(A) is 
conditionally #ifdefed to allow the debugging code to be 
automatically stripped out by setting a command-line 
flag. You will need to consult your compiler’s 
documentation to see how to define and undefine 
preprocessor values on the compiler command line. 

32.  Define a function that takes a double argument and 
returns an int. Create and initialize a pointer to this 
function, and call the function through your pointer. 
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33.  Declare a pointer to a function taking an int argument 
and returning a pointer to a function that takes a char 
argument and returns a float. 

34.  Modify FunctionTable.cpp so that each function 
returns a string (instead of printing out a message) and 
so that this value is printed inside of main( ). 

35.  Create a makefile for one of the previous exercises (of 
your choice) that allows you to type make for a 
production build of the program, and make debug for a 
build of the program including debugging information. 
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4: Data Abstraction 
C++ is a productivity enhancement tool. Why else  

would you make the effort (and it is an effort,  

regardless of how easy we attempt to make the 

transition) 
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to switch from some language that you already know and are 
productive with to a new language in which you’re going to be less 
productive for a while, until you get the hang of it? It’s because 
you’ve become convinced that you’re going to get big gains by using 
this new tool. 

Productivity, in computer programming terms, means that fewer 
people can make much more complex and impressive programs in 
less time. There are certainly other issues when it comes to 
choosing a language, such as efficiency (does the nature of the 
language cause slowdown and code bloat?), safety (does the 
language help you ensure that your program will always do what 
you plan, and handle errors gracefully?), and maintenance (does 
the language help you create code that is easy to understand, 
modify, and extend?). These are certainly important factors that 
will be examined in this book. 

But raw productivity means a program that formerly took three of 
you a week to write now takes one of you a day or two. This touches 
several levels of economics. You’re happy because you get the rush 
of power that comes from building something, your client (or boss) 
is happy because products are produced faster and with fewer 
people, and the customers are happy because they get products 
more cheaply. The only way to get massive increases in productivity 
is to leverage off other people’s code. That is, to use libraries. 

A library is simply a bunch of code that someone else has written 
and packaged together. Often, the most minimal package is a file 
with an extension like lib and one or more header files to tell your 
compiler what’s in the library. The linker knows how to search 
through the library file and extract the appropriate compiled code. 
But that’s only one way to deliver a library. On platforms that span 
many architectures, such as Linux/Unix, often the only sensible 
way to deliver a library is with source code, so it can be reconfigured 
and recompiled on the new target. 

Thus, libraries are probably the most important way to improve 
productivity, and one of the primary design goals of C++ is to make 
library use easier. This implies that there’s something hard about 

4: Data Abstraction  219 

using libraries in C. Understanding this factor will give you a first 
insight into the design of C++, and thus insight into how to use it. 

A tiny C-like library 
A library usually starts out as a collection of functions, but if you 
have used third-party C libraries you know there’s usually more to it 
than that because there’s more to life than behavior, actions, and 
functions. There are also characteristics (blue, pounds, texture, 
luminance), which are represented by data. And when you start to 
deal with a set of characteristics in C, it is very convenient to clump 
them together into a struct, especially if you want to represent 
more than one similar thing in your problem space. Then you can 
make a variable of this struct for each thing. 

Thus, most C libraries have a set of structs and a set of functions 
that act on those structs. As an example of what such a system 
looks like, consider a programming tool that acts like an array, but 
whose size can be established at runtime, when it is created. I’ll call 
it a CStash. Although it’s written in C++, it has the style of what 
you’d write in C:  

//: C04:CLib.h 

// Header file for a C-like library 

// An array-like entity created at runtime 

 

typedef struct CStashTag { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

  // Dynamically allocated array of bytes: 

  unsigned char* storage; 

} CStash; 

 

void initialize(CStash* s, int size); 

void cleanup(CStash* s); 

int add(CStash* s, const void* element); 

void* fetch(CStash* s, int index); 

int count(CStash* s); 

void inflate(CStash* s, int increase); 

///:~ 
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A tag name like CStashTag is generally used for a struct in case 
you need to reference the struct inside itself. For example, when 
creating a linked list (each element in your list contains a pointer to 
the next element), you need a pointer to the next struct variable, so 
you need a way to identify the type of that pointer within the struct 
body. Also, you'll almost universally see the typedef as shown 
above for every struct in a C library. This is done so you can treat 
the struct as if it were a new type and define variables of that 
struct like this: 

CStash A, B, C; 
 

The storage pointer is an unsigned char*. An unsigned char is 
the smallest piece of storage a C compiler supports, although on 
some machines it can be the same size as the largest. It’s 
implementation dependent, but is often one byte long. You might 
think that because the CStash is designed to hold any type of 
variable, a void* would be more appropriate here. However, the 
purpose is not to treat this storage as a block of some unknown 
type, but rather as a block of contiguous bytes. 

The source code for the implementation file (which you may not get 
if you buy a library commercially – you might get only a compiled 
obj or lib or dll, etc.) looks like this: 

//: C04:CLib.cpp {O} 

// Implementation of example C-like library 

// Declare structure and functions: 

#include "CLib.h" 

#include <iostream> 

#include <cassert>  

using namespace std; 

// Quantity of elements to add 

// when increasing storage: 

const int increment = 100; 

 

void initialize(CStash* s, int sz) { 

  s->size = sz; 

  s->quantity = 0; 

  s->storage = 0; 

  s->next = 0; 

} 
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int add(CStash* s, const void* element) { 

  if(s->next >= s->quantity) //Enough space left? 

    inflate(s, increment); 

  // Copy element into storage, 

  // starting at next empty space: 

  int startBytes = s->next * s->size; 

  unsigned char* e = (unsigned char*)element; 

  for(int i = 0; i < s->size; i++) 

    s->storage[startBytes + i] = e[i]; 

  s->next++; 

  return(s->next - 1); // Index number 

} 

 

void* fetch(CStash* s, int index) { 

  // Check index boundaries: 

  assert(0 <= index); 

  if(index >= s->next) 

    return 0; // To indicate the end 

  // Produce pointer to desired element: 

  return &(s->storage[index * s->size]); 

} 

 

int count(CStash* s) { 

  return s->next;  // Elements in CStash 

} 

 

void inflate(CStash* s, int increase) { 

  assert(increase > 0); 

  int newQuantity = s->quantity + increase; 

  int newBytes = newQuantity * s->size; 

  int oldBytes = s->quantity * s->size; 

  unsigned char* b = new unsigned char[newBytes]; 

  for(int i = 0; i < oldBytes; i++) 

    b[i] = s->storage[i]; // Copy old to new 

  delete [](s->storage); // Old storage 

  s->storage = b; // Point to new memory 

  s->quantity = newQuantity; 

} 

 

void cleanup(CStash* s) { 

  if(s->storage != 0) { 

   cout << "freeing storage" << endl; 

   delete []s->storage; 

  } 
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} ///:~ 
 

initialize( ) performs the necessary setup for struct CStash by 
setting the internal variables to appropriate values. Initially, the 
storage pointer is set to zero – no initial storage is allocated. 

The add( ) function inserts an element into the CStash at the next 
available location. First, it checks to see if there is any available 
space left. If not, it expands the storage using the inflate( ) 
function, described later. 

Because the compiler doesn’t know the specific type of the variable 
being stored (all the function gets is a void*), you can’t just do an 
assignment, which would certainly be the convenient thing. Instead, 
you must copy the variable byte-by-byte. The most straightforward 
way to perform the copying is with array indexing. Typically, there 
are already data bytes in storage, and this is indicated by the value 
of next. To start with the right byte offset, next is multiplied by the 
size of each element (in bytes) to produce startBytes. Then the 
argument element is cast to an unsigned char* so that it can be 
addressed byte-by-byte and copied into the available storage 
space. next is incremented so that it indicates the next available 
piece of storage, and the “index number” where the value was 
stored so that value can be retrieved using this index number with 
fetch( ). 

fetch( ) checks to see that the index isn’t out of bounds and then 
returns the address of the desired variable, calculated using the 
index argument. Since index indicates the number of elements to 
offset into the CStash, it must be multiplied by the number of bytes 
occupied by each piece to produce the numerical offset in bytes. 
When this offset is used to index into storage using array indexing, 
you don’t get the address, but instead the byte at the address. To 
produce the address, you must use the address-of operator &.  

count( ) may look a bit strange at first to a seasoned C 
programmer. It seems like a lot of trouble to go through to do 
something that would probably be a lot easier to do by hand. If you 
have a struct CStash called intStash, for example, it would seem 
much more straightforward to find out how many elements it has 
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by saying intStash.next instead of making a function call (which 
has overhead), such as count(&intStash). However, if you 
wanted to change the internal representation of CStash and thus 
the way the count was calculated, the function call interface allows 
the necessary flexibility. But alas, most programmers won’t bother 
to find out about your “better” design for the library. They’ll look at 
the struct and grab the next value directly, and possibly even 
change next without your permission. If only there were some way 
for the library designer to have better control over things like this! 
(Yes, that’s foreshadowing.) 

Dynamic storage allocation 
You never know the maximum amount of storage you might need 
for a CStash, so the memory pointed to by storage is allocated 
from the heap. The heap is a big block of memory used for 
allocating smaller pieces at runtime. You use the heap when you 
don’t know the size of the memory you’ll need while you’re writing a 
program. That is, only at runtime will you find out that you need 
space to hold 200 Airplane variables instead of 20. In Standard C, 
dynamic-memory allocation functions include malloc( ), 
calloc( ), realloc( ), and free( ). Instead of library calls, however, 
C++ has a more sophisticated (albeit simpler to use) approach to 
dynamic memory that is integrated into the language via the 
keywords new and delete. 

The inflate( ) function uses new to get a bigger chunk of space for 
the CStash. In this situation, we will only expand memory and not 
shrink it, and the assert( ) will guarantee that a negative number is 
not passed to inflate( ) as the increase value. The new number of 
elements that can be held (after inflate( ) completes) is calculated 
as newQuantity, and this is multiplied by the number of bytes per 
element to produce newBytes, which will be the number of bytes 
in the allocation. So that we know how many bytes to copy over 
from the old location, oldBytes is calculated using the old 
quantity. 

The actual storage allocation occurs in the new-expression, which is 
the expression involving the new keyword: 
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new unsigned char[newBytes]; 
 

The general form of the new-expression is: 

new Type; 

in which Type describes the type of variable you want allocated on 
the heap. In this case, we want an array of unsigned char that is 
newBytes long, so that is what appears as the Type. You can also 
allocate something as simple as an int by saying: 

new int; 
 

and although this is rarely done, you can see that the form is 
consistent. 

A new-expression returns a pointer to an object of the exact type 
that you asked for. So if you say new Type, you get back a pointer 
to a Type. If you say new int, you get back a pointer to an int. If 
you want a new unsigned char array, you get back a pointer to 
the first element of that array. The compiler will ensure that you 
assign the return value of the new-expression to a pointer of the 
correct type. 

Of course, any time you request memory it’s possible for the request 
to fail, if there is no more memory. As you will learn, C++ has 
mechanisms that come into play if the memory-allocation operation 
is unsuccessful. 

Once the new storage is allocated, the data in the old storage must 
be copied to the new storage; this is again accomplished with array 
indexing, copying one byte at a time in a loop. After the data is 
copied, the old storage must be released so that it can be used by 
other parts of the program if they need new storage. The delete 
keyword is the complement of new, and must be applied to release 
any storage that is allocated with new (if you forget to use delete, 
that storage remains unavailable, and if this so-called memory leak 
happens enough, you’ll run out of memory). In addition, there’s a 
special syntax when you’re deleting an array. It’s as if you must 
remind the compiler that this pointer is not just pointing to one 
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object, but to an array of objects: you put a set of empty square 
brackets in front of the pointer to be deleted: 

delete []myArray; 
 

Once the old storage has been deleted, the pointer to the new 
storage can be assigned to the storage pointer, the quantity is 
adjusted, and inflate( ) has completed its job. 

Note that the heap manager is fairly primitive. It gives you chunks 
of memory and takes them back when you delete them. There’s no 
inherent facility for heap compaction, which compresses the heap 
to provide bigger free chunks. If a program allocates and frees heap 
storage for a while, you can end up with a fragmented heap that has 
lots of memory free, but without any pieces that are big enough to 
allocate the size you’re looking for at the moment. A heap 
compactor complicates a program because it moves memory 
chunks around, so your pointers won’t retain their proper values. 
Some operating environments have heap compaction built in, but 
they require you to use special memory handles (which can be 
temporarily converted to pointers, after locking the memory so the 
heap compactor can’t move it) instead of pointers. You can also 
build your own heap-compaction scheme, but this is not a task to be 
undertaken lightly. 

When you create a variable on the stack at compile-time, the 
storage for that variable is automatically created and freed by the 
compiler. The compiler knows exactly how much storage is needed, 
and it knows the lifetime of the variables because of scoping. With 
dynamic memory allocation, however, the compiler doesn’t know 
how much storage you’re going to need, and it doesn’t know the 
lifetime of that storage. That is, the storage doesn’t get cleaned up 
automatically. Therefore, you’re responsible for releasing the 
storage using delete, which tells the heap manager that storage can 
be used by the next call to new. The logical place for this to happen 
in the library is in the cleanup( ) function because that is where all 
the closing-up housekeeping is done. 

To test the library, two CStashes are created. The first holds ints 
and the second holds arrays of 80 chars: 
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//: C04:CLibTest.cpp 

//{L} CLib 

// Test the C-like library 

#include "CLib.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

#include <cassert> 

using namespace std; 

 

int main() { 

  // Define variables at the beginning 

  // of the block, as in C: 

  CStash intStash, stringStash; 

  int i; 

  char* cp; 

  ifstream in; 

  string line; 

  const int bufsize = 80; 

  // Now remember to initialize the variables: 

  initialize(&intStash, sizeof(int)); 

  for(i = 0; i < 100; i++) 

    add(&intStash, &i); 

  for(i = 0; i < count(&intStash); i++) 

    cout << "fetch(&intStash, " << i << ") = " 

         << *(int*)fetch(&intStash, i) 

         << endl; 

  // Holds 80-character strings: 

  initialize(&stringStash, sizeof(char)*bufsize); 

  in.open("CLibTest.cpp"); 

  assert(in); 

  while(getline(in, line)) 

    add(&stringStash, line.c_str()); 

  i = 0; 

  while((cp = (char*)fetch(&stringStash,i++))!=0) 

    cout << "fetch(&stringStash, " << i << ") = " 

         << cp << endl; 

  cleanup(&intStash); 

  cleanup(&stringStash); 

} ///:~ 
 

Following the form required by C, all the variables are created at the 
beginning of the scope of main( ). Of course, you must remember 
to initialize the CStash variables later in the block by calling 
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initialize( ). One of the problems with C libraries is that you must 
carefully convey to the user the importance of the initialization and 
cleanup functions. If these functions aren’t called, there will be a lot 
of trouble. Unfortunately, the user doesn’t always wonder if 
initialization and cleanup are mandatory. They know what they 
want to accomplish, and they’re not as concerned about you 
jumping up and down saying, “Hey, wait, you have to do this first!” 
Some users have even been known to initialize the elements of a 
structure themselves. There’s certainly no mechanism in C to 
prevent it (more foreshadowing). 

The intStash is filled up with integers, and the stringStash is 
filled with character arrays. These character arrays are produced by 
opening the source code file, CLibTest.cpp, and reading the lines 
from it into a string called line, and then producing a pointer to 
the character representation of line using the member function 
c_str( ).  

After each Stash is loaded, it is displayed. The intStash is printed 
using a for loop, which uses count( ) to establish its limit. The 
stringStash is printed with a while, which breaks out when 
fetch( ) returns zero to indicate it is out of bounds. 

You’ll also notice an additional cast in  

cp = (char*)fetch(&stringStash,i++) 
 

This is due to the stricter type checking in C++, which does not 
allow you to simply assign a void* to any other type (C allows this). 

Bad guesses 
There is one more important issue you should understand before 
we look at the general problems in creating a C library. Note that 
the CLib.h header file must be included in any file that refers to 
CStash because the compiler can’t even guess at what that 
structure looks like. However, it can guess at what a function looks 
like; this sounds like a feature but it turns out to be a major C 
pitfall. 
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Although you should always declare functions by including a header 
file, function declarations aren’t essential in C. It’s possible in C 
(but not in C++) to call a function that you haven’t declared. A good 
compiler will warn you that you probably ought to declare a 
function first, but it isn’t enforced by the C language standard. This 
is a dangerous practice, because the C compiler can assume that a 
function that you call with an int argument has an argument list 
containing int, even if it may actually contain a float. This can 
produce bugs that are very difficult to find, as you will see. 

Each separate C implementation file (with an extension of .c) is a 
translation unit. That is, the compiler is run separately on each 
translation unit, and when it is running it is aware of only that unit. 
Thus, any information you provide by including header files is quite 
important because it determines the compiler’s understanding of 
the rest of your program. Declarations in header files are 
particularly important, because everywhere the header is included, 
the compiler will know exactly what to do. If, for example, you have 
a declaration in a header file that says void func(float), the 
compiler knows that if you call that function with an integer 
argument, it should convert the int to a float as it passes the 
argument (this is called promotion). Without the declaration, the C 
compiler would simply assume that a function func(int) existed, it 
wouldn’t do the promotion, and the wrong data would quietly be 
passed into func( ). 

For each translation unit, the compiler creates an object file, with 
an extension of .o or .obj or something similar. These object files, 
along with the necessary start-up code, must be collected by the 
linker into the executable program. During linking, all the external 
references must be resolved. For example, in CLibTest.cpp, 
functions such as initialize( ) and fetch( ) are declared (that is, 
the compiler is told what they look like) and used, but not defined. 
They are defined elsewhere, in CLib.cpp. Thus, the calls in 
CLib.cpp are external references. The linker must, when it puts all 
the object files together, take the unresolved external references 
and find the addresses they actually refer to. Those addresses are 
put into the executable program to replace the external references. 
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It’s important to realize that in C, the external references that the 
linker searches for are simply function names, generally with an 
underscore in front of them. So all the linker has to do is match up 
the function name where it is called and the function body in the 
object file, and it’s done. If you accidentally made a call that the 
compiler interpreted as func(int) and there’s a function body for 
func(float) in some other object file, the linker will see _func in 
one place and _func in another, and it will think everything’s OK. 
The func( ) at the calling location will push an int onto the stack, 
and the func( ) function body will expect a float to be on the stack. 
If the function only reads the value and doesn’t write to it, it won’t 
blow up the stack. In fact, the float value it reads off the stack 
might even make some kind of sense. That’s worse because it’s 
harder to find the bug. 

What's wrong? 
We are remarkably adaptable, even in situations in which perhaps 
we shouldn’t adapt. The style of the CStash library has been a 
staple for C programmers, but if you look at it for a while, you might 
notice that it’s rather . . . awkward. When you use it, you have to 
pass the address of the structure to every single function in the 
library. When reading the code, the mechanism of the library gets 
mixed with the meaning of the function calls, which is confusing 
when you’re trying to understand what’s going on. 

One of the biggest obstacles, however, to using libraries in C is the 
problem of name clashes. C has a single name space for functions; 
that is, when the linker looks for a function name, it looks in a 
single master list. In addition, when the compiler is working on a 
translation unit, it can work only with a single function with a given 
name. 

Now suppose you decide to buy two libraries from two different 
vendors, and each library has a structure that must be initialized 
and cleaned up. Both vendors decided that initialize( ) and 
cleanup( ) are good names. If you include both their header files 
in a single translation unit, what does the C compiler do? 
Fortunately, C gives you an error, telling you there’s a type 
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mismatch in the two different argument lists of the declared 
functions. But even if you don’t include them in the same 
translation unit, the linker will still have problems. A good linker 
will detect that there’s a name clash, but some linkers take the first 
function name they find, by searching through the list of object files 
in the order you give them in the link list. (This can even be thought 
of as a feature because it allows you to replace a library function 
with your own version.) 

In either event, you can’t use two C libraries that contain a function 
with the identical name. To solve this problem, C library vendors 
will often prepend a sequence of unique characters to the beginning 
of all their function names. So initialize( ) and cleanup( ) might 
become CStash_initialize( ) and CStash_cleanup( ). This is a 
logical thing to do because it “decorates” the name of the struct the 
function works on with the name of the function. 

Now it’s time to take the first step toward creating classes in C++. 
Variable names inside a struct do not clash with global variable 
names. So why not take advantage of this for function names, when 
those functions operate on a particular struct? That is, why not 
make functions members of structs? 

The basic object 
Step one is exactly that. C++ functions can be placed inside structs 
as “member functions.” Here’s what it looks like after converting 
the C version of CStash to the C++ Stash:  

//: C04:CppLib.h 

// C-like library converted to C++ 

 

struct Stash { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

   // Dynamically allocated array of bytes: 

  unsigned char* storage; 

  // Functions! 

  void initialize(int size); 
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  void cleanup(); 

  int add(const void* element); 

  void* fetch(int index); 

  int count(); 

  void inflate(int increase); 

}; ///:~ 
 

First, notice there is no typedef. Instead of requiring you to create 
a typedef, the C++ compiler turns the name of the structure into a 
new type name for the program (just as int, char, float and 
double are type names). 

All the data members are exactly the same as before, but now the 
functions are inside the body of the struct. In addition, notice that 
the first argument from the C version of the library has been 
removed. In C++, instead of forcing you to pass the address of the 
structure as the first argument to all the functions that operate on 
that structure, the compiler secretly does this for you. Now the only 
arguments for the functions are concerned with what the function 
does, not the mechanism of the function’s operation. 

It’s important to realize that the function code is effectively the 
same as it was with the C version of the library. The number of 
arguments is the same (even though you don’t see the structure 
address being passed in, it’s still there), and there’s only one 
function body for each function. That is, just because you say 

Stash A, B, C; 
 

doesn’t mean you get a different add( ) function for each variable. 

So the code that’s generated is almost identical to what you would 
have written for the C version of the library. Interestingly enough, 
this includes the  “name decoration” you probably would have done 
to produce Stash_initialize( ), Stash_cleanup( ), and so on. 
When the function name is inside the struct, the compiler 
effectively does the same thing. Therefore, initialize( ) inside the 
structure Stash will not collide with a function named initialize( ) 
inside any other structure, or even a global function named 
initialize( ). Most of the time you don’t have to worry about the 
function name decoration – you use the undecorated name. But 
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sometimes you do need to be able to specify that this initialize( ) 
belongs to the struct Stash, and not to any other struct. In 
particular, when you’re defining the function you need to fully 
specify which one it is. To accomplish this full specification, C++ 
has an operator (::) called the scope resolution operator (named so 
because names can now be in different scopes: at global scope or 
within the scope of a struct). For example, if you want to specify 
initialize( ), which belongs to Stash, you say 
Stash::initialize(int size). You can see how the scope resolution 
operator is used in the function definitions: 

//: C04:CppLib.cpp {O} 

// C library converted to C++ 

// Declare structure and functions: 

#include "CppLib.h" 

#include <iostream> 

#include <cassert> 

using namespace std; 

// Quantity of elements to add 

// when increasing storage: 

const int increment = 100; 

 

void Stash::initialize(int sz) { 

  size = sz; 

  quantity = 0; 

  storage = 0; 

  next = 0; 

} 

 

int Stash::add(const void* element) { 

  if(next >= quantity) // Enough space left? 

    inflate(increment); 

  // Copy element into storage, 

  // starting at next empty space: 

  int startBytes = next * size; 

  unsigned char* e = (unsigned char*)element; 

  for(int i = 0; i < size; i++) 

    storage[startBytes + i] = e[i]; 

  next++; 

  return(next - 1); // Index number 

} 

 

void* Stash::fetch(int index) { 
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  // Check index boundaries: 

  assert(0 <= index); 

  if(index >= next) 

    return 0; // To indicate the end 

  // Produce pointer to desired element: 

  return &(storage[index * size]); 

} 

 

int Stash::count() { 

  return next; // Number of elements in CStash 

} 

 

void Stash::inflate(int increase) { 

  assert(increase > 0); 

  int newQuantity = quantity + increase; 

  int newBytes = newQuantity * size; 

  int oldBytes = quantity * size; 

  unsigned char* b = new unsigned char[newBytes]; 

  for(int i = 0; i < oldBytes; i++) 

    b[i] = storage[i]; // Copy old to new 

  delete []storage; // Old storage 

  storage = b; // Point to new memory 

  quantity = newQuantity; 

} 

 

void Stash::cleanup() { 

  if(storage != 0) { 

    cout << "freeing storage" << endl; 

    delete []storage; 

  } 

} ///:~ 
 

There are several other things that are different between C and 
C++. First, the declarations in the header files are required by the 
compiler. In C++ you cannot call a function without declaring it 
first. The compiler will issue an error message otherwise. This is an 
important way to ensure that function calls are consistent between 
the point where they are called and the point where they are 
defined. By forcing you to declare the function before you call it, the 
C++ compiler virtually ensures that you will perform this 
declaration by including the header file. If you also include the 
same header file in the place where the functions are defined, then 
the compiler checks to make sure that the declaration in the header 
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and the function definition match up. This means that the header 
file becomes a validated repository for function declarations and 
ensures that functions are used consistently throughout all 
translation units in the project. 

Of course, global functions can still be declared by hand every place 
where they are defined and used. (This is so tedious that it becomes 
very unlikely.) However, structures must always be declared before 
they are defined or used, and the most convenient place to put a 
structure definition is in a header file, except for those you 
intentionally hide in a file. 

You can see that all the member functions look almost the same as 
when they were C functions, except for the scope resolution and the 
fact that the first argument from the C version of the library is no 
longer explicit. It’s still there, of course, because the function has to 
be able to work on a particular struct variable. But notice, inside 
the member function, that the member selection is also gone! Thus, 
instead of saying s–>size = sz; you say size = sz; and eliminate 
the tedious s–>, which didn’t really add anything to the meaning of 
what you were doing anyway. The C++ compiler is apparently doing 
this for you. Indeed, it is taking the “secret” first argument (the 
address of the structure that we were previously passing in by hand) 
and applying the member selector whenever you refer to one of the 
data members of a struct. This means that whenever you are inside 
the member function of another struct, you can refer to any 
member (including another member function) by simply giving its 
name. The compiler will search through the local structure’s names 
before looking for a global version of that name. You’ll find that this 
feature means that not only is your code easier to write, it’s a lot 
easier to read. 

But what if, for some reason, you want to be able to get your hands 
on the address of the structure? In the C version of the library it was 
easy because each function’s first argument was a CStash* called s. 
In C++, things are even more consistent. There’s a special keyword, 
called this, which produces the address of the struct. It’s the 
equivalent of the ‘s’ in the C version of the library. So we can revert 
to the C style of things by saying 
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this->size = Size; 
 

The code generated by the compiler is exactly the same, so you 
don’t need to use this in such a fashion; occasionally, you’ll see 
code where people explicitly use this-> everywhere but it doesn’t 
add anything to the meaning of the code and often indicates an 
inexperienced programmer. Usually, you don’t use this often, but 
when you need it, it’s there (some of the examples later in the book 
will use this). 

There’s one last item to mention. In C, you could assign a void* to 
any other pointer like this: 

int i = 10; 

void* vp = &i; // OK in both C and C++ 

int* ip = vp; // Only acceptable in C 
 

and there was no complaint from the compiler. But in C++, this 
statement is not allowed. Why? Because C is not so particular about 
type information, so it allows you to assign a pointer with an 
unspecified type to a pointer with a specified type. Not so with C++. 
Type is critical in C++, and the compiler stamps its foot when there 
are any violations of type information. This has always been 
important, but it is especially important in C++ because you have 
member functions in structs. If you could pass pointers to structs 
around with impunity in C++, then you could end up calling a 
member function for a struct that doesn’t even logically exist for 
that struct! A real recipe for disaster. Therefore, while C++ allows 
the assignment of any type of pointer to a void* (this was the 
original intent of void*, which is required to be large enough to 
hold a pointer to any type), it will not allow you to assign a void 
pointer to any other type of pointer. A cast is always required to tell 
the reader and the compiler that you really do want to treat it as the 
destination type.  

This brings up an interesting issue. One of the important goals for 
C++ is to compile as much existing C code as possible to allow for 
an easy transition to the new language. However, this doesn’t mean 
any code that C allows will automatically be allowed in C++. There 
are a number of things the C compiler lets you get away with that 
are dangerous and error-prone. (We’ll look at them as the book 
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progresses.) The C++ compiler generates warnings and errors for 
these situations. This is often much more of an advantage than a 
hindrance. In fact, there are many situations in which you are trying 
to run down an error in C and just can’t find it, but as soon as you 
recompile the program in C++, the compiler points out the 
problem! In C, you’ll often find that you can get the program to 
compile, but then you have to get it to work. In C++, when the 
program compiles correctly, it often works, too! This is because the 
language is a lot stricter about type. 

You can see a number of new things in the way the C++ version of 
Stash is used in the following test program: 

//: C04:CppLibTest.cpp 

//{L} CppLib 

// Test of C++ library 

#include "CppLib.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main() { 

  Stash intStash; 

  intStash.initialize(sizeof(int)); 

  for(int i = 0; i < 100; i++) 

    intStash.add(&i); 

  for(int j = 0; j < intStash.count(); j++) 

    cout << "intStash.fetch(" << j << ") = " 

         << *(int*)intStash.fetch(j) 

         << endl; 

  // Holds 80-character strings: 

  Stash stringStash; 

  const int bufsize = 80; 

  stringStash.initialize(sizeof(char) * bufsize); 

  ifstream in("CppLibTest.cpp"); 

  assure(in, "CppLibTest.cpp"); 

  string line; 

  while(getline(in, line)) 

    stringStash.add(line.c_str()); 

  int k = 0; 

  char* cp; 
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  while((cp =(char*)stringStash.fetch(k++)) != 0) 

    cout << "stringStash.fetch(" << k << ") = " 

         << cp << endl; 

  intStash.cleanup(); 

  stringStash.cleanup(); 

} ///:~ 
 

One thing you’ll notice is that the variables are all defined “on the 
fly” (as introduced in the previous chapter). That is, they are 
defined at any point in the scope, rather than being restricted – as 
in C – to the beginning of the scope. 

The code is quite similar to CLibTest.cpp, but when a member 
function is called, the call occurs using the member selection 
operator   ‘.’ preceded by the name of the variable. This is a 
convenient syntax because it mimics the selection of a data member 
of the structure. The difference is that this is a function member, so 
it has an argument list. 

Of course, the call that the compiler actually generates looks much 
more like the original C library function. Thus, considering name 
decoration and the passing of this, the C++ function call 
intStash.initialize(sizeof(int), 100) becomes something like 
Stash_initialize(&intStash, sizeof(int), 100). If you ever 
wonder what’s going on underneath the covers, remember that the 
original C++ compiler cfront from AT&T produced C code as its 
output, which was then compiled by the underlying C compiler. 
This approach meant that cfront could be quickly ported to any 
machine that had a C compiler, and it helped to rapidly disseminate 
C++ compiler technology. But because the C++ compiler had to 
generate C, you know that there must be some way to represent 
C++ syntax in C (some compilers still allow you to produce C code). 

There’s one other change from ClibTest.cpp, which is the 
introduction of the require.h header file. This is a header file that 
I created for this book to perform more sophisticated error checking 
than that provided by assert( ). It contains several functions, 
including the one used here called assure( ), which is used for 
files. This function checks to see if the file has successfully been 
opened, and if not it reports to standard error that the file could not 
be opened (thus it needs the name of the file as the second 



238 Thinking in C++ www.BruceEckel.com 

argument) and exits the program. The require.h functions will be 
used throughout the book, in particular to ensure that there are the 
right number of command-line arguments and that files are opened 
properly. The require.h functions replace repetitive and 
distracting error-checking code, and yet they provide essentially 
useful error messages. These functions will be fully explained later 
in the book. 

What's an object? 
Now that you’ve seen an initial example, it’s time to step back and 
take a look at some terminology. The act of bringing functions 
inside structures is the root of what C++ adds to C, and it 
introduces a new way of thinking about structures: as concepts. In 
C, a struct is an agglomeration of data, a way to package data so 
you can treat it in a clump. But it’s hard to think about it as 
anything but a programming convenience. The functions that 
operate on those structures are elsewhere. However, with functions 
in the package, the structure becomes a new creature, capable of 
describing both characteristics (like a C struct does) and 
behaviors. The concept of an object, a free-standing, bounded entity 
that can remember and act, suggests itself. 

In C++, an object is just a variable, and the purest definition is “a 
region of storage” (this is a more specific way of saying, “an object 
must have a unique identifier,” which in the case of C++ is a unique 
memory address). It’s a place where you can store data, and it’s 
implied that there are also operations that can be performed on this 
data. 

Unfortunately, there’s not complete consistency across languages 
when it comes to these terms, although they are fairly well-
accepted. You will also sometimes encounter disagreement about 
what an object-oriented language is, although that seems to be 
reasonably well sorted out by now. There are languages that are 
object-based, which means that they have objects like the C++ 
structures-with-functions that you’ve seen so far. This, however, is 
only part of the picture when it comes to an object-oriented 
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language, and languages that stop at packaging functions inside 
data structures are object-based, not object-oriented. 

Abstract data typing 
The ability to package data with functions allows you to create a 
new data type. This is often called encapsulation1. An existing data 
type may have several pieces of data packaged together. For 
example, a float has an exponent, a mantissa, and a sign bit. You 
can tell it to do things: add to another float or to an int, and so on. 
It has characteristics and behavior. 

The definition of Stash creates a new data type. You can add( ), 
fetch( ), and inflate( ). You create one by saying Stash s, just as 
you create a float by saying float f. A Stash also has 
characteristics and behavior. Even though it acts like a real, built-in 
data type, we refer to it as an abstract data type, perhaps because it 
allows us to abstract a concept from the problem space into the 
solution space. In addition, the C++ compiler treats it like a new 
data type, and if you say a function expects a Stash, the compiler 
makes sure you pass a Stash to that function. So the same level of 
type checking happens with abstract data types (sometimes called 
user-defined types) as with built-in types. 

You can immediately see a difference, however, in the way you 
perform operations on objects. You say 
object.memberFunction(arglist). This is “calling a member 
function for an object.” But in object-oriented parlance, this is also 
referred to as “sending a message to an object.” So for a Stash s, 
the statement s.add(&i) “sends a message to s” saying, “add( ) 
this to yourself.” In fact, object-oriented programming can be 
summed up in a single phrase: sending messages to objects. Really, 
that’s all you do – create a bunch of objects and send messages to 
them. The trick, of course, is figuring out what your objects and 

                                                   
1 This term can cause debate. Some people use it as defined here; others use it to 
describe access control, discussed in the following chapter. 
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messages are, but once you accomplish this the implementation in 
C++ is surprisingly straightforward. 

Object details 
A question that often comes up in seminars is, “How big is an 
object, and what does it look like?” The answer is “about what you 
expect from a C struct.” In fact, the code the C compiler produces 
for a C struct (with no C++ adornments) will usually look exactly 
the same as the code produced by a C++ compiler. This is 
reassuring to those C programmers who depend on the details of 
size and layout in their code, and for some reason directly access 
structure bytes instead of using identifiers (relying on a particular 
size and layout for a structure is a nonportable activity). 

The size of a struct is the combined size of all of its members. 
Sometimes when the compiler lays out a struct, it adds extra bytes 
to make the boundaries come out neatly – this may increase 
execution efficiency. In Chapter 15, you’ll see how in some cases 
“secret” pointers are added to the structure, but you don’t need to 
worry about that right now. 

You can determine the size of a struct using the sizeof operator. 
Here’s a small example: 

//: C04:Sizeof.cpp 

// Sizes of structs 

#include "CLib.h" 

#include "CppLib.h" 

#include <iostream> 

using namespace std; 

 

struct A { 

  int i[100]; 

}; 

 

struct B { 

  void f(); 

}; 

 

void B::f() {} 

4: Data Abstraction  241 

 

int main() { 

  cout << "sizeof struct A = " << sizeof(A) 

       << " bytes" << endl; 

  cout << "sizeof struct B = " << sizeof(B) 

       << " bytes" << endl; 

  cout << "sizeof CStash in C = "  

       << sizeof(CStash) << " bytes" << endl; 

  cout << "sizeof Stash in C++ = "  

       << sizeof(Stash) << " bytes" << endl; 

} ///:~ 
 

On my machine (your results may vary) the first print statement 
produces 200 because each int occupies two bytes. struct B is 
something of an anomaly because it is a struct with no data 
members. In C, this is illegal, but in C++ we need the option of 
creating a struct whose sole task is to scope function names, so it is 
allowed. Still, the result produced by the second print statement is a 
somewhat surprising nonzero value. In early versions of the 
language, the size was zero, but an awkward situation arises when 
you create such objects: They have the same address as the object 
created directly after them, and so are not distinct. One of the 
fundamental rules of objects is that each object must have a unique 
address, so structures with no data members will always have some 
minimum nonzero size. 

The last two sizeof statements show you that the size of the 
structure in C++ is the same as the size of the equivalent version in 
C. C++ tries not to add any unnecessary overhead. 

Header file etiquette 
When you create a struct containing member functions, you are 
creating a new data type. In general, you want this type to be easily 
accessible to yourself and others. In addition, you want to separate 
the interface (the declaration) from the implementation (the 
definition of the member functions) so the implementation can be 
changed without forcing a re-compile of the entire system. You 
achieve this end by putting the declaration for your new type in a 
header file. 
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When I first learned to program in C, the header file was a mystery 
to me. Many C books don’t seem to emphasize it, and the compiler 
didn’t enforce function declarations, so it seemed optional most of 
the time, except when structures were declared. In C++ the use of 
header files becomes crystal clear. They are virtually mandatory for 
easy program development, and you put very specific information 
in them: declarations. The header file tells the compiler what is 
available in your library. You can use the library even if you only 
possess the header file along with the object file or library file; you 
don’t need the source code for the cpp file. The header file is where 
the interface specification is stored. 

Although it is not enforced by the compiler, the best approach to 
building large projects in C is to use libraries; collect associated 
functions into the same object module or library, and use a header 
file to hold all the declarations for the functions. It is de rigueur in 
C++; you could throw any function into a C library, but the C++ 
abstract data type determines the functions that are associated by 
dint of their common access to the data in a struct. Any member 
function must be declared in the struct declaration; you cannot put 
it elsewhere. The use of function libraries was encouraged in C and 
institutionalized in C++. 

Importance of header files 
When using a function from a library, C allows you the option of 
ignoring the header file and simply declaring the function by hand. 
In the past, people would sometimes do this to speed up the 
compiler just a bit by avoiding the task of opening and including the 
file (this is usually not an issue with modern compilers). For 
example, here’s an extremely lazy declaration of the C function 
printf( ) (from <stdio.h>): 

printf(...); 
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The ellipses specify a variable argument list2, which says: printf( ) 
has some arguments, each of which has a type, but ignore that. Just 
take whatever arguments you see and accept them. By using this 
kind of declaration, you suspend all error checking on the 
arguments. 

This practice can cause subtle problems. If you declare functions by 
hand, in one file you may make a mistake. Since the compiler sees 
only your hand-declaration in that file, it may be able to adapt to 
your mistake. The program will then link correctly, but the use of 
the function in that one file will be faulty. This is a tough error to 
find, and is easily avoided by using a header file. 

If you place all your function declarations in a header file, and 
include that header everywhere you use the function and where you 
define the function, you ensure a consistent declaration across the 
whole system. You also ensure that the declaration and the 
definition match by including the header in the definition file. 

If a struct is declared in a header file in C++, you must include the 
header file everywhere a struct is used and where struct member 
functions are defined. The C++ compiler will give an error message 
if you try to call a regular function, or to call or define a member 
function, without declaring it first. By enforcing the proper use of 
header files, the language ensures consistency in libraries, and 
reduces bugs by forcing the same interface to be used everywhere. 

The header is a contract between you and the user of your library. 
The contract describes your data structures, and states the 
arguments and return values for the function calls. It says, “Here’s 
what my library does.” The user needs some of this information to 
develop the application and the compiler needs all of it to generate 
proper code. The user of the struct simply includes the header file, 
creates objects (instances) of that struct, and links in the object 
module or library (i.e.: the compiled code). 

                                                   
2 To write a function definition for a function that takes a true variable argument list, 
you must use varargs, although these should be avoided in C++. You can find details 
about the use of varargs in your C manual. 
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The compiler enforces the contract by requiring you to declare all 
structures and functions before they are used and, in the case of 
member functions, before they are defined. Thus, you’re forced to 
put the declarations in the header and to include the header in the 
file where the member functions are defined and the file(s) where 
they are used. Because a single header file describing your library is 
included throughout the system, the compiler can ensure 
consistency and prevent errors. 

There are certain issues that you must be aware of in order to 
organize your code properly and write effective header files. The 
first issue concerns what you can put into header files. The basic 
rule is “only declarations,” that is, only information to the compiler 
but nothing that allocates storage by generating code or creating 
variables. This is because the header file will typically be included in 
several translation units in a project, and if storage for one 
identifier is allocated in more than one place, the linker will come 
up with a multiple definition error (this is C++’s one definition rule: 
You can declare things as many times as you want, but there can be 
only one actual definition for each thing). 

This rule isn’t completely hard and fast. If you define a variable that 
is “file static” (has visibility only within a file) inside a header file, 
there will be multiple instances of that data across the project, but 
the linker won’t have a collision3. Basically, you don’t want to do 
anything in the header file that will cause an ambiguity at link time. 

The multiple-declaration problem 
The second header-file issue is this: when you put a struct 
declaration in a header file, it is possible for the file to be included 
more than once in a complicated program. Iostreams are a good 
example. Any time a struct does I/O it may include one of the 
iostream headers. If the cpp file you are working on uses more than 
one kind of struct (typically including a header file for each one), 
you run the risk of including the <iostream> header more than 
once and re-declaring iostreams. 

                                                   
3 However, in Standard C++ file static is a deprecated feature. 
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The compiler considers the redeclaration of a structure (this 
includes both structs and classes) to be an error, since it would 
otherwise allow you to use the same name for different types. To 
prevent this error when multiple header files are included, you need 
to build some intelligence into your header files using the 
preprocessor (Standard C++ header files like <iostream> already 
have this “intelligence”). 

Both C and C++ allow you to redeclare a function, as long as the two 
declarations match, but neither will allow the redeclaration of a 
structure. In C++ this rule is especially important because if the 
compiler allowed you to redeclare a structure and the two 
declarations differed, which one would it use? 

The problem of redeclaration comes up quite a bit in C++ because 
each data type (structure with functions) generally has its own 
header file, and you have to include one header in another if you 
want to create another data type that uses the first one. In any cpp 
file in your project, it’s likely that you’ll include several files that 
include the same header file. During a single compilation, the 
compiler can see the same header file several times. Unless you do 
something about it, the compiler will see the redeclaration of your 
structure and report a compile-time error. To solve the problem, 
you need to know a bit more about the preprocessor. 

The preprocessor directives  

#define, #ifdef, and #endif 
The preprocessor directive #define can be used to create compile-
time flags. You have two choices: you can simply tell the 
preprocessor that the flag is defined, without specifying a value: 

#define FLAG 
 

or you can give it a value (which is the typical C way to define a 
constant): 

#define PI 3.14159 
 

In either case, the label can now be tested by the preprocessor to see 
if it has been defined: 
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#ifdef FLAG 
 

This will yield a true result, and the code following the #ifdef will 
be included in the package sent to the compiler. This inclusion 
stops when the preprocessor encounters the statement 

#endif 
 

or 

#endif // FLAG 
 

Any non-comment after the #endif on the same line is illegal, even 
though some compilers may accept it. The #ifdef/#endif pairs 
may be nested within each other. 

The complement of #define is #undef (short for “un-define”), 
which will make an #ifdef statement using the same variable yield 
a false result. #undef will also cause the preprocessor to stop using 
a macro. The complement of #ifdef is #ifndef, which will yield a 
true if the label has not been defined (this is the one we will use in 
header files). 

There are other useful features in the C preprocessor. You should 
check your local documentation for the full set.  

A standard for header files 
In each header file that contains a structure, you should first check 
to see if this header has already been included in this particular cpp 
file. You do this by testing a preprocessor flag. If the flag isn’t set, 
the file wasn’t included and you should set the flag (so the structure 
can’t get re-declared) and declare the structure. If the flag was set 
then that type has already been declared so you should just ignore 
the code that declares it. Here’s how the header file should look: 

#ifndef HEADER_FLAG 

#define HEADER_FLAG 

// Type declaration here... 

#endif // HEADER_FLAG 
 

4: Data Abstraction  247 

As you can see, the first time the header file is included, the 
contents of the header file (including your type declaration) will be 
included by the preprocessor. All the subsequent times it is 
included – in a single compilation unit – the type declaration will 
be ignored. The name HEADER_FLAG can be any unique name, 
but a reliable standard to follow is to capitalize the name of the 
header file and replace periods with underscores (leading 
underscores, however, are reserved for system names). Here’s an 
example: 

//: C04:Simple.h 

// Simple header that prevents re-definition 

#ifndef SIMPLE_H 

#define SIMPLE_H 

 

struct Simple { 

  int i,j,k; 

  initialize() { i = j = k = 0; } 

}; 

#endif // SIMPLE_H ///:~ 
 

Although the SIMPLE_H after the #endif is commented out and 
thus ignored by the preprocessor, it is useful for documentation. 

These preprocessor statements that prevent multiple inclusion are 
often referred to as include guards. 

Namespaces in headers 
You’ll notice that using directives are present in nearly all the cpp 
files in this book, usually in the form:  

using namespace std; 
 

Since std is the namespace that surrounds the entire Standard C++ 
library, this particular using directive allows the names in the 
Standard C++ library to be used without qualification. However, 
you’ll virtually never see a using directive in a header file (at least, 
not outside of a scope). The reason is that the using directive 
eliminates the protection of that particular namespace, and the 
effect lasts until the end of the current compilation unit. If you put a 
using directive (outside of a scope) in a header file, it means that 
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this loss of  “namespace protection” will occur with any file that 
includes this header, which often means other header files. Thus, if 
you start putting using directives in header files, it’s very easy to 
end up “turning off” namespaces practically everywhere, and 
thereby neutralizing the beneficial effects of namespaces.  

In short: don’t put using directives in header files. 

Using headers in projects 
When building a project in C++, you’ll usually create it by bringing 
together a lot of different types (data structures with associated 
functions). You’ll usually put the declaration for each type or group 
of associated types in a separate header file, then define the 
functions for that type in a translation unit. When you use that type, 
you must include the header file to perform the declarations 
properly. 

Sometimes that pattern will be followed in this book, but more 
often the examples will be very small, so everything – the structure 
declarations, function definitions, and the main( ) function – may 
appear in a single file. However, keep in mind that you’ll want to 
use separate files and header files in practice. 

Nested structures 
The convenience of taking data and function names out of the 
global name space extends to structures. You can nest a structure 
within another structure, and therefore keep associated elements 
together. The declaration syntax is what you would expect, as you 
can see in the following structure, which implements a push-down 
stack as a simple linked list so it “never” runs out of memory:  

//: C04:Stack.h 

// Nested struct in linked list 

#ifndef STACK_H 

#define STACK_H 

 

struct Stack { 

  struct Link { 
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    void* data; 

    Link* next; 

    void initialize(void* dat, Link* nxt); 

  }* head; 

  void initialize(); 

  void push(void* dat); 

  void* peek(); 

  void* pop(); 

  void cleanup(); 

}; 

#endif // STACK_H ///:~ 
 

The nested struct is called Link, and it contains a pointer to the 
next Link in the list and a pointer to the data stored in the Link. If 
the next pointer is zero, it means you’re at the end of the list. 

Notice that the head pointer is defined right after the declaration 
for struct Link, instead of a separate definition Link* head. This 
is a syntax that came from C, but it emphasizes the importance of 
the semicolon after the structure declaration; the semicolon 
indicates the end of the comma-separated list of definitions of that 
structure type. (Usually the list is empty.) 

The nested structure has its own initialize( ) function, like all the 
structures presented so far, to ensure proper initialization. Stack 
has both an initialize( ) and cleanup( ) function, as well as 
push( ), which takes a pointer to the data you wish to store (it 
assumes this has been allocated on the heap), and pop( ), which 
returns the data pointer from the top of the Stack and removes the 
top element. (When you pop( ) an element, you are responsible for 
destroying the object pointed to by the data.) The peek( ) function 
also returns the data pointer from the top element, but it leaves the 
top element on the Stack. 

Here are the definitions for the member functions: 

//: C04:Stack.cpp {O} 

// Linked list with nesting 

#include "Stack.h" 

#include "../require.h" 

using namespace std; 
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void  

Stack::Link::initialize(void* dat, Link* nxt) { 

  data = dat; 

  next = nxt; 

} 

 

void Stack::initialize() { head = 0; } 

 

void Stack::push(void* dat) { 

  Link* newLink = new Link; 

  newLink->initialize(dat, head); 

  head = newLink; 

} 

 

void* Stack::peek() {  

  require(head != 0, "Stack empty"); 

  return head->data;  

} 

 

void* Stack::pop() { 

  if(head == 0) return 0; 

  void* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

 

void Stack::cleanup() { 

  require(head == 0, "Stack not empty"); 

} ///:~ 
 

The first definition is particularly interesting because it shows you 
how to define a member of a nested structure. You simply use an 
additional level of scope resolution to specify the name of the 
enclosing struct. Stack::Link::initialize( ) takes the arguments 
and assigns them to its members. 

Stack::initialize( ) sets head to zero, so the object knows it has 
an empty list. 

Stack::push( ) takes the argument, which is a pointer to the 
variable you want to keep track of, and pushes it on the Stack. 
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First, it uses new to allocate storage for the Link it will insert at 
the top. Then it calls Link’s initialize( ) function to assign the 
appropriate values to the members of the Link. Notice that the 
next pointer is assigned to the current head; then head is 
assigned to the new Link pointer. This effectively pushes the Link 
in at the top of the list. 

Stack::pop( ) captures the data pointer at the current top of the 
Stack; then it moves the head pointer down and deletes the old 
top of the Stack, finally returning the captured pointer. When 
pop( ) removes the last element, then head again becomes zero, 
meaning the Stack is empty. 

Stack::cleanup( ) doesn’t actually do any cleanup. Instead, it 
establishes a firm policy that “you (the client programmer using this 
Stack object) are responsible for popping all the elements off this 
Stack and deleting them.” The require( ) is used to indicate that a 
programming error has occurred if the Stack is not empty. 

Why couldn’t the Stack destructor be responsible for all the objects 
that the client programmer didn’t pop( )? The problem is that the 
Stack is holding void pointers, and you’ll learn in Chapter 13 that 
calling delete for a void* doesn’t clean things up properly. The 
subject of “who’s responsible for the memory” is not even that 
simple, as we’ll see in later chapters. 

Here’s an example to test the Stack: 

//: C04:StackTest.cpp 

//{L} Stack 

//{T} StackTest.cpp 

// Test of nested linked list 

#include "Stack.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 
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  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack textlines; 

  textlines.initialize(); 

  string line; 

  // Read file and store lines in the Stack: 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  // Pop the lines from the Stack and print them: 

  string* s; 

  while((s = (string*)textlines.pop()) != 0) { 

    cout << *s << endl; 

    delete s;  

  } 

  textlines.cleanup(); 

} ///:~ 
 

This is similar to the earlier example, but it pushes lines from a file 
(as string pointers) on the Stack and then pops them off, which 
results in the file being printed out in reverse order. Note that the 
pop( ) member function returns a void* and this must be cast 
back to a string* before it can be used. To print the string, the 
pointer is dereferenced. 

As textlines is being filled, the contents of line is “cloned” for each 
push( ) by making a new string(line). The value returned from 
the new-expression is a pointer to the new string that was created 
and that copied the information from line. If you had simply 
passed the address of line to push( ), you would end up with a 
Stack filled with identical addresses, all pointing to line. You’ll 
learn more about this “cloning” process later in the book. 

The file name is taken from the command line. To guarantee that 
there are enough arguments on the command line, you see a second 
function used from the require.h header file: requireArgs( ), 
which compares argc to the desired number of arguments and 
prints an appropriate error message and exits the program if there 
aren’t enough arguments. 
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Global scope resolution 
The scope resolution operator gets you out of situations in which 
the name the compiler chooses by default (the “nearest” name) isn’t 
what you want. For example, suppose you have a structure with a 
local identifier a, and you want to select a global identifier a from 
inside a member function. The compiler would default to choosing 
the local one, so you must tell it to do otherwise. When you want to 
specify a global name using scope resolution, you use the operator 
with nothing in front of it. Here’s an example that shows global 
scope resolution for both a variable and a function: 

//: C04:Scoperes.cpp 

// Global scope resolution 

int a; 

void f() {} 

 

struct S { 

  int a; 

  void f(); 

}; 

 

void S::f() { 

  ::f();  // Would be recursive otherwise! 

  ::a++;  // Select the global a 

  a--;    // The a at struct scope 

} 

int main() { S s; f(); } ///:~ 
 

Without scope resolution in S::f( ), the compiler would default to 
selecting the member versions of f( ) and a. 

Summary 
In this chapter, you’ve learned the fundamental “twist” of C++: that 
you can place functions inside of structures. This new type of 
structure is called an abstract data type, and variables you create 
using this structure are called objects, or instances, of that type. 
Calling a member function for an object is called sending a message 
to that object. The primary action in object-oriented programming 
is sending messages to objects. 
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Although packaging data and functions together is a significant 
benefit for code organization and makes library use easier because 
it prevents name clashes by hiding the names, there’s a lot more you 
can do to make programming safer in C++. In the next chapter, 
you’ll learn how to protect some members of a struct so that only 
you can manipulate them. This establishes a clear boundary 
between what the user of the structure can change and what only 
the programmer may change. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from http://www.BruceEckel.com. 

1.  In the Standard C library, the function puts( ) prints a 
char array to the console (so you can say puts("hello")). 
Write a C program that uses puts( ) but does not include 
<stdio.h> or otherwise declare the function. Compile 
this program with your C compiler. (Some C++ compilers 
are not distinct from their C compilers; in this case you 
may need to discover a command-line flag that forces a C 
compilation.) Now compile it with the C++ compiler and 
note the difference. 

2.  Create a struct declaration with a single member 
function, then create a definition for that member 
function. Create an object of your new data type, and call 
the member function. 

3.  Change your solution to Exercise 2 so the struct is 
declared in a properly “guarded” header file, with the 
definition in one cpp file and your main( ) in another. 

4.  Create a struct with a single int data member, and two 
global functions, each of which takes a pointer to that 
struct. The first function has a second int argument and 
sets the struct’s int to the argument value, the second 
displays the int from the struct. Test the functions.  

5.  Repeat Exercise 4 but move the functions so they are 
member functions of the struct, and test again. 

6.  Create a class that (redundantly) performs data member 
selection and a member function call using the this 
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keyword (which refers to the address of the current 
object). 

7.  Make a Stash that holds doubles. Fill it with 25 double 
values, then print them out to the console. 

8.  Repeat Exercise 7 with Stack. 

9.  Create a file containing a function f( ) that takes an int 
argument and prints it to the console using the printf( ) 
function in <stdio.h> by saying: printf(“%d\n”, i) in 
which i is the int you wish to print. Create a separate file 
containing main( ), and in this file declare f( ) to take a 
float argument. Call f( ) from inside main( ). Try to 
compile and link your program with the C++ compiler 
and see what happens. Now compile and link the 
program using the C compiler, and see what happens 
when it runs. Explain the behavior. 

10.  Find out how to produce assembly language from your C 
and C++ compilers. Write a function in C and a struct 
with a single member function in C++. Produce assembly 
language from each and find the function names that are 
produced by your C function and your C++ member 
function, so you can see what sort of name decoration 
occurs inside the compiler. 

11.  Write a program with conditionally-compiled code in 
main( ), so that when a preprocessor value is defined 
one message is printed, but when it is not defined 
another message is printed. Compile this code 
experimenting with a #define within the program, then 
discover the way your compiler takes preprocessor 
definitions on the command line and experiment with 
that. 

12.  Write a program that uses assert( ) with an argument 
that is always false (zero) to see what happens when you 
run it. Now compile it with #define NDEBUG and run 
it again to see the difference. 

13.  Create an abstract data type that represents a videotape 
in a video rental store. Try to consider all the data and 
operations that may be necessary for the Video type to 
work well within the video rental management system. 
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Include a print( ) member function that displays 
information about the Video. 

14.  Create a Stack object to hold the Video objects from 
Exercise 13. Create several Video objects, store them in 
the Stack, then display them using Video::print( ). 

15.  Write a program that prints out all the sizes for the 
fundamental data types on your computer using sizeof. 

16.  Modify Stash to use a vector<char> as its underlying 
data structure. 

17.  Dynamically create pieces of storage of the following 
types, using new: int, long, an array of 100 chars, an 
array of 100 floats. Print the addresses of these and then 
free the storage using delete. 

18.  Write a function that takes a char* argument. Using 
new, dynamically allocate an array of char that is the 
size of the char array that’s passed to the function. Using 
array indexing, copy the characters from the argument to 
the dynamically allocated array (don’t forget the null 
terminator) and return the pointer to the copy. In your 
main( ), test the function by passing a static quoted 
character array, then take the result of that and pass it 
back into the function. Print both strings and both 
pointers so you can see they are different storage. Using 
delete, clean up all the dynamic storage. 

19.  Show an example of a structure declared within another 
structure (a nested structure). Declare data members in 
both structs, and declare and define member functions 
in both structs. Write a main( ) that tests your new 
types. 

20.  How big is a structure? Write a piece of code that prints 
the size of various structures. Create structures that have 
data members only and ones that have data members and 
function members. Then create a structure that has no 
members at all. Print out the sizes of all these. Explain 
the reason for the result of the structure with no data 
members at all. 

21.  C++ automatically creates the equivalent of a typedef for 
structs, as you’ve seen in this chapter. It also does this 
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for enumerations and unions. Write a small program that 
demonstrates this. 

22.  Create a Stack that holds Stashes. Each Stash will hold 
five lines from an input file. Create the Stashes using 
new. Read a file into your Stack, then reprint it in its 
original form by extracting it from the Stack.  

23.  Modify Exercise 22 so that you create a struct that 
encapsulates the Stack of Stashes. The user should only 
add and get lines via member functions, but under the 
covers the struct happens to use a Stack of Stashes. 

24.  Create a struct that holds an int and a pointer to 
another instance of the same struct. Write a function 
that takes the address of one of these structs and an int 
indicating the length of the list you want created. This 
function will make a whole chain of these structs (a 
linked list), starting from the argument (the head of the 
list), with each one pointing to the next. Make the new 
structs using new, and put the count (which object 
number this is) in the int. In the last struct in the list, 
put a zero value in the pointer to indicate that it’s the end. 
Write a second function that takes the head of your list 
and moves through to the end, printing out both the 
pointer value and the int value for each one. 

25.  Repeat Exercise 24, but put the functions inside a struct 
instead of using “raw” structs and functions. 
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5: Hiding the 

Implementation 
A typical C library contains a struct and some  

associated functions to act on that struct. So far,  

you've seen how C++ takes functions that are 

conceptually associated and makes them literally 

associated by  
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putting the function declarations inside the scope of the struct, 
changing the way functions are called for the struct, eliminating 
the passing of the structure address as the first argument, and 
adding a new type name to the program (so you don’t have to create 
a typedef for the struct tag). 

These are all convenient – they help you organize your code and 
make it easier to write and read. However, there are other 
important issues when making libraries easier in C++, especially 
the issues of safety and control. This chapter looks at the subject of 
boundaries in structures. 

Setting limits 
In any relationship it’s important to have boundaries that are 
respected by all parties involved. When you create a library, you 
establish a relationship with the client programmer who uses that 
library to build an application or another library. 

In a C struct, as with most things in C, there are no rules. Client 
programmers can do anything they want with that struct, and 
there’s no way to force any particular behaviors. For example, even 
though you saw in the last chapter the importance of the functions 
named initialize( ) and cleanup( ), the client programmer has 
the option not to call those functions. (We’ll look at a better 
approach in the next chapter.) And even though you would really 
prefer that the client programmer not directly manipulate some of 
the members of your struct, in C there’s no way to prevent it. 
Everything’s naked to the world. 

There are two reasons for controlling access to members. The first 
is to keep the client programmer’s hands off tools they shouldn’t 
touch, tools that are necessary for the internal machinations of the 
data type, but not part of the interface the client programmer needs 
to solve their particular problems. This is actually a service to client 
programmers because they can easily see what’s important to them 
and what they can ignore. 
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The second reason for access control is to allow the library designer 
to change the internal workings of the structure without worrying 
about how it will affect the client programmer. In the Stack 
example in the last chapter, you might want to allocate the storage 
in big chunks, for speed, rather than creating new storage each time 
an element is added. If the interface and implementation are clearly 
separated and protected, you can accomplish this and require only a 
relink by the client programmer. 

C++ access control 
C++ introduces three new keywords to set the boundaries in a 
structure: public, private, and protected. Their use and meaning 
are remarkably straightforward. These access specifiers are used 
only in a structure declaration, and they change the boundary for all 
the declarations that follow them. Whenever you use an access 
specifier, it must be followed by a colon. 

public means all member declarations that follow are available to 
everyone. public members are like struct members. For example, 
the following struct declarations are identical: 

//: C05:Public.cpp 

// Public is just like C's struct 

 

struct A { 

  int i; 

  char j; 

  float f; 

  void func(); 

}; 

 

void A::func() {} 

 

struct B { 

public: 

  int i; 

  char j; 

  float f; 

  void func(); 

}; 
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void B::func() {}   

 

int main() { 

  A a; B b; 

  a.i = b.i = 1; 

  a.j = b.j = 'c'; 

  a.f = b.f = 3.14159; 

  a.func(); 

  b.func(); 

} ///:~ 
 

The private keyword, on the other hand, means that no one can 
access that member except you, the creator of the type, inside 
function members of that type. private is a brick wall between you 
and the client programmer; if someone tries to access a private 
member, they’ll get a compile-time error. In struct B in the 
example above, you may want to make portions of the 
representation (that is, the data members) hidden, accessible only 
to you: 

//: C05:Private.cpp 

// Setting the boundary 

 

struct B { 

private: 

  char j; 

  float f; 

public: 

  int i; 

  void func(); 

}; 

 

void B::func() { 

  i = 0; 

  j = '0'; 

  f = 0.0; 

}; 

 

int main() { 

  B b; 

  b.i = 1;    // OK, public 

//!  b.j = '1';  // Illegal, private 

//!  b.f = 1.0;  // Illegal, private 
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} ///:~ 
 

Although func( ) can access any member of B (because func( ) is a 
member of B, thus automatically granting it permission), an 
ordinary global function like main( ) cannot. Of course, neither 
can member functions of other structures. Only the functions that 
are clearly stated in the structure declaration (the “contract”) can 
have access to private members. 

There is no required order for access specifiers, and they may 
appear more than once. They affect all the members declared after 
them and before the next access specifier. 

protected 
The last access specifier is protected. protected acts just like 
private, with one exception that we can’t really talk about right 
now: “Inherited” structures (which cannot access private 
members) are granted access to protected members. This will 
become clearer in Chapter 14 when inheritance is introduced.  For 
current purposes, consider protected to be just like private. 

Friends 
What if you want to explicitly grant access to a function that isn’t a 
member of the current structure? This is accomplished by declaring 
that function a friend inside the structure declaration. It’s 
important that the friend declaration occurs inside the structure 
declaration because you (and the compiler) must be able to read the 
structure declaration and see every rule about the size and behavior 
of that data type. And a very important rule in any relationship is, 
“Who can access my private implementation?” 

The class controls which code has access to its members. There’s no 
magic way to “break in” from the outside if you aren’t a friend; you 
can’t declare a new class and say, “Hi, I’m a friend of Bob!” and 
expect to see the private and protected members of Bob. 
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You can declare a global function as a friend, and you can also 
declare a member function of another structure, or even an entire 
structure, as a friend. Here’s an example : 

//: C05:Friend.cpp 

// Friend allows special access 

 

// Declaration (incomplete type specification): 

struct X; 

 

struct Y { 

  void f(X*); 

}; 

 

struct X { // Definition 

private: 

  int i; 

public: 

  void initialize(); 

  friend void g(X*, int); // Global friend 

  friend void Y::f(X*);  // Struct member friend 

  friend struct Z; // Entire struct is a friend 

  friend void h(); 

}; 

 

void X::initialize() {  

  i = 0;  

} 

 

void g(X* x, int i) {  

  x->i = i;  

} 

 

void Y::f(X* x) {  

  x->i = 47;  

} 

 

struct Z { 

private: 

  int j; 

public: 

  void initialize(); 

  void g(X* x); 

}; 
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void Z::initialize() {  

  j = 99; 

} 

 

void Z::g(X* x) {  

  x->i += j;  

} 

 

void h() { 

  X x; 

  x.i = 100; // Direct data manipulation 

} 

 

int main() { 

  X x; 

  Z z; 

  z.g(&x); 

} ///:~ 
 

struct Y has a member function f( ) that will modify an object of 
type X. This is a bit of a conundrum because the C++ compiler 
requires you to declare everything before you can refer to it, so 
struct Y must be declared before its member Y::f(X*) can be 
declared as a friend in struct X. But for Y::f(X*) to be declared, 
struct X must be declared first! 

Here’s the solution. Notice that Y::f(X*) takes the address of an X 
object. This is critical because the compiler always knows how to 
pass an address, which is of a fixed size regardless of the object 
being passed, even if it doesn’t have full information about the size 
of the type. If you try to pass the whole object, however, the 
compiler must see the entire structure definition of X, to know the 
size and how to pass it, before it allows you to declare a function 
such as Y::g(X).  

By passing the address of an X, the compiler allows you to make an 
incomplete type specification of X prior to declaring Y::f(X*). This 
is accomplished in the declaration:  

struct X; 
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This declaration simply tells the compiler there’s a struct by that 
name, so it’s OK to refer to it as long as you don’t require any more 
knowledge than the name. 

Now, in struct X, the function Y::f(X*) can be declared as a 
friend with no problem. If you tried to declare it before the 
compiler had seen the full specification for Y, it would have given 
you an error. This is a safety feature to ensure consistency and 
eliminate bugs. 

Notice the two other friend functions. The first declares an 
ordinary global function g( ) as a friend. But g( ) has not been 
previously declared at the global scope! It turns out that friend can 
be used this way to simultaneously declare the function and give it 
friend status. This extends to entire structures:  

friend struct Z; 
 

is an incomplete type specification for Z, and it gives the entire 
structure friend status. 

Nested friends 
Making a structure nested doesn’t automatically give it access to 
private members. To accomplish this, you must follow a particular 
form: first, declare (without defining) the nested structure, then 
declare it as a friend, and finally define the structure. The 
structure definition must be separate from the friend declaration, 
otherwise it would be seen by the compiler as a non-member. 
Here’s an example: 

//: C05:NestFriend.cpp 

// Nested friends 

#include <iostream> 

#include <cstring> // memset() 

using namespace std; 

const int sz = 20; 

 

struct Holder { 

private: 

  int a[sz]; 

public: 
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  void initialize(); 

  struct Pointer; 

  friend Pointer; 

  struct Pointer { 

  private: 

    Holder* h; 

    int* p; 

  public: 

    void initialize(Holder* h); 

    // Move around in the array: 

    void next(); 

    void previous(); 

    void top(); 

    void end(); 

    // Access values: 

    int read(); 

    void set(int i); 

  }; 

}; 

 

void Holder::initialize() { 

  memset(a, 0, sz * sizeof(int)); 

} 

 

void Holder::Pointer::initialize(Holder* rv) { 

  h = rv; 

  p = rv->a; 

} 

 

void Holder::Pointer::next() { 

  if(p < &(h->a[sz - 1])) p++; 

} 

 

void Holder::Pointer::previous() { 

  if(p > &(h->a[0])) p--; 

} 

 

void Holder::Pointer::top() { 

  p = &(h->a[0]); 

} 

 

void Holder::Pointer::end() { 

  p = &(h->a[sz - 1]); 

} 
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int Holder::Pointer::read() { 

  return *p; 

} 

 

void Holder::Pointer::set(int i) { 

  *p = i; 

} 

 

int main() { 

  Holder h; 

  Holder::Pointer hp, hp2; 

  int i; 

 

  h.initialize(); 

  hp.initialize(&h); 

  hp2.initialize(&h); 

  for(i = 0; i < sz; i++) { 

    hp.set(i); 

    hp.next(); 

  } 

  hp.top(); 

  hp2.end(); 

  for(i = 0; i < sz; i++) { 

    cout << "hp = " << hp.read() 

         << ", hp2 = " << hp2.read() << endl; 

    hp.next(); 

    hp2.previous(); 

  } 

} ///:~ 
 

Once Pointer is declared, it is granted access to the private 
members of Holder by saying: 

friend Pointer; 
 

The struct Holder contains an array of ints and the Pointer 
allows you to access them. Because Pointer is strongly associated 
with Holder, it’s sensible to make it a member structure of 
Holder. But because Pointer is a separate class from Holder, 
you can make more than one of them in main( ) and use them to 
select different parts of the array. Pointer is a structure instead of 
a raw C pointer, so you can guarantee that it will always safely point 
inside the Holder. 
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The Standard C library function memset( ) (in <cstring>) is used 
for convenience in the program above. It sets all memory starting at 
a particular address (the first argument) to a particular value (the 
second argument) for n bytes past the starting address (n is the 
third argument). Of course, you could have simply used a loop to 
iterate through all the memory, but memset( ) is available, well-
tested (so it’s less likely you’ll introduce an error), and probably 
more efficient than if you coded it by hand. 

Is it pure? 
The class definition gives you an audit trail, so you can see from 
looking at the class which functions have permission to modify the 
private parts of the class. If a function is a friend, it means that it 
isn’t a member, but you want to give permission to modify private 
data anyway, and it must be listed in the class definition so 
everyone can see that it’s one of the privileged functions.  

C++ is a hybrid object-oriented language, not a pure one, and 
friend was added to get around practical problems that crop up. 
It’s fine to point out that this makes the language less “pure,” 
because C++ is designed to be pragmatic, not to aspire to an 
abstract ideal. 

Object layout 
Chapter 4 stated that a struct written for a C compiler and later 
compiled with C++ would be unchanged. This referred primarily to 
the object layout of the struct, that is, where the storage for the 
individual variables is positioned in the memory allocated for the 
object. If the C++ compiler changed the layout of C structs, then 
any C code you wrote that inadvisably took advantage of knowledge 
of the positions of variables in the struct would break. 

When you start using access specifiers, however, you’ve moved 
completely into the C++ realm, and things change a bit. Within a 
particular “access block” (a group of declarations delimited by 
access specifiers), the variables are guaranteed to be laid out 
contiguously, as in C. However, the access blocks may not appear in 
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the object in the order that you declare them. Although the 
compiler will usually lay the blocks out exactly as you see them, 
there is no rule about it, because a particular machine architecture 
and/or operating environment may have explicit support for 
private and protected that might require those blocks to be 
placed in special memory locations. The language specification 
doesn’t want to restrict this kind of advantage. 

Access specifiers are part of the structure and don’t affect the 
objects created from the structure. All of the access specification 
information disappears before the program is run; generally this 
happens during compilation. In a running program, objects become 
“regions of storage” and nothing more. If you really want to, you 
can break all the rules and access the memory directly, as you can in 
C. C++ is not designed to prevent you from doing unwise things. It 
just provides you with a much easier, highly desirable alternative. 

In general, it’s not a good idea to depend on anything that’s 
implementation-specific when you’re writing a program. When you 
must have implementation-specific dependencies, encapsulate 
them inside a structure so that any porting changes are focused in 
one place. 

The class 
Access control is often referred to as implementation hiding. 
Including functions within structures (often referred to as 
encapsulation1) produces a data type with characteristics and 
behaviors, but access control puts boundaries within that data type, 
for two important reasons. The first is to establish what the client 
programmers can and can’t use. You can build your internal 
mechanisms into the structure without worrying that client 
programmers will think that these mechanisms are part of the 
interface they should be using. 

                                                   
1 As noted before, sometimes access control is referred to as encapsulation. 
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This feeds directly into the second reason, which is to separate the 
interface from the implementation.  If the structure is used in a set 
of programs, but the client programmers can’t do anything but send 
messages to the public interface, then you can change anything 
that’s private without requiring modifications to their code. 

Encapsulation and access control, taken together, invent something 
more than a C struct. We’re now in the world of object-oriented 
programming, where a structure is describing a class of objects as 
you would describe a class of fishes or a class of birds: Any object 
belonging to this class will share these characteristics and 
behaviors. That’s what the structure declaration has become, a 
description of the way all objects of this type will look and act. 

In the original OOP language, Simula-67, the keyword class was 
used to describe a new data type. This apparently inspired 
Stroustrup to choose the same keyword for C++, to emphasize that 
this was the focal point of the whole language: the creation of new 
data types that are more than just C structs with functions. This 
certainly seems like adequate justification for a new keyword. 

However, the use of class in C++ comes close to being an 
unnecessary keyword. It’s identical to the struct keyword in 
absolutely every way except one: class defaults to private, 
whereas struct defaults to public. Here are two structures that 
produce the same result: 

//: C05:Class.cpp 

// Similarity of struct and class 

 

struct A { 

private: 

  int i, j, k; 

public: 

  int f(); 

  void g(); 

}; 

 

int A::f() {  

  return i + j + k;  

} 
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void A::g() {  

  i = j = k = 0;  

} 

 

// Identical results are produced with: 

 

class B { 

  int i, j, k; 

public: 

  int f(); 

  void g(); 

}; 

 

int B::f() {  

  return i + j + k;  

} 

 

void B::g() {  

  i = j = k = 0;  

}  

 

int main() { 

  A a; 

  B b; 

  a.f(); a.g(); 

  b.f(); b.g(); 

} ///:~ 
 

The class is the fundamental OOP concept in C++. It is one of the 
keywords that will not be set in bold in this book – it becomes 
annoying with a word repeated as often as “class.” The shift to 
classes is so important that I suspect Stroustrup’s preference would 
have been to throw struct out altogether, but the need for 
backwards compatibility with C wouldn’t allow that. 

Many people prefer a style of creating classes that is more struct-
like than class-like, because you override the “default-to-private” 
behavior of the class by starting out with public elements: 

class X { 

public: 

  void interface_function(); 

private: 
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  void private_function(); 

  int internal_representation; 

}; 
 

The logic behind this is that it makes more sense for the reader to 
see the members of interest first, then they can ignore anything that 
says private. Indeed, the only reasons all the other members must 
be declared in the class at all are so the compiler knows how big the 
objects are and can allocate them properly, and so it can guarantee 
consistency. 

The examples in this book, however, will put the private members 
first, like this: 

class X { 

  void private_function(); 

  int internal_representation; 

public: 

  void {e: 

}; 
 

Some people even go to the trouble of decorating their own private 
names: 

class Y { 

public: 

  void f(); 

private: 

  int mX;  // "Self-decorated" name 

}; 
 

Because mX is already hidden in the scope of Y, the m (for 
“member”) is unnecessary. However, in projects with many global 
variables (something you should strive to avoid, but which is 
sometimes inevitable in existing projects), it is helpful to be able to 
distinguish inside a member function definition which data is global 
and which is a member. 

Modifying Stash to use access control 
It makes sense to take the examples from Chapter 4 and modify 
them to use classes and access control. Notice how the client 
programmer portion of the interface is now clearly distinguished, so 
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there’s no possibility of client programmers accidentally 
manipulating a part of the class that they shouldn’t.  

//: C05:Stash.h 

// Converted to use access control 

#ifndef STASH_H 

#define STASH_H 

 

class Stash { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

  // Dynamically allocated array of bytes: 

  unsigned char* storage; 

  void inflate(int increase); 

public: 

  void initialize(int size); 

  void cleanup(); 

  int add(void* element); 

  void* fetch(int index); 

  int count(); 

}; 

#endif // STASH_H ///:~ 
 

The inflate( ) function has been made private because it is used 
only by the add( ) function and is thus part of the underlying 
implementation, not the interface. This means that, sometime later, 
you can change the underlying implementation to use a different 
system for memory management. 

Other than the name of the include file, the header above is the only 
thing that’s been changed for this example. The implementation file 
and test file are the same. 

Modifying Stack to use access control 
As a second example, here’s the Stack turned into a class. Now the 
nested data structure is private, which is nice because it ensures 
that the client programmer will neither have to look at it nor be able 
to depend on the internal representation of the Stack:  

//: C05:Stack2.h 

// Nested structs via linked list 
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#ifndef STACK2_H 

#define STACK2_H 

 

class Stack { 

  struct Link { 

    void* data; 

    Link* next; 

    void initialize(void* dat, Link* nxt); 

  }* head; 

public: 

  void initialize(); 

  void push(void* dat); 

  void* peek(); 

  void* pop(); 

  void cleanup(); 

}; 

#endif // STACK2_H ///:~ 
 

As before, the implementation doesn’t change and so it is not 
repeated here. The test, too, is identical. The only thing that’s been 
changed is the robustness of the class interface. The real value of 
access control is to prevent you from crossing boundaries during 
development. In fact, the compiler is the only thing that knows 
about the protection level of class members. There is no access 
control information mangled into the member name that carries 
through to the linker. All the protection checking is done by the 
compiler; it has vanished by runtime. 

Notice that the interface presented to the client programmer is now 
truly that of a push-down stack. It happens to be implemented as a 
linked list, but you can change that without affecting what the client 
programmer interacts with, or (more importantly) a single line of 
client code. 

Handle classes 
Access control in C++ allows you to separate interface from 
implementation, but the implementation hiding is only partial. The 
compiler must still see the declarations for all parts of an object in 
order to create and manipulate it properly. You could imagine a 
programming language that requires only the public interface of an 
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object and allows the private implementation to be hidden, but C++ 
performs type checking statically (at compile time) as much as 
possible. This means that you’ll learn as early as possible if there’s 
an error. It also means that your program is more efficient. 
However, including the private implementation has two effects: the 
implementation is visible even if you can’t easily access it, and it can 
cause needless recompilation. 

Hiding the implementation 
Some projects cannot afford to have their implementation visible to 
the client programmer. It may show strategic information in a 
library header file that the company doesn’t want available to 
competitors. You may be working on a system where security is an 
issue – an encryption algorithm, for example – and you don’t want 
to expose any clues in a header file that might help people to crack 
the code. Or you may be putting your library in a “hostile” 
environment, where the programmers will directly access the 
private components anyway, using pointers and casting. In all these 
situations, it’s valuable to have the actual structure compiled inside 
an implementation file rather than exposed in a header file. 

Reducing recompilation 
The project manager in your programming environment will cause 
a recompilation of a file if that file is touched (that is, modified) or if 
another file it’s dependent upon – that is, an included header file – 
is touched. This means that any time you make a change to a class, 
whether it’s to the public interface or to the private member 
declarations, you’ll force a recompilation of anything that includes 
that header file. This is often referred to as the fragile base-class 
problem. For a large project in its early stages this can be very 
unwieldy because the underlying implementation may change 
often; if the project is very big, the time for compiles can prohibit 
rapid turnaround. 
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The technique to solve this is sometimes called handle classes or 
the “Cheshire cat”2 – everything about the implementation 
disappears except for a single pointer, the “smile.” The pointer 
refers to a structure whose definition is in the implementation file 
along with all the member function definitions. Thus, as long as the 
interface is unchanged, the header file is untouched. The 
implementation can change at will, and only the implementation 
file needs to be recompiled and relinked with the project. 

Here’s a simple example demonstrating the technique. The header 
file contains only the public interface and a single pointer of an 
incompletely specified class: 

//: C05:Handle.h 

// Handle classes 

#ifndef HANDLE_H 

#define HANDLE_H 

 

class Handle { 

  struct Cheshire; // Class declaration only 

  Cheshire* smile; 

public: 

  void initialize(); 

  void cleanup(); 

  int read(); 

  void change(int); 

}; 

#endif // HANDLE_H ///:~ 
 

This is all the client programmer is able to see. The line  

struct Cheshire; 
 

is an incomplete type specification or a class declaration (A class 
definition includes the body of the class.) It tells the compiler that 
Cheshire is a structure name, but it doesn’t give any details about 
the struct. This is only enough information to create a pointer to 
the struct; you can’t create an object until the structure body has 

                                                   
2 This name is attributed to John Carolan, one of the early pioneers in C++, and of 
course, Lewis Carroll. This technique can also be seen as a form of the “bridge” design 
pattern, described in Volume 2. 
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been provided. In this technique, that structure body is hidden 
away in the implementation file: 

//: C05:Handle.cpp {O} 

// Handle implementation 

#include "Handle.h" 

#include "../require.h" 

 

// Define Handle's implementation: 

struct Handle::Cheshire { 

  int i; 

}; 

 

void Handle::initialize() { 

  smile = new Cheshire; 

  smile->i = 0; 

} 

 

void Handle::cleanup() { 

  delete smile; 

} 

 

int Handle::read() { 

  return smile->i; 

} 

 

void Handle::change(int x) { 

  smile->i = x; 

} ///:~ 
 

Cheshire is a nested structure, so it must be defined with scope 
resolution: 

struct Handle::Cheshire { 
 

In Handle::initialize( ), storage is allocated for a Cheshire 
structure, and in Handle::cleanup( ) this storage is released. This 
storage is used in lieu of all the data elements you’d normally put 
into the private section of the class. When you compile 
Handle.cpp, this structure definition is hidden away in the object 
file where no one can see it. If you change the elements of 
Cheshire, the only file that must be recompiled is Handle.cpp 
because the header file is untouched. 

5: Hiding the Implementation 279 

The use of Handle is like the use of any class: include the header, 
create objects, and send messages. 

//: C05:UseHandle.cpp 

//{L} Handle 

// Use the Handle class 

#include "Handle.h" 

 

int main() { 

  Handle u; 

  u.initialize(); 

  u.read(); 

  u.change(1); 

  u.cleanup(); 

} ///:~ 
 

The only thing the client programmer can access is the public 
interface, so as long as the implementation is the only thing that 
changes, the file above never needs recompilation. Thus, although 
this isn’t perfect implementation hiding, it’s a big improvement. 

Summary 
Access control in C++ gives valuable control to the creator of a 
class. The users of the class can clearly see exactly what they can use 
and what to ignore. More important, though, is the ability to ensure 
that no client programmer becomes dependent on any part of the 
underlying implementation of a class. If you know this as the 
creator of the class, you can change the underlying implementation 
with the knowledge that no client programmer will be affected by 
the changes because they can’t access that part of the class. 

When you have the ability to change the underlying 
implementation, you can not only improve your design at some 
later time, but you also have the freedom to make mistakes. No 
matter how carefully you plan and design, you’ll make mistakes. 
Knowing that it’s relatively safe to make these mistakes means 
you’ll be more experimental, you’ll learn faster, and you’ll finish 
your project sooner. 
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The public interface to a class is what the client programmer does 
see, so that is the most important part of the class to get “right” 
during analysis and design. But even that allows you some leeway 
for change. If you don’t get the interface right the first time, you can 
add more functions, as long as you don’t remove any that client 
programmers have already used in their code. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Create a class with public, private, and protected data 
members and function members. Create an object of this 
class and see what kind of compiler messages you get 
when you try to access all the class members. 

2.  Write a struct called Lib that contains three string 
objects a, b, and c. In main( ) create a Lib object called 
x and assign to x.a, x.b, and x.c. Print out the values. 
Now replace a, b, and c with an array of string s[3]. 
Show that your code in main( ) breaks as a result of the 
change. Now create a class called Libc, with private 
string objects a, b, and c, and member functions 
seta( ), geta( ), setb( ), getb( ), setc( ), and getc( ) to 
set and get the values. Write main( ) as before. Now 
change the private string objects a, b, and c to a 
private array of string s[3]. Show that the code in 
main( ) does not break as a result of the change. 

3.  Create a class and a global friend function that 
manipulates the private data in the class. 

4.  Write two classes, each of which has a member function 
that takes a pointer to an object of the other class. Create 
instances of both objects in main( ) and call the 
aforementioned member function in each class. 

5.  Create three classes. The first class contains private 
data, and grants friendship to the entire second class and 
to a member function of the third class. In main( ), 
demonstrate that all of these work correctly. 
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6.  Create a Hen class. Inside this, nest a Nest class. Inside 
Nest, place an Egg class. Each class should have a 
display( ) member function. In main( ), create an 
instance of each class and call the display( ) function for 
each one. 

7.  Modify Exercise 6 so that Nest and Egg each contain 
private data. Grant friendship to allow the enclosing 
classes access to this private data. 

8.  Create a class with data members distributed among 
numerous public, private, and protected sections. 
Add a member function showMap( ) that prints the 
names of each of these data members and their 
addresses. If possible, compile and run this program on 
more than one compiler and/or computer and/or 
operating system to see if there are layout differences in 
the object. 

9.  Copy the implementation and test files for Stash in 
Chapter 4 so that you can compile and test Stash.h in 
this chapter. 

10.  Place objects of the Hen class from Exercise 6 in a 
Stash. Fetch them out and print them (if you have not 
already done so, you will need to add Hen::print( )). 

11.  Copy the implementation and test files for Stack in 
Chapter 4 so that you can compile and test Stack2.h in 
this chapter. 

12.  Place objects of the Hen class from Exercise 6 in a 
Stack. Fetch them out and print them (if you have not 
already done so, you will need to add Hen::print( )). 

13.  Modify Cheshire in Handle.cpp, and verify that your 
project manager recompiles and relinks only this file, but 
doesn’t recompile UseHandle.cpp. 

14.  Create a StackOfInt class (a stack that holds ints) using 
the “Cheshire cat” technique that hides the low-level data 
structure you use to store the elements in a class called 
StackImp. Implement two versions of StackImp: one 
that uses a fixed-length array of int, and one that uses a 
vector<int>. Have a preset maximum size for the stack 
so you don’t have to worry about expanding the array in 
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the first version. Note that the StackOfInt.h class 
doesn’t have to change with StackImp. 
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6: Initialization 

& Cleanup 
Chapter 4 made a significant improvement in library  

use by taking all the scattered components of a typical  

C library and encapsulating them into a structure (an 

abstract data type, called a class from now on).  
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This not only provides a single unified point of entry into a library 
component, but it also hides the names of the functions within the 
class name. In Chapter 5, access control (implementation hiding) 
was introduced. This gives the class designer a way to establish 
clear boundaries for determining what the client programmer is 
allowed to manipulate and what is off limits. It means the internal 
mechanisms of a data type’s operation are under the control and 
discretion of the class designer, and it’s clear to client programmers 
what members they can and should pay attention to. 

Together, encapsulation and access control make a significant step 
in improving the ease of library use. The concept of “new data type” 
they provide is better in some ways than the existing built-in data 
types from C. The C++ compiler can now provide type-checking 
guarantees for that data type and thus ensure a level of safety when 
that data type is being used. 

When it comes to safety, however, there’s a lot more the compiler 
can do for us than C provides. In this and future chapters, you’ll see 
additional features that have been engineered into C++ that make 
the bugs in your program almost leap out and grab you, sometimes 
before you even compile the program, but usually in the form of 
compiler warnings and errors. For this reason, you will soon get 
used to the unlikely-sounding scenario that a C++ program that 
compiles often runs right the first time. 

Two of these safety issues are initialization and cleanup. A large 
segment of C bugs occur when the programmer forgets to initialize 
or clean up a variable. This is especially true with C libraries, when 
client programmers don’t know how to initialize a struct, or even 
that they must. (Libraries often do not include an initialization 
function, so the client programmer is forced to initialize the struct 
by hand.) Cleanup is a special problem because C programmers are 
comfortable with forgetting about variables once they are finished, 
so any cleaning up that may be necessary for a library’s struct is 
often missed. 

In C++, the concept of initialization and cleanup is essential for 
easy library use and to eliminate the many subtle bugs that occur 
when the client programmer forgets to perform these activities. 

6: Initialization & Cleanup 285 

This chapter examines the features in C++ that help guarantee 
proper initialization and cleanup. 

Guaranteed initialization with the 

constructor 
Both the Stash and Stack classes defined previously have a 
function called initialize( ), which hints by its name that it should 
be called before using the object in any other way. Unfortunately, 
this means the client programmer must ensure proper 
initialization. Client programmers are prone to miss details like 
initialization in their headlong rush to make your amazing library 
solve their problem. In C++, initialization is too important to leave 
to the client programmer. The class designer can guarantee 
initialization of every object by providing a special function called 
the constructor. If a class has a constructor, the compiler 
automatically calls that constructor at the point an object is created, 
before client programmers can get their hands on the object. The 
constructor call isn’t even an option for the client programmer; it is 
performed by the compiler at the point the object is defined. 

The next challenge is what to name this function. There are two 
issues. The first is that any name you use is something that can 
potentially clash with a name you might like to use as a member in 
the class. The second is that because the compiler is responsible for 
calling the constructor, it must always know which function to call. 
The solution Stroustrup chose seems the easiest and most logical: 
the name of the constructor is the same as the name of the class. It 
makes sense that such a function will be called automatically on 
initialization. 

Here’s a simple class with a constructor: 

class X { 

  int i; 

public: 

  X();  // Constructor 

}; 
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Now, when an object is defined, 

void f() { 

  X a; 

  // ... 

} 
 

the same thing happens as if a were an int: storage is allocated for 
the object. But when the program reaches the sequence point (point 
of execution) where a is defined, the constructor is called 
automatically. That is, the compiler quietly inserts the call to 
X::X( ) for the object a at the point of definition. Like any member 
function, the first (secret) argument to the constructor is the this 
pointer – the address of the object for which it is being called. In the 
case of the constructor, however, this is pointing to an un-
initialized block of memory, and it’s the job of the constructor to 
initialize this memory properly. 

Like any function, the constructor can have arguments to allow you 
to specify how an object is created, give it initialization values, and 
so on. Constructor arguments provide you with a way to guarantee 
that all parts of your object are initialized to appropriate values. For 
example, if a class Tree has a constructor that takes a single integer 
argument denoting the height of the tree, then you must create a 
tree object like this: 

Tree t(12);  // 12-foot tree 
 

If Tree(int) is your only constructor, the compiler won’t let you 
create an object any other way. (We’ll look at multiple constructors 
and different ways to call constructors in the next chapter.) 

That’s really all there is to a constructor; it’s a specially named 
function that is called automatically by the compiler for every object 
at the point of that object’s creation. Despite it’s simplicity, it is 
exceptionally valuable because it eliminates a large class of 
problems and makes the code easier to write and read. In the 
preceding code fragment, for example, you don’t see an explicit 
function call to some initialize( ) function that is conceptually 
separate from definition. In C++, definition and initialization are 
unified concepts – you can’t have one without the other. 
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Both the constructor and destructor are very unusual types of 
functions: they have no return value. This is distinctly different 
from a void return value, in which the function returns nothing but 
you still have the option to make it something else. Constructors 
and destructors return nothing and you don’t have an option. The 
acts of bringing an object into and out of the program are special, 
like birth and death, and the compiler always makes the function 
calls itself, to make sure they happen. If there were a return value, 
and if you could select your own, the compiler would somehow have 
to know what to do with the return value, or the client programmer 
would have to explicitly call constructors and destructors, which 
would eliminate their safety. 

Guaranteed cleanup with the 

destructor 
As a C programmer, you often think about the importance of 
initialization, but it’s rarer to think about cleanup. After all, what do 
you need to do to clean up an int? Just forget about it. However, 
with libraries, just “letting go” of an object once you’re done with it 
is not so safe. What if it modifies some piece of hardware, or puts 
something on the screen, or allocates storage on the heap? If you 
just forget about it, your object never achieves closure upon its exit 
from this world. In C++, cleanup is as important as initialization 
and is therefore guaranteed with the destructor. 

The syntax for the destructor is similar to that for the constructor: 
the class name is used for the name of the function. However, the 
destructor is distinguished from the constructor by a leading tilde 
(~). In addition, the destructor never has any arguments because 
destruction never needs any options. Here’s the declaration for a 
destructor: 

class Y { 

public: 

  ~Y(); 

}; 
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The destructor is called automatically by the compiler when the 
object goes out of scope. You can see where the constructor gets 
called by the point of definition of the object, but the only evidence 
for a destructor call is the closing brace of the scope that surrounds 
the object. Yet the destructor is still called, even when you use goto 
to jump out of a scope. (goto still exists in C++ for backward 
compatibility with C and for the times when it comes in handy.) You 
should note that a nonlocal goto, implemented by the Standard C 
library functions setjmp( ) and longjmp( ), doesn’t cause 
destructors to be called. (This is the specification, even if your 
compiler doesn’t implement it that way. Relying on a feature that 
isn’t in the specification means your code is nonportable.) 

Here’s an example demonstrating the features of constructors and 
destructors you’ve seen so far: 

//: C06:Constructor1.cpp 

// Constructors & destructors 

#include <iostream> 

using namespace std; 

 

class Tree { 

  int height; 

public: 

  Tree(int initialHeight);  // Constructor 

  ~Tree();  // Destructor 

  void grow(int years); 

  void printsize(); 

}; 

 

Tree::Tree(int initialHeight) { 

  height = initialHeight; 

} 

 

Tree::~Tree() { 

  cout << "inside Tree destructor" << endl; 

  printsize(); 

} 

 

void Tree::grow(int years) { 

  height += years; 

} 
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void Tree::printsize() { 

  cout << "Tree height is " << height << endl; 

} 

 

int main() { 

  cout << "before opening brace" << endl; 

  { 

    Tree t(12); 

    cout << "after Tree creation" << endl; 

    t.printsize(); 

    t.grow(4); 

    cout << "before closing brace" << endl; 

  } 

  cout << "after closing brace" << endl; 

} ///:~ 
 

Here’s the output of the above program: 

before opening brace 

after Tree creation 

Tree height is 12 

before closing brace 

inside Tree destructor 

Tree height is 16 

after closing brace 
 

You can see that the destructor is automatically called at the closing 
brace of the scope that encloses it. 

Elimination of the definition block 
In C, you must always define all the variables at the beginning of a 
block, after the opening brace. This is not an uncommon 
requirement in programming languages, and the reason given has 
often been that it’s “good programming style.” On this point, I have 
my suspicions. It has always seemed inconvenient to me, as a 
programmer, to pop back to the beginning of a block every time I 
need a new variable. I also find code more readable when the 
variable definition is close to its point of use. 

Perhaps these arguments are stylistic. In C++, however, there’s a 
significant problem in being forced to define all objects at the 
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beginning of a scope. If a constructor exists, it must be called when 
the object is created. However, if the constructor takes one or more 
initialization arguments, how do you know you will have that 
initialization information at the beginning of a scope? In the 
general programming situation, you won’t. Because C has no 
concept of private, this separation of definition and initialization is 
no problem. However, C++ guarantees that when an object is 
created, it is simultaneously initialized. This ensures that you will 
have no uninitialized objects running around in your system. C 
doesn’t care; in fact, C encourages this practice by requiring you to 
define variables at the beginning of a block before you necessarily 
have the initialization information1. 

In general, C++ will not allow you to create an object before you 
have the initialization information for the constructor. Because of 
this, the language wouldn’t be feasible if you had to define variables 
at the beginning of a scope. In fact, the style of the language seems 
to encourage the definition of an object as close to its point of use as 
possible. In C++, any rule that applies to an “object” automatically 
refers to an object of a built-in type as well. This means that any 
class object or variable of a built-in type can also be defined at any 
point in a scope. It also means that you can wait until you have the 
information for a variable before defining it, so you can always 
define and initialize at the same time: 

//: C06:DefineInitialize.cpp 

// Defining variables anywhere 

#include "../require.h" 

#include <iostream> 

#include <string> 

using namespace std; 

 

class G { 

  int i; 

public: 

  G(int ii); 

}; 

                                                   
1 C99, The updated version of Standard C, allows variables to be defined at any point 
in a scope, like C++. 
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G::G(int ii) { i = ii; } 

 

int main() { 

  cout << "initialization value? "; 

  int retval = 0; 

  cin >> retval; 

  require(retval != 0); 

  int y = retval + 3; 

  G g(y); 

} ///:~ 
 

You can see that some code is executed, then retval is defined, 
initialized, and used to capture user input, and then y and g are 
defined. C, on the other hand, does not allow a variable to be 
defined anywhere except at the beginning of the scope. 

In general, you should define variables as close to their point of use 
as possible, and always initialize them when they are defined. (This 
is a stylistic suggestion for built-in types, where initialization is 
optional.) This is a safety issue. By reducing the duration of the 
variable’s availability within the scope, you are reducing the chance 
it will be misused in some other part of the scope. In addition, 
readability is improved because the reader doesn’t have to jump 
back and forth to the beginning of the scope to know the type of a 
variable. 

for loops 
In C++, you will often see a for loop counter defined right inside 
the for expression: 

for(int j = 0; j < 100; j++) { 

    cout << "j = " << j << endl; 

} 

for(int i = 0; i < 100; i++) 

    cout << "i = " << i << endl; 
 

The statements above are important special cases, which cause 
confusion to new C++ programmers. 
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The variables i and j are defined directly inside the for expression 
(which you cannot do in C). They are then available for use in the 
for loop. It’s a very convenient syntax because the context removes 
all question about the purpose of i and j, so you don’t need to use 
such ungainly names as i_loop_counter for clarity. 

However, some confusion may result if you expect the lifetimes of 
the variables i and j to extend beyond the scope of the for loop – 
they do not2. 

Chapter 3 points out that while and switch statements also allow 
the definition of objects in their control expressions, although this 
usage seems far less important than with the for loop. 

Watch out for local variables that hide variables from the enclosing 
scope. In general, using the same name for a nested variable and a 
variable that is global to that scope is confusing and error prone3. 

I find small scopes an indicator of good design. If you have several 
pages for a single function, perhaps you’re trying to do too much 
with that function. More granular functions are not only more 
useful, but it’s also easier to find bugs. 

Storage allocation 
A variable can now be defined at any point in a scope, so it might 
seem that the storage for a variable may not be defined until its 
point of definition. It’s actually more likely that the compiler will 
follow the practice in C of allocating all the storage for a scope at the 
opening brace of that scope. It doesn’t matter because, as a 
programmer, you can’t access the storage (a.k.a. the object) until it 
has been defined4. Although the storage is allocated at the 
beginning of the block, the constructor call doesn’t happen until the 

                                                   
2 An earlier iteration of the C++ draft standard said the variable lifetime extended to 
the end of the scope that enclosed the for loop. Some compilers still implement that, 
but it is not correct so your code will only be portable if you limit the scope to the for 
loop. 
3 The Java language considers this such a bad idea that it flags such code as an error. 
4 OK, you probably could by fooling around with pointers, but you’d be very, very bad. 
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sequence point where the object is defined because the identifier 
isn’t available until then. The compiler even checks to make sure 
that you don’t put the object definition (and thus the constructor 
call) where the sequence point only conditionally passes through it, 
such as in a switch statement or somewhere a goto can jump past 
it. Uncommenting the statements in the following code will 
generate a warning or an error: 

//: C06:Nojump.cpp 

// Can't jump past constructors 

 

class X { 

public: 

  X(); 

}; 

 

X::X() {} 

 

void f(int i) { 

  if(i < 10) { 

   //! goto jump1; // Error: goto bypasses init 

  } 

  X x1;  // Constructor called here 

 jump1: 

  switch(i) { 

    case 1 : 

      X x2;  // Constructor called here 

      break; 

  //! case 2 : // Error: case bypasses init 

      X x3;  // Constructor called here 

      break; 

  } 

}  

 

int main() { 

  f(9); 

  f(11); 

}///:~ 
 

In the code above, both the goto and the switch can potentially 
jump past the sequence point where a constructor is called. That 
object will then be in scope even if the constructor hasn’t been 
called, so the compiler gives an error message. This once again 
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guarantees that an object cannot be created unless it is also 
initialized. 

All the storage allocation discussed here happens, of course, on the 
stack. The storage is allocated by the compiler by moving the stack 
pointer “down” (a relative term, which may indicate an increase or 
decrease of the actual stack pointer value, depending on your 
machine). Objects can also be allocated on the heap using new, 
which is something we’ll explore further in Chapter 13. 

Stash with constructors and 

destructors 
The examples from previous chapters have obvious functions that 
map to constructors and destructors: initialize( ) and cleanup( ). 
Here’s the Stash header using constructors and destructors:  

//: C06:Stash2.h 

// With constructors & destructors 

#ifndef STASH2_H 

#define STASH2_H 

 

class Stash { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

  // Dynamically allocated array of bytes: 

  unsigned char* storage; 

  void inflate(int increase); 

public: 

  Stash(int size); 

  ~Stash(); 

  int add(void* element); 

  void* fetch(int index); 

  int count(); 

}; 

#endif // STASH2_H ///:~ 
 

The only member function definitions that are changed are 
initialize( ) and cleanup( ), which have been replaced with a 
constructor and destructor: 
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//: C06:Stash2.cpp {O} 

// Constructors & destructors 

#include "Stash2.h" 

#include "../require.h" 

#include <iostream> 

#include <cassert> 

using namespace std; 

const int increment = 100; 

 

Stash::Stash(int sz) { 

  size = sz; 

  quantity = 0; 

  storage = 0; 

  next = 0; 

} 

 

int Stash::add(void* element) { 

  if(next >= quantity) // Enough space left? 

    inflate(increment); 

  // Copy element into storage, 

  // starting at next empty space: 

  int startBytes = next * size; 

  unsigned char* e = (unsigned char*)element; 

  for(int i = 0; i < size; i++) 

    storage[startBytes + i] = e[i]; 

  next++; 

  return(next - 1); // Index number 

} 

 

void* Stash::fetch(int index) { 

  require(0 <= index, "Stash::fetch (-)index"); 

  if(index >= next) 

    return 0; // To indicate the end 

  // Produce pointer to desired element: 

  return &(storage[index * size]); 

} 

 

int Stash::count() { 

  return next; // Number of elements in CStash 

} 

 

void Stash::inflate(int increase) { 

  require(increase > 0,  

    "Stash::inflate zero or negative increase"); 

  int newQuantity = quantity + increase; 
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  int newBytes = newQuantity * size; 

  int oldBytes = quantity * size; 

  unsigned char* b = new unsigned char[newBytes]; 

  for(int i = 0; i < oldBytes; i++) 

    b[i] = storage[i]; // Copy old to new 

  delete [](storage); // Old storage 

  storage = b; // Point to new memory 

  quantity = newQuantity; 

} 

 

Stash::~Stash() { 

  if(storage != 0) { 

   cout << "freeing storage" << endl; 

   delete []storage; 

  } 

} ///:~ 
 

You can see that the require.h functions are being used to watch 
for programmer errors, instead of assert( ). The output of a failed 
assert( ) is not as useful as that of the require.h functions (which 
will be shown later in the book). 

Because inflate( ) is private, the only way a require( ) could fail is 
if one of the other member functions accidentally passed an 
incorrect value to inflate( ). If you are certain this can’t happen, 
you could consider removing the require( ), but you might keep in 
mind that until the class is stable, there’s always the possibility that 
new code might be added to the class that could cause errors. The 
cost of the require( ) is low (and could be automatically removed 
using the preprocessor) and the value of code robustness is high. 

Notice in the following test program how the definitions for Stash 
objects appear right before they are needed, and how the 
initialization appears as part of the definition, in the constructor 
argument list: 

//: C06:Stash2Test.cpp 

//{L} Stash2 

// Constructors & destructors 

#include "Stash2.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 
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#include <string> 

using namespace std; 

 

int main() { 

  Stash intStash(sizeof(int)); 

  for(int i = 0; i < 100; i++) 

    intStash.add(&i); 

  for(int j = 0; j < intStash.count(); j++) 

    cout << "intStash.fetch(" << j << ") = " 

         << *(int*)intStash.fetch(j) 

         << endl; 

  const int bufsize = 80; 

  Stash stringStash(sizeof(char) * bufsize); 

  ifstream in("Stash2Test.cpp"); 

  assure(in, " Stash2Test.cpp"); 

  string line; 

  while(getline(in, line)) 

    stringStash.add((char*)line.c_str()); 

  int k = 0; 

  char* cp; 

  while((cp = (char*)stringStash.fetch(k++))!=0) 

    cout << "stringStash.fetch(" << k << ") = " 

         << cp << endl; 

} ///:~ 
 

Also notice how the cleanup( ) calls have been eliminated, but the 
destructors are still automatically called when intStash and 
stringStash go out of scope. 

One thing to be aware of in the Stash examples: I’m being very 
careful to use only built-in types; that is, those without destructors. 
If you were to try to copy class objects into the Stash, you’d run 
into all kinds of problems and it wouldn’t work right. The Standard 
C++ Library can actually make correct copies of objects into its 
containers, but this is a rather messy and complicated process. In 
the following Stack example, you’ll see that pointers are used to 
sidestep this issue, and in a later chapter the Stash will be 
converted so that it uses pointers. 



298 Thinking in C++ www.BruceEckel.com 

Stack with constructors & 

destructors 
Reimplementing the linked list (inside Stack) with constructors 
and destructors shows how neatly constructors and destructors 
work with new and delete. Here’s the modified header file:  

//: C06:Stack3.h 

// With constructors/destructors 

#ifndef STACK3_H 

#define STACK3_H 

 

class Stack { 

  struct Link { 

    void* data; 

    Link* next; 

    Link(void* dat, Link* nxt); 

    ~Link(); 

  }* head; 

public: 

  Stack(); 

  ~Stack(); 

  void push(void* dat); 

  void* peek(); 

  void* pop(); 

}; 

#endif // STACK3_H ///:~ 
 

Not only does Stack have a constructor and destructor, but so does 
the nested class Link: 

//: C06:Stack3.cpp {O} 

// Constructors/destructors 

#include "Stack3.h" 

#include "../require.h" 

using namespace std; 

 

Stack::Link::Link(void* dat, Link* nxt) { 

  data = dat; 

  next = nxt; 

} 

 

Stack::Link::~Link() { } 
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Stack::Stack() { head = 0; } 

 

void Stack::push(void* dat) { 

  head = new Link(dat,head); 

} 

 

void* Stack::peek() {  

  require(head != 0, "Stack empty"); 

  return head->data;  

} 

 

void* Stack::pop() { 

  if(head == 0) return 0; 

  void* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

 

Stack::~Stack() { 

  require(head == 0, "Stack not empty"); 

} ///:~ 
 

The Link::Link( ) constructor simply initializes the data and 
next pointers, so in Stack::push( ) the line 

head = new Link(dat,head); 
 

not only allocates a new link (using dynamic object creation with 
the keyword new, introduced in Chapter 4), but it also neatly 
initializes the pointers for that link. 

You may wonder why the destructor for Link doesn’t do anything – 
in particular, why doesn’t it delete the data pointer? There are two 
problems. In Chapter 4, where the Stack was introduced, it was 
pointed out that you cannot properly delete a void pointer if it 
points to an object (an assertion that will be proven in Chapter 13). 
But in addition, if the Link destructor deleted the data pointer, 
pop( ) would end up returning a pointer to a deleted object, which 
would definitely be a bug. This is sometimes referred to as the issue 
of ownership: the Link and thus the Stack only holds the pointers, 
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but is not responsible for cleaning them up. This means that you 
must be very careful that you know who is responsible. For 
example, if you don’t pop( ) and delete all the pointers on the 
Stack, they won’t get cleaned up automatically by the Stack’s 
destructor. This can be a sticky issue and leads to memory leaks, so 
knowing who is responsible for cleaning up an object can make the 
difference between a successful program and a buggy one – that’s 
why Stack::~Stack( ) prints an error message if the Stack object 
isn’t empty upon destruction.  

Because the allocation and cleanup of the Link objects are hidden 
within Stack – it’s part of the underlying implementation – you 
don’t see it happening in the test program, although you are 
responsible for deleting the pointers that come back from pop( ): 

//: C06:Stack3Test.cpp 

//{L} Stack3 

//{T} Stack3Test.cpp 

// Constructors/destructors 

#include "Stack3.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack textlines; 

  string line; 

  // Read file and store lines in the stack: 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  // Pop the lines from the stack and print them: 

  string* s; 

  while((s = (string*)textlines.pop()) != 0) { 

    cout << *s << endl; 

    delete s;  

  } 

} ///:~ 
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In this case, all the lines in textlines are popped and deleted, but if 
they weren’t, you’d get a require( ) message that would mean 
there was a memory leak. 

Aggregate initialization 
An aggregate is just what it sounds like: a bunch of things clumped 
together. This definition includes aggregates of mixed types, like 
structs and classes. An array is an aggregate of a single type. 

Initializing aggregates can be error-prone and tedious. C++ 
aggregate initialization makes it much safer. When you create an 
object that’s an aggregate, all you must do is make an assignment, 
and the initialization will be taken care of by the compiler. This 
assignment comes in several flavors, depending on the type of 
aggregate you’re dealing with, but in all cases the elements in the 
assignment must be surrounded by curly braces. For an array of 
built-in types this is quite simple: 

int a[5] = { 1, 2, 3, 4, 5 }; 
 

If you try to give more initializers than there are array elements, the 
compiler gives an error message. But what happens if you give 
fewer initializers? For example: 

int b[6] = {0}; 
 

Here, the compiler will use the first initializer for the first array 
element, and then use zero for all the elements without initializers. 
Notice this initialization behavior doesn’t occur if you define an 
array without a list of initializers. So the expression above is a 
succinct way to initialize an array to zero, without using a for loop, 
and without any possibility of an off-by-one error (Depending on 
the compiler, it may also be more efficient than the for loop.) 

A second shorthand for arrays is automatic counting, in which you 
let the compiler determine the size of the array based on the 
number of initializers: 

int c[] = { 1, 2, 3, 4 }; 
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Now if you decide to add another element to the array, you simply 
add another initializer. If you can set your code up so it needs to be 
changed in only one spot, you reduce the chance of errors during 
modification. But how do you determine the size of the array? The 
expression sizeof c / sizeof *c (size of the entire array divided by 
the size of the first element) does the trick in a way that doesn’t 
need to be changed if the array size changes5: 

for(int i = 0; i < sizeof c / sizeof *c; i++) 

  c[i]++; 
 

Because structures are also aggregates, they can be initialized in a 
similar fashion. Because a C-style struct has all of its members 
public, they can be assigned directly: 

struct X { 

  int i; 

  float f; 

  char c; 

}; 

 

X x1 = { 1, 2.2, 'c' }; 
 

If you have an array of such objects, you can initialize them by using 
a nested set of curly braces for each object: 

X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} }; 
 

Here, the third object is initialized to zero. 

If any of the data members are private (which is typically the case 
for a well-designed class in C++), or even if everything’s public but 
there’s a constructor, things are different. In the examples above, 
the initializers are assigned directly to the elements of the 
aggregate, but constructors are a way of forcing initialization to 
occur through a formal interface. Here, the constructors must be 
called to perform the initialization. So if you have a struct that 
looks like this, 

                                                   
5 In Volume 2 of this book (freely available at www.BruceEckel.com), you’ll see a 
more succinct calculation of an array size using templates. 
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struct Y { 

  float f; 

  int i; 

  Y(int a); 

}; 
 

You must indicate constructor calls. The best approach is the 
explicit one as follows: 

Y y1[] = { Y(1), Y(2), Y(3) }; 
 

You get three objects and three constructor calls. Any time you have 
a constructor, whether it’s a struct with all members public or a 
class with private data members, all the initialization must go 
through the constructor, even if you’re using aggregate 
initialization. 

Here’s a second example showing multiple constructor arguments: 

//: C06:Multiarg.cpp 

// Multiple constructor arguments 

// with aggregate initialization 

#include <iostream> 

using namespace std; 

 

class Z { 

  int i, j; 

public: 

  Z(int ii, int jj); 

  void print(); 

}; 

 

Z::Z(int ii, int jj) { 

  i = ii; 

  j = jj; 

} 

 

void Z::print() { 

  cout << "i = " << i << ", j = " << j << endl; 

} 

 

int main() { 

  Z zz[] = { Z(1,2), Z(3,4), Z(5,6), Z(7,8) }; 

  for(int i = 0; i < sizeof zz / sizeof *zz; i++) 



304 Thinking in C++ www.BruceEckel.com 

    zz[i].print(); 

} ///:~ 
 

Notice that it looks like an explicit constructor is called for each 
object in the array. 

Default constructors 
A default constructor is one that can be called with no arguments. A 
default constructor is used to create a “vanilla object,” but it’s also 
important when the compiler is told to create an object but isn’t 
given any details. For example, if you take the struct Y defined 
previously and use it in a definition like this, 

Y y2[2] = { Y(1) }; 
 

the compiler will complain that it cannot find a default constructor. 
The second object in the array wants to be created with no 
arguments, and that’s where the compiler looks for a default 
constructor. In fact, if you simply define an array of Y objects, 

Y y3[7]; 
 

the compiler will complain because it must have a default 
constructor to initialize every object in the array.  

The same problem occurs if you create an individual object like this: 

Y y4; 
 

Remember, if you have a constructor, the compiler ensures that 
construction always happens, regardless of the situation. 

The default constructor is so important that if (and only if) there are 
no constructors for a structure (struct or class), the compiler will 
automatically create one for you. So this works: 

//: C06:AutoDefaultConstructor.cpp 

// Automatically-generated default constructor 

 

class V { 

  int i;  // private 
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}; // No constructor 

 

int main() { 

  V v, v2[10]; 

} ///:~ 
 

If any constructors are defined, however, and there’s no default 
constructor, the instances of V above will generate compile-time 
errors. 

You might think that the compiler-synthesized constructor should 
do some intelligent initialization, like setting all the memory for the 
object to zero. But it doesn’t – that would add extra overhead but be 
out of the programmer’s control. If you want the memory to be 
initialized to zero, you must do it yourself by writing the default 
constructor explicitly. 

Although the compiler will create a default constructor for you, the 
behavior of the compiler-synthesized constructor is rarely what you 
want. You should treat this feature as a safety net, but use it 
sparingly. In general, you should define your constructors explicitly 
and not allow the compiler to do it for you. 

Summary 
The seemingly elaborate mechanisms provided by C++ should give 
you a strong hint about the critical importance placed on 
initialization and cleanup in the language. As Stroustrup was 
designing C++, one of the first observations he made about 
productivity in C was that a significant portion of programming 
problems are caused by improper initialization of variables. These 
kinds of bugs are hard to find, and similar issues apply to improper 
cleanup. Because constructors and destructors allow you to 
guarantee proper initialization and cleanup (the compiler will not 
allow an object to be created and destroyed without the proper 
constructor and destructor calls), you get complete control and 
safety. 
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Aggregate initialization is included in a similar vein – it prevents 
you from making typical initialization mistakes with aggregates of 
built-in types and makes your code more succinct. 

Safety during coding is a big issue in C++. Initialization and 
cleanup are an important part of this, but you’ll also see other safety 
issues as the book progresses. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Write a simple class called Simple with a constructor 
that prints something to tell you that it’s been called. In 
main( ) make an object of your class. 

2.  Add a destructor to Exercise 1 that prints out a message 
to tell you that it’s been called. 

3.  Modify Exercise 2 so that the class contains an int 
member. Modify the constructor so that it takes an int 
argument that it stores in the class member. Both the 
constructor and destructor should print out the int value 
as part of their message, so you can see the objects as 
they are created and destroyed. 

4.  Demonstrate that destructors are still called even when 
goto is used to jump out of a loop. 

5.  Write two for loops that print out values from zero to 10. 
In the first, define the loop counter before the for loop, 
and in the second, define the loop counter in the control 
expression of the for loop. For the second part of this 
exercise, modify the identifier in the second for loop so 
that it as the same name as the loop counter for the first 
and see what your compiler does. 

6.  Modify the Handle.h, Handle.cpp, and 
UseHandle.cpp files at the end of Chapter 5 to use 
constructors and destructors. 

7.  Use aggregate initialization to create an array of double 
in which you specify the size of the array but do not 
provide enough elements. Print out this array using 
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sizeof to determine the size of the array. Now create an 
array of double using aggregate initialization and 
automatic counting. Print out the array. 

8.  Use aggregate initialization to create an array of string 
objects. Create a Stack to hold these strings and step 
through your array, pushing each string on your Stack. 
Finally, pop the strings off your Stack and print each 
one. 

9.  Demonstrate automatic counting and aggregate 
initialization with an array of objects of the class you 
created in Exercise 3. Add a member function to that 
class that prints a message. Calculate the size of the array 
and move through it, calling your new member function. 

10.  Create a class without any constructors, and show that 
you can create objects with the default constructor. Now 
create a nondefault constructor (one with an argument) 
for the class, and try compiling again. Explain what 
happened. 
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When you create an object (a variable), you give a name to a region 
of storage. A function is a name for an action. By making up names 
to describe the system at hand, you create a program that is easier 
for people to understand and change. It’s a lot like writing prose – 
the goal is to communicate with your readers. 

A problem arises when mapping the concept of nuance in human 
language onto a programming language. Often, the same word 
expresses a number of different meanings, depending on context. 
That is, a single word has multiple meanings – it’s overloaded. This 
is very useful, especially when it comes to trivial differences. You 
say “wash the shirt, wash the car.” It would be silly to be forced to 
say, “shirt_wash the shirt, car_wash the car” just so the listener 
doesn’t have to make any distinction about the action performed. 
Human languages have built-in redundancy, so even if you miss a 
few words, you can still determine the meaning. We don’t need 
unique identifiers – we can deduce meaning from context. 

Most programming languages, however, require that you have a 
unique identifier for each function. If you have three different types 
of data that you want to print: int, char, and float, you generally 
have to create three different function names, for example, 
print_int( ), print_char( ), and print_float( ). This loads extra 
work on you as you write the program, and on readers as they try to 
understand it. 

In C++, another factor forces the overloading of function names: 
the constructor. Because the constructor’s name is predetermined 
by the name of the class, it would seem that there can be only one 
constructor. But what if you want to create an object in more than 
one way? For example, suppose you build a class that can initialize 
itself in a standard way and also by reading information from a file. 
You need two constructors, one that takes no arguments (the 
default constructor) and one that takes a string as an argument, 
which is the name of the file to initialize the object. Both are 
constructors, so they must have the same name: the name of the 
class. Thus, function overloading is essential to allow the same 
function name – the constructor in this case – to be used with 
different argument types. 
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Although function overloading is a must for constructors, it’s a 
general convenience and can be used with any function, not just 
class member functions. In addition, function overloading means 
that if you have two libraries that contain functions of the same 
name, they won’t conflict as long as the argument lists are different. 
We’ll look at all these factors in detail throughout this chapter. 

The theme of this chapter is convenient use of function names. 
Function overloading allows you to use the same name for different 
functions, but there’s a second way to make calling a function more 
convenient. What if you’d like to call the same function in different 
ways? When functions have long argument lists, it can become 
tedious to write (and confusing to read) the function calls when 
most of the arguments are the same for all the calls. A commonly 
used feature in C++ is called default arguments. A default 
argument is one the compiler inserts if it isn’t specified in the 
function call. Thus, the calls f(“hello”), f(“hi”, 1), and 
f(“howdy”, 2, ‘c’) can all be calls to the same function. They could 
also be calls to three overloaded functions, but when the argument 
lists are this similar, you’ll usually want similar behavior, which 
calls for a single function. 

Function overloading and default arguments really aren’t very 
complicated. By the time you reach the end of this chapter, you’ll 
understand when to use them and the underlying mechanisms that 
implement them during compiling and linking. 

More name decoration 
In Chapter 4, the concept of name decoration was introduced. In 
the code 

void f(); 

class X { void f(); }; 
 

the function f( ) inside the scope of class X does not clash with the 
global version of f( ). The compiler performs this scoping by 
manufacturing different internal names for the global version of f( ) 
and X::f( ). In Chapter 4, it was suggested that the names are 
simply the class name “decorated” together with the function name, 
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so the internal names the compiler uses might be _f and _X_f. 
However, it turns out that function name decoration involves more 
than the class name. 

Here’s why. Suppose you want to overload two function names 

void print(char); 

void print(float); 
 

It doesn’t matter whether they are both inside a class or at the 
global scope. The compiler can’t generate unique internal identifiers 
if it uses only the scope of the function names. You’d end up with 
_print in both cases. The idea of an overloaded function is that you 
use the same function name, but different argument lists. Thus, for 
overloading to work the compiler must decorate the function name 
with the names of the argument types. The functions above, defined 
at global scope, produce internal names that might look something 
like _print_char and _print_float. It’s worth noting there is no 
standard for the way names must be decorated by the compiler, so 
you will see very different results from one compiler to another. 
(You can see what it looks like by telling the compiler to generate 
assembly-language output.) This, of course, causes problems if you 
want to buy compiled libraries for a particular compiler and linker 
– but  even if name decoration were standardized, there would be 
other roadblocks because of the way different compilers generate 
code. 

That’s really all there is to function overloading: you can use the 
same function name for different functions as long as the argument 
lists are different. The compiler decorates the name, the scope, and 
the argument lists to produce internal names for it and the linker to 
use. 

Overloading on return values 
It’s common to wonder, “Why just scopes and argument lists? Why 
not return values?” It seems at first that it would make sense to also 
decorate the return value with the internal function name. Then you 
could overload on return values, as well: 

void f(); 
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int f(); 
 

This works fine when the compiler can unequivocally determine the 
meaning from the context, as in int x = f( );. However, in C you’ve 
always been able to call a function and ignore the return value (that 
is, you can call the function for its side effects). How can the 
compiler distinguish which call is meant in this case? Possibly 
worse is the difficulty the reader has in knowing which function call 
is meant. Overloading solely on return value is a bit too subtle, and 
thus isn’t allowed in C++. 

Type-safe linkage 
There is an added benefit to all of this name decoration. A 
particularly sticky problem in C occurs when the client programmer 
misdeclares a function, or, worse, a function is called without 
declaring it first, and the compiler infers the function declaration 
from the way it is called. Sometimes this function declaration is 
correct, but when it isn’t, it can be a difficult bug to find. 

Because all functions must be declared before they are used in C++, 
the opportunity for this problem to pop up is greatly diminished. 
The C++ compiler refuses to declare a function automatically for 
you, so it’s likely that you will include the appropriate header file. 
However, if for some reason you still manage to misdeclare a 
function, either by declaring by hand or including the wrong header 
file (perhaps one that is out of date), the name decoration provides 
a safety net that is often referred to as type-safe linkage. 

Consider the following scenario. In one file is the definition for a 
function: 

//: C07:Def.cpp {O} 

// Function definition 

void f(int) {} 

///:~ 
 

In the second file, the function is misdeclared and then called: 

//: C07:Use.cpp 

//{L} Def 
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// Function misdeclaration 

void f(char); 

 

int main() { 

//!  f(1); // Causes a linker error 

} ///:~ 
 

Even though you can see that the function is actually f(int), the 
compiler doesn’t know this because it was told – through an explicit 
declaration – that the function is f(char). Thus, the compilation is 
successful. In C, the linker would also be successful, but not in C++. 
Because the compiler decorates the names, the definition becomes 
something like f_int, whereas the use of the function is f_char. 
When the linker tries to resolve the reference to f_char, it can only 
find f_int, and it gives you an error message. This is type-safe 
linkage. Although the problem doesn’t occur all that often, when it 
does it can be incredibly difficult to find, especially in a large 
project. This is one of the cases where you can easily find a difficult 
error in a C program simply by running it through the C++ 
compiler. 

Overloading example 
We can now modify earlier examples to use function overloading. 
As stated before, an immediately useful place for overloading is in 
constructors. You can see this in the following version of the Stash 
class:  

//: C07:Stash3.h 

// Function overloading 

#ifndef STASH3_H 

#define STASH3_H 

 

class Stash { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

  // Dynamically allocated array of bytes: 

  unsigned char* storage; 

  void inflate(int increase); 

public: 
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  Stash(int size); // Zero quantity 

  Stash(int size, int initQuantity); 

  ~Stash(); 

  int add(void* element); 

  void* fetch(int index); 

  int count(); 

}; 

#endif // STASH3_H ///:~ 
 

The first Stash( ) constructor is the same as before, but the second 
one has a Quantity argument to indicate the initial number of 
storage places to be allocated. In the definition, you can see that the 
internal value of quantity is set to zero, along with the storage 
pointer. In the second constructor, the call to 
inflate(initQuantity) increases quantity to the allocated size: 

//: C07:Stash3.cpp {O} 

// Function overloading 

#include "Stash3.h" 

#include "../require.h" 

#include <iostream> 

#include <cassert> 

using namespace std; 

const int increment = 100; 

 

Stash::Stash(int sz) { 

  size = sz; 

  quantity = 0; 

  next = 0; 

  storage = 0; 

} 

 

Stash::Stash(int sz, int initQuantity) { 

  size = sz; 

  quantity = 0; 

  next = 0; 

  storage = 0; 

  inflate(initQuantity); 

} 

 

Stash::~Stash() { 

  if(storage != 0) { 

    cout << "freeing storage" << endl; 

    delete []storage; 
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  } 

} 

 

int Stash::add(void* element) { 

  if(next >= quantity) // Enough space left? 

    inflate(increment); 

  // Copy element into storage, 

  // starting at next empty space: 

  int startBytes = next * size; 

  unsigned char* e = (unsigned char*)element; 

  for(int i = 0; i < size; i++) 

    storage[startBytes + i] = e[i]; 

  next++; 

  return(next - 1); // Index number 

} 

 

void* Stash::fetch(int index) { 

  require(0 <= index, "Stash::fetch (-)index"); 

  if(index >= next) 

    return 0; // To indicate the end 

  // Produce pointer to desired element: 

  return &(storage[index * size]); 

} 

 

int Stash::count() { 

  return next; // Number of elements in CStash 

} 

 

void Stash::inflate(int increase) { 

  assert(increase >= 0); 

  if(increase == 0) return; 

  int newQuantity = quantity + increase; 

  int newBytes = newQuantity * size; 

  int oldBytes = quantity * size; 

  unsigned char* b = new unsigned char[newBytes]; 

  for(int i = 0; i < oldBytes; i++) 

    b[i] = storage[i]; // Copy old to new 

  delete [](storage); // Release old storage 

  storage = b; // Point to new memory 

  quantity = newQuantity; // Adjust the size 

} ///:~ 
 

When you use the first constructor no memory is allocated for 
storage. The allocation happens the first time you try to add( ) an 
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object and any time the current block of memory is exceeded inside 
add( ). 

Both constructors are exercised in the test program: 

//: C07:Stash3Test.cpp 

//{L} Stash3 

// Function overloading 

#include "Stash3.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main() { 

  Stash intStash(sizeof(int)); 

  for(int i = 0; i < 100; i++) 

    intStash.add(&i); 

  for(int j = 0; j < intStash.count(); j++) 

    cout << "intStash.fetch(" << j << ") = " 

         << *(int*)intStash.fetch(j) 

         << endl; 

  const int bufsize = 80; 

  Stash stringStash(sizeof(char) * bufsize, 100); 

  ifstream in("Stash3Test.cpp"); 

  assure(in, "Stash3Test.cpp"); 

  string line; 

  while(getline(in, line)) 

    stringStash.add((char*)line.c_str()); 

  int k = 0; 

  char* cp; 

  while((cp = (char*)stringStash.fetch(k++))!=0) 

    cout << "stringStash.fetch(" << k << ") = " 

         << cp << endl; 

} ///:~ 
 

The constructor call for stringStash uses a second argument; 
presumably you know something special about the specific problem 
you’re solving that allows you to choose an initial size for the Stash. 
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unions 
As you’ve seen, the only difference between struct and class in 
C++ is that struct defaults to public and class defaults to 
private. A struct can also have constructors and destructors, as 
you might expect. But it turns out that a union can also have a 
constructor, destructor, member functions, and even access control. 
You can again see the use and benefit of overloading in the 
following example: 

//: C07:UnionClass.cpp 

// Unions with constructors and member functions 

#include<iostream> 

using namespace std; 

 

union U { 

private: // Access control too! 

  int i; 

  float f; 

public:   

  U(int a); 

  U(float b); 

  ~U(); 

  int read_int(); 

  float read_float(); 

}; 

 

U::U(int a) { i = a; } 

 

U::U(float b) { f = b;} 

 

U::~U() { cout << "U::~U()\n"; } 

 

int U::read_int() { return i; } 

 

float U::read_float() { return f; } 

 

int main() { 

  U X(12), Y(1.9F); 

  cout << X.read_int() << endl; 

  cout << Y.read_float() << endl; 

} ///:~ 
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You might think from the code above that the only difference 
between a union and a class is the way the data is stored (that is, 
the int and float are overlaid on the same piece of storage). 
However, a union cannot be used as a base class during 
inheritance, which is quite limiting from an object-oriented design 
standpoint (you’ll learn about inheritance in Chapter 14). 

Although the member functions civilize access to the union 
somewhat, there is still no way to prevent the client programmer 
from selecting the wrong element type once the union is 
initialized. In the example above, you could say X.read_float( ) 
even though it is inappropriate. However, a “safe” union can be 
encapsulated in a class. In the following example, notice how the 
enum clarifies the code, and how overloading comes in handy with 
the constructors: 

//: C07:SuperVar.cpp 

// A super-variable 

#include <iostream> 

using namespace std; 

 

class SuperVar { 

  enum { 

    character, 

    integer, 

    floating_point 

  } vartype;  // Define one 

  union {  // Anonymous union 

    char c; 

    int i; 

    float f; 

  }; 

public: 

  SuperVar(char ch); 

  SuperVar(int ii); 

  SuperVar(float ff); 

  void print(); 

}; 

 

SuperVar::SuperVar(char ch) { 

  vartype = character; 

  c = ch; 

} 
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SuperVar::SuperVar(int ii) { 

  vartype = integer; 

  i = ii; 

} 

 

SuperVar::SuperVar(float ff) { 

  vartype = floating_point; 

  f = ff; 

} 

 

void SuperVar::print() { 

  switch (vartype) { 

    case character: 

      cout << "character: " << c << endl; 

      break; 

    case integer: 

      cout << "integer: " << i << endl; 

      break; 

    case floating_point: 

      cout << "float: " << f << endl; 

      break; 

  } 

} 

 

int main() { 

  SuperVar A('c'), B(12), C(1.44F); 

  A.print(); 

  B.print(); 

  C.print(); 

} ///:~ 
 

In the code above, the enum has no type name (it is an untagged 
enumeration). This is acceptable if you are going to immediately 
define instances of the enum, as is done here. There is no need to 
refer to the enum’s type name in the future, so the type name is 
optional. 

The union has no type name and no variable name. This is called 
an anonymous union, and creates space for the union but doesn’t 
require accessing the union elements with a variable name and the 
dot operator. For instance, if your anonymous union is: 

//: C07:AnonymousUnion.cpp 
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int main() { 

  union {  

    int i;  

    float f;  

  }; 

  // Access members without using qualifiers: 

  i = 12; 

  f = 1.22; 

} ///:~ 
 

Note that you access members of an anonymous union just as if 
they were ordinary variables. The only difference is that both 
variables occupy the same space. If the anonymous union is at file 
scope (outside all functions and classes) then it must be declared 
static so it has internal linkage. 

Although SuperVar is now safe, its usefulness is a bit dubious 
because the reason for using a union in the first place is to save 
space, and the addition of vartype takes up quite a bit of space 
relative to the data in the union, so the savings are effectively 
eliminated. There are a couple of alternatives to make this scheme 
workable. If the vartype controlled more than one union instance 
– if they were all the same type – then you’d only need one for the 
group and it wouldn’t take up more space. A more useful approach 
is to have #ifdefs around all the vartype code, which can then 
guarantee things are being used correctly during development and 
testing. For shipping code, the extra space and time overhead can 
be eliminated. 

Default arguments 
In Stash3.h, examine the two constructors for Stash( ). They 
don’t seem all that different, do they? In fact, the first constructor 
seems to be a special case of the second one with the initial size set 
to zero. It’s a bit of a waste of effort to create and maintain two 
different versions of a similar function. 

C++ provides a remedy with default arguments. A default 
argument is a value given in the declaration that the compiler 
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automatically inserts if you don’t provide a value in the function 
call. In the Stash example, we can replace the two functions:  

  Stash(int size); // Zero quantity 

  Stash(int size, int initQuantity); 
 

with the single function: 

  Stash(int size, int initQuantity = 0); 
 

The Stash(int) definition is simply removed – all that is necessary 
is the single Stash(int, int) definition. 

Now, the two object definitions 

  Stash A(100), B(100, 0); 
 

will produce exactly the same results. The identical constructor is 
called in both cases, but for A, the second argument is 
automatically substituted by the compiler when it sees the first 
argument is an int and that there is no second argument. The 
compiler has seen the default argument, so it knows it can still 
make the function call if it substitutes this second argument, which 
is what you’ve told it to do by making it a default. 

Default arguments are a convenience, as function overloading is a 
convenience. Both features allow you to use a single function name 
in different situations. The difference is that with default arguments 
the compiler is substituting arguments when you don’t want to put 
them in yourself. The preceding example is a good place to use 
default arguments instead of function overloading; otherwise you 
end up with two or more functions that have similar signatures and 
similar behaviors. If the functions have very different behaviors, it 
doesn’t usually make sense to use default arguments (for that 
matter, you might want to question whether two functions with very 
different behaviors should have the same name). 

There are two rules you must be aware of when using default 
arguments. First, only trailing arguments may be defaulted. That is, 
you can’t have a default argument followed by a non-default 
argument. Second, once you start using default arguments in a 
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particular function call, all the subsequent arguments in that 
function’s argument list must be defaulted (this follows from the 
first rule). 

Default arguments are only placed in the declaration of a function 
(typically placed in a header file). The compiler must see the default 
value before it can use it. Sometimes people will place the 
commented values of the default arguments in the function 
definition, for documentation purposes 

void fn(int x /* = 0 */) { // ... 
 

Placeholder arguments 
Arguments in a function declaration can be declared without 
identifiers. When these are used with default arguments, it can look 
a bit funny. You can end up with 

void f(int x, int = 0, float = 1.1); 
 

In C++ you don’t need identifiers in the function definition, either: 

void f(int x, int, float flt) { /* ... */ } 
 

In the function body, x and flt can be referenced, but not the 
middle argument, because it has no name. Function calls must still 
provide a value for the placeholder, though: f(1) or f(1,2,3.0). This 
syntax allows you to put the argument in as a placeholder without 
using it. The idea is that you might want to change the function 
definition to use the placeholder later, without changing all the code 
where the function is called. Of course, you can accomplish the 
same thing by using a named argument, but if you define the 
argument for the function body without using it, most compilers 
will give you a warning message, assuming you’ve made a logical 
error. By intentionally leaving the argument name out, you 
suppress this warning.  

More important, if you start out using a function argument and 
later decide that you don’t need it, you can effectively remove it 
without generating warnings, and yet not disturb any client code 
that was calling the previous version of the function. 



324 Thinking in C++ www.BruceEckel.com 

Choosing overloading vs. default 

arguments 
Both function overloading and default arguments provide a 
convenience for calling function names. However, it can seem 
confusing at times to know which technique to use. For example, 
consider the following tool that is designed to automatically manage 
blocks of memory for you: 

//: C07:Mem.h 

#ifndef MEM_H 

#define MEM_H 

typedef unsigned char byte; 

 

class Mem { 

  byte* mem; 

  int size; 

  void ensureMinSize(int minSize); 

public: 

  Mem(); 

  Mem(int sz); 

  ~Mem(); 

  int msize(); 

  byte* pointer(); 

  byte* pointer(int minSize); 

};  

#endif // MEM_H ///:~ 
 

A Mem object holds a block of bytes and makes sure that you have 
enough storage. The default constructor doesn’t allocate any 
storage, and the second constructor ensures that there is sz storage 
in the Mem object. The destructor releases the storage, msize( ) 
tells you how many bytes there are currently in the Mem object, 
and pointer( ) produces a pointer to the starting address of the 
storage (Mem is a fairly low-level tool). There’s an overloaded 
version of pointer( ) in which client programmers can say that 
they want a pointer to a block of bytes that is at least minSize 
large, and the member function ensures this. 

Both the constructor and the pointer( ) member function use the 
private ensureMinSize( ) member function to increase the size 
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of the memory block (notice that it’s not safe to hold the result of 
pointer( ) if the memory is resized). 

Here’s the implementation of the class: 

//: C07:Mem.cpp {O} 

#include "Mem.h" 

#include <cstring> 

using namespace std; 

 

Mem::Mem() { mem = 0; size = 0; } 

 

Mem::Mem(int sz) { 

  mem = 0; 

  size = 0; 

  ensureMinSize(sz);  

} 

 

Mem::~Mem() { delete []mem; } 

 

int Mem::msize() { return size; } 

 

void Mem::ensureMinSize(int minSize) { 

  if(size < minSize) { 

    byte* newmem = new byte[minSize]; 

    memset(newmem + size, 0, minSize - size); 

    memcpy(newmem, mem, size); 

    delete []mem; 

    mem = newmem; 

    size = minSize; 

  } 

} 

 

byte* Mem::pointer() { return mem; } 

 

byte* Mem::pointer(int minSize) { 

  ensureMinSize(minSize); 

  return mem;  

} ///:~ 
 

You can see that ensureMinSize( ) is the only function 
responsible for allocating memory, and that it is used from the 
second constructor and the second overloaded form of pointer( ). 
Inside ensureMinSize( ), nothing needs to be done if the size is 
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large enough. If new storage must be allocated in order to make the 
block bigger (which is also the case when the block is of size zero 
after default construction), the new “extra” portion is set to zero 
using the Standard C library function memset( ), which was 
introduced in Chapter 5. The subsequent function call is to the 
Standard C library function memcpy( ), which in this case copies 
the existing bytes from mem to newmem (typically in an efficient 
fashion). Finally, the old memory is deleted and the new memory 
and sizes are assigned to the appropriate members. 

The Mem class is designed to be used as a tool within other classes 
to simplify their memory management (it could also be used to hide 
a more sophisticated memory-management system provided, for 
example, by the operating system). Appropriately, it is tested here 
by creating a simple “string” class: 

//: C07:MemTest.cpp 

// Testing the Mem class 

//{L} Mem 

#include "Mem.h" 

#include <cstring> 

#include <iostream> 

using namespace std; 

 

class MyString { 

  Mem* buf; 

public: 

  MyString(); 

  MyString(char* str); 

  ~MyString(); 

  void concat(char* str); 

  void print(ostream& os); 

}; 

 

MyString::MyString() {  buf = 0; } 

 

MyString::MyString(char* str) { 

  buf = new Mem(strlen(str) + 1); 

  strcpy((char*)buf->pointer(), str); 

} 

 

void MyString::concat(char* str) { 

  if(!buf) buf = new Mem; 
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  strcat((char*)buf->pointer( 

    buf->msize() + strlen(str) + 1), str); 

} 

 

void MyString::print(ostream& os) { 

  if(!buf) return; 

  os << buf->pointer() << endl; 

} 

 

MyString::~MyString() { delete buf; } 

 

int main() { 

  MyString s("My test string"); 

  s.print(cout); 

  s.concat(" some additional stuff"); 

  s.print(cout); 

  MyString s2; 

  s2.concat("Using default constructor"); 

  s2.print(cout); 

} ///:~ 
 

All you can do with this class is to create a MyString, concatenate 
text, and print to an ostream. The class only contains a pointer to 
a Mem, but note the distinction between the default constructor, 
which sets the pointer to zero, and the second constructor, which 
creates a Mem and copies data into it. The advantage of the default 
constructor is that you can create, for example, a large array of 
empty MyString objects very cheaply, since the size of each object 
is only one pointer and the only overhead of the default constructor 
is that of assigning to zero. The cost of a MyString only begins to 
accrue when you concatenate data; at that point the Mem object is 
created if it hasn’t been already. However, if you use the default 
constructor and never concatenate any data, the destructor call is 
still safe because calling delete for zero is defined such that it does 
not try to release storage or otherwise cause problems. 

If you look at these two constructors it might at first seem like this 
is a prime candidate for default arguments. However, if you drop 
the default constructor and write the remaining constructor with a 
default argument: 

MyString(char* str = ""); 
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everything will work correctly, but you’ll lose the previous efficiency 
benefit since a Mem object will always be created. To get the 
efficiency back, you must modify the constructor: 

MyString::MyString(char* str) { 

  if(!*str) { // Pointing at an empty string 

    buf = 0; 

    return; 

  } 

  buf = new Mem(strlen(str) + 1); 

  strcpy((char*)buf->pointer(), str); 

} 
 

This means, in effect, that the default value becomes a flag that 
causes a separate piece of code to be executed than if a non-default 
value is used. Although it seems innocent enough with a small 
constructor like this one, in general this practice can cause 
problems. If you have to look for the default rather than treating it 
as an ordinary value, that should be a clue that you will end up with 
effectively two different functions inside a single function body: one 
version for the normal case and one for the default. You might as 
well split it up into two distinct function bodies and let the compiler 
do the selection. This results in a slight (but usually invisible) 
increase in efficiency, because the extra argument isn’t passed and 
the extra code for the conditional isn’t executed. More importantly, 
you are keeping the code for two separate functions in two separate 
functions rather than combining them into one using default 
arguments, which will result in easier maintainability, especially if 
the functions are large. 

On the other hand, consider the Mem class. If you look at the 
definitions of the two constructors and the two pointer( ) 
functions, you can see that using default arguments in both cases 
will not cause the member function definitions to change at all. 
Thus, the class could easily be: 

//: C07:Mem2.h 

#ifndef MEM2_H 

#define MEM2_H 

typedef unsigned char byte; 

 

class Mem { 
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  byte* mem; 

  int size; 

  void ensureMinSize(int minSize); 

public: 

  Mem(int sz = 0); 

  ~Mem(); 

  int msize(); 

  byte* pointer(int minSize = 0); 

};  

#endif // MEM2_H ///:~ 
 

Notice that a call to ensureMinSize(0) will always be quite 
efficient. 

Although in both of these cases I based some of the decision-
making process on the issue of efficiency, you must be careful not to 
fall into the trap of thinking only about efficiency (fascinating as it 
is). The most important issue in class design is the interface of the 
class (its public members, which are available to the client 
programmer). If these produce a class that is easy to use and reuse, 
then you have a success; you can always tune for efficiency if 
necessary but the effect of a class that is designed badly because the 
programmer is over-focused on efficiency issues can be dire. Your 
primary concern should be that the interface makes sense to those 
who use it and who read the resulting code. Notice that in 
MemTest.cpp the usage of MyString does not change regardless 
of whether a default constructor is used or whether the efficiency is 
high or low. 

Summary 
As a guideline, you shouldn’t use a default argument as a flag upon 
which to conditionally execute code. You should instead break the 
function into two or more overloaded functions if you can. A default 
argument should be a value you would ordinarily put in that 
position. It’s a value that is more likely to occur than all the rest, so 
client programmers can generally ignore it or use it only if they 
want to change it from the default value. 
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The default argument is included to make function calls easier, 
especially when those functions have many arguments with typical 
values. Not only is it much easier to write the calls, it’s easier to read 
them, especially if the class creator can order the arguments so the 
least-modified defaults appear latest in the list. 

An especially important use of default arguments is when you start 
out with a function with a set of arguments, and after it’s been used 
for a while you discover you need to add arguments. By defaulting 
all the new arguments, you ensure that all client code using the 
previous interface is not disturbed.  

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Create a Text class that contains a string object to hold 
the text of a file. Give it two constructors: a default 
constructor and a constructor that takes a string 
argument that is the name of the file to open. When the 
second constructor is used, open the file and read the 
contents into the string member object. Add a member 
function contents( ) to return the string so (for 
example) it can be printed. In main( ), open a file using 
Text and print the contents. 

2.  Create a Message class with a constructor that takes a 
single string with a default value. Create a private 
member string, and in the constructor simply assign the 
argument string to your internal string. Create two 
overloaded member functions called print( ): one that 
takes no arguments and simply prints the message stored 
in the object, and one that takes a string argument, 
which it prints in addition to the internal message. Does 
it make sense to use this approach instead of the one used 
for the constructor? 

3.  Determine how to generate assembly output with your 
compiler, and run experiments to deduce the name-
decoration scheme. 
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4.  Create a class that contains four member functions, with 
0, 1, 2, and 3 int arguments, respectively. Create a 
main( ) that makes an object of your class and calls each 
of the member functions. Now modify the class so it has 
instead a single member function with all the arguments 
defaulted. Does this change your main( )? 

5.  Create a function with two arguments and call it from 
main( ). Now make one of the arguments a 
“placeholder” (no identifier) and see if your call in 
main( ) changes. 

6.  Modify Stash3.h and Stash3.cpp to use default 
arguments in the constructor. Test the constructor by 
making two different versions of a Stash object. 

7.  Create a new version of the Stack class (from Chapter 6) 
that contains the default constructor as before, and a 
second constructor that takes as its arguments an array of 
pointers to objects and the size of that array. This 
constructor should move through the array and push 
each pointer onto the Stack. Test your class with an 
array of string. 

8.  Modify SuperVar so that there are #ifdefs around all 
the vartype code as described in the section on enum. 
Make vartype a regular and public enumeration (with 
no instance) and modify print( ) so that it requires a 
vartype argument to tell it what to do. 

9.  Implement Mem2.h and make sure that the modified 
class still works with MemTest.cpp. 

10.  Use class Mem to implement Stash. Note that because 
the implementation is private and thus hidden from the 
client programmer, the test code does not need to be 
modified. 

11.  In class Mem, add a bool moved( ) member function 
that takes the result of a call to pointer( ) and tells you 
whether the pointer has moved (due to reallocation). 
Write a main( ) that tests your moved( ) member 
function. Does it make more sense to use something like 
moved( ) or to simply call pointer( ) every time you 
need to access the memory in Mem? 
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8: Constants 
The concept of constant (expressed by the const 

keyword) was created to allow the programmer to  

draw a line between what changes and what doesn’t. 

This provides safety and control in a C++  

programming project. 
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Since its origin, const has taken on a number of different purposes. 
In the meantime it trickled back into the C language where its 
meaning was changed. All this can seem a bit confusing at first, and 
in this chapter you’ll learn when, why, and how to use the const 
keyword. At the end there’s a discussion of volatile, which is a near 
cousin to const (because they both concern change) and has 
identical syntax. 

The first motivation for const seems to have been to eliminate the 
use of preprocessor #defines for value substitution. It has since 
been put to use for pointers, function arguments, return types, class 
objects and member functions. All of these have slightly different 
but conceptually compatible meanings and will be looked at in 
separate sections in this chapter. 

Value substitution 
When programming in C, the preprocessor is liberally used to 
create macros and to substitute values.  Because the preprocessor 
simply does text replacement and has no concept nor facility for 
type checking, preprocessor value substitution introduces subtle 
problems that can be avoided in C++ by using const values. 

The typical use of the preprocessor to substitute values for names in 
C looks like this: 

#define BUFSIZE 100 
 

BUFSIZE is a name that only exists during preprocessing, 
therefore it doesn’t occupy storage and can be placed in a header 
file to provide a single value for all translation units that use it. It’s 
very important for code maintenance to use value substitution 
instead of so-called “magic numbers.” If you use magic numbers in 
your code, not only does the reader have no idea where the 
numbers come from or what they represent, but if you decide to 
change a value, you must perform hand editing, and you have no 
trail to follow to ensure you don’t miss one of your values (or 
accidentally change one you shouldn’t). 
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Most of the time, BUFSIZE will behave like an ordinary variable, 
but not all the time. In addition, there’s no type information. This 
can hide bugs that are very difficult to find. C++ uses const to 
eliminate these problems by bringing value substitution into the 
domain of the compiler. Now you can say 

const int bufsize = 100; 
 

You can use bufsize anyplace where the compiler must know the 
value at compile time. The compiler can use bufsize to perform 
constant folding, which means the compiler will reduce a 
complicated constant expression to a simple one by performing the 
necessary calculations at compile time. This is especially important 
in array definitions: 

char buf[bufsize]; 
 

You can use const for all the built-in types (char, int, float, and 
double) and their variants (as well as class objects, as you’ll see 
later in this chapter). Because of subtle bugs that the preprocessor 
might introduce, you should always use const instead of #define 
value substitution. 

const in header files 
To use const instead of #define, you must be able to place const 
definitions inside header files  as you can with #define. This way, 
you can place the definition for a const in a single place and 
distribute it to translation units by including the header file. A 
const in C++ defaults to internal linkage; that is, it is visible only 
within the file where it is defined and cannot be seen at link time by 
other translation units. You must always assign a value to a const 
when you define it, except when you make an explicit declaration 
using extern: 

extern const int bufsize; 
 

Normally, the C++ compiler avoids creating storage for a const, 
but instead holds the definition in its symbol table. When you use 
extern with const, however, you force storage to be allocated (this 
is also true for certain other cases, such as taking the address of a 
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const). Storage must be allocated because extern says “use 
external linkage,” which means that several translation units must 
be able to refer to the item, which requires it to have storage.  

In the ordinary case, when extern is not part of the definition, no 
storage is allocated. When the const is used, it is simply folded in 
at compile time. 

The goal of never allocating storage for a const also fails with 
complicated structures. Whenever the compiler must allocate 
storage, constant folding is prevented (since there’s no way for the 
compiler to know for sure what the value of that storage is – if it 
could know that, it wouldn’t need to allocate the storage). 

Because the compiler cannot always avoid allocating storage for a 
const, const definitions must default to internal linkage, that is, 
linkage only within that particular translation unit. Otherwise, 
linker errors would occur with complicated consts because they 
cause storage to be allocated in multiple cpp files. The linker would 
then see the same definition in multiple object files, and complain. 
Because a const defaults to internal linkage, the linker doesn’t try 
to link those definitions across translation units, and there are no 
collisions. With built-in types, which are used in the majority of 
cases involving constant expressions, the compiler can always 
perform constant folding. 

Safety consts 
The use of const is not limited to replacing #defines in constant 
expressions. If you initialize a variable with a value that is produced 
at runtime and you know it will not change for the lifetime of that 
variable, it is good programming practice to make it a const so the 
compiler will give you an error message if you accidentally try to 
change it. Here’s an example: 

//: C08:Safecons.cpp 

// Using const for safety 

#include <iostream> 

using namespace std; 

 

const int i = 100;  // Typical constant 
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const int j = i + 10; // Value from const expr 

long address = (long)&j; // Forces storage 

char buf[j + 10]; // Still a const expression 

 

int main() { 

  cout << "type a character & CR:"; 

  const char c = cin.get(); // Can't change 

  const char c2 = c + 'a'; 

  cout << c2; 

  // ... 

} ///:~ 
 

You can see that i is a compile-time const, but j is calculated from 
i. However, because i is a const, the calculated value for j still 
comes from a constant expression and is itself a compile-time 
constant. The very next line requires the address of j and therefore 
forces the compiler to allocate storage for j. Yet this doesn’t prevent 
the use of j in the determination of the size of buf because the 
compiler knows j is const and that the value is valid even if storage 
was allocated to hold that value at some point in the program. 

In main( ), you see a different kind of const in the identifier c 
because the value cannot be known at compile time. This means 
storage is required, and the compiler doesn’t attempt to keep 
anything in its symbol table (the same behavior as in C). The 
initialization must still happen at the point of definition, and once 
the initialization occurs, the value cannot be changed. You can see 
that c2 is calculated from c and also that scoping works for consts 
as it does for any other type – yet another improvement over the 
use of #define. 

As a matter of practice, if you think a value shouldn’t change, you 
should make it a const. This not only provides insurance against 
inadvertent changes, it also allows the compiler to generate more 
efficient code by eliminating storage and memory reads.  

Aggregates 
It’s possible to use const for aggregates, but you’re virtually 
assured that the compiler will not be sophisticated enough to keep 
an aggregate in its symbol table, so storage will be allocated. In 
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these situations, const means “a piece of storage that cannot be 
changed.” However, the value cannot be used at compile time 
because the compiler is not required to know the contents of the 
storage at compile time. In the following code, you can see the 
statements that are illegal: 

//: C08:Constag.cpp 

// Constants and aggregates 

const int i[] = { 1, 2, 3, 4 }; 

//! float f[i[3]]; // Illegal 

struct S { int i, j; }; 

const S s[] = { { 1, 2 }, { 3, 4 } }; 

//! double d[s[1].j]; // Illegal 

int main() {} ///:~ 
 

In an array definition, the compiler must be able to generate code 
that moves the stack pointer to accommodate the array. In both of 
the illegal definitions above, the compiler complains because it 
cannot find a constant expression in the array definition. 

Differences with C 
Constants were introduced in early versions of C++ while the 
Standard C specification was still being finished. Although the C 
committee then decided to include const in C, somehow it came to 
mean for them “an ordinary variable that cannot be changed.” In C, 
a const always occupies storage and its name is global. The C 
compiler cannot treat a const as a compile-time constant. In C, if 
you say 

const int bufsize = 100; 

char buf[bufsize]; 
 

you will get an error, even though it seems like a rational thing to 
do. Because bufsize occupies storage somewhere, the C compiler 
cannot know the value at compile time. You can optionally say 

const int bufsize; 
 

in C, but not in C++, and the C compiler accepts it as a declaration 
indicating there is storage allocated elsewhere. Because C defaults 
to external linkage for consts, this makes sense. C++ defaults to 
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internal linkage for consts so if you want to accomplish the same 
thing in C++, you must explicitly change the linkage to external 
using extern: 

extern const int bufsize; // Declaration only 
 

This line also works in C. 

In C++, a const doesn’t necessarily create storage. In C a const 
always creates storage. Whether or not storage is reserved for a 
const in C++ depends on how it is used. In general, if a const is 
used simply to replace a name with a value (just as you would use a 
#define), then storage doesn’t have to be created for the const. If 
no storage is created (this depends on the complexity of the data 
type and the sophistication of the compiler), the values may be 
folded into the code for greater efficiency after type checking, not 
before, as with #define. If, however, you take an address of a 
const (even unknowingly, by passing it to a function that takes a 
reference argument) or you define it as extern, then storage is 
created for the const. 

In C++, a const that is outside all functions has file scope (i.e., it is 
invisible outside the file). That is, it defaults to internal linkage. 
This is very different from all other identifiers in C++ (and from 
const in C!) that default to external linkage. Thus, if you declare a 
const of the same name in two different files and you don’t take the 
address or define that name as extern, the ideal C++ compiler 
won’t allocate storage for the const, but simply fold it into the code. 
Because const has implied file scope, you can put it in C++ header 
files with no conflicts at link time. 

Since a const in C++ defaults to internal linkage, you can’t just 
define a const in one file and reference it as an extern in another 
file. To give a const external linkage so it can be referenced from 
another file, you must explicitly define it as extern, like this: 

extern const int x = 1; 
 

Notice that by giving it an initializer and saying it is extern, you 
force storage to be created for the const (although the compiler still 
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has the option of doing constant folding here). The initialization 
establishes this as a definition, not a declaration. The declaration: 

extern const int x; 
 

in C++ means that the definition exists elsewhere (again, this is not 
necessarily true in C). You can now see why C++ requires a const 
definition to have an initializer: the initializer distinguishes a 
declaration from a definition (in C it’s always a definition, so no 
initializer is necessary). With an extern const declaration, the 
compiler cannot do constant folding because it doesn’t know the 
value. 

The C approach to const is not very useful, and if you want to use a 
named value inside a constant expression (one that must be 
evaluated at compile time), C almost forces you to use #define in 
the preprocessor. 

Pointers 
Pointers can be made const. The compiler will still endeavor to 
prevent storage allocation and do constant folding when dealing 
with const pointers, but these features seem less useful in this case. 
More importantly, the compiler will tell you if you attempt to 
change a const pointer, which adds a great deal of safety. 

When using const with pointers, you have two options: const can 
be applied to what the pointer is pointing to, or the const can be 
applied to the address stored in the pointer itself. The syntax for 
these is a little confusing at first but becomes comfortable with 
practice. 

Pointer to const 
The trick with a pointer definition, as with any complicated 
definition, is to read it starting at the identifier and work your way 
out. The const specifier binds to the thing it is “closest to.” So if 
you want to prevent any changes to the element you are pointing to, 
you write a definition like this: 
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const int* u; 
 

Starting from the identifier, we read “u is a pointer, which points to 
a const int.” Here, no initialization is required because you’re 
saying that u can point to anything (that is, it is not const), but the 
thing it points to cannot be changed. 

Here’s the mildly confusing part. You might think that to make the 
pointer itself unchangeable, that is, to prevent any change to the 
address contained inside u, you would simply move the const to 
the other side of the int like this: 

int const* v; 
 

It’s not all that crazy to think that this should read “v is a const 
pointer to an int.” However, the way it actually reads is “v is an 
ordinary pointer to an int that happens to be const.” That is, the 
const has bound itself to the int again, and the effect is the same as 
the previous definition. The fact that these two definitions are the 
same is the confusing point; to prevent this confusion on the part of 
your reader, you should probably stick to the first form. 

const pointer 
To make the pointer itself a const, you must place the const 
specifier to the right of the *, like this: 

int d = 1; 

int* const w = &d; 
 

Now it reads: “w is a pointer, which is const, that points to an int.” 
Because the pointer itself is now the const, the compiler requires 
that it be given an initial value that will be unchanged for the life of 
that pointer. It’s OK, however, to change what that value points to 
by saying  

*w = 2; 
 

You can also make a const pointer to a const object using either of 
two legal forms: 

int d = 1; 



342 Thinking in C++ www.BruceEckel.com 

const int* const x = &d;  // (1) 

int const* const x2 = &d; // (2) 
 

Now neither the pointer nor the object can be changed. 

Some people argue that the second form is more consistent because 
the const is always placed to the right of what it modifies. You’ll 
have to decide which is clearer for your particular coding style. 

Here are the above lines in a compileable file: 

//: C08:ConstPointers.cpp 

const int* u; 

int const* v; 

int d = 1; 

int* const w = &d; 

const int* const x = &d;  // (1) 

int const* const x2 = &d; // (2) 

int main() {} ///:~ 
 

Formatting 
This book makes a point of only putting one pointer definition on a 
line, and initializing each pointer at the point of definition 
whenever possible. Because of this, the formatting style of 
“attaching” the ‘*’ to the data type is possible: 

int* u = &i; 
 

as if int* were a discrete type unto itself. This makes the code easier 
to understand, but unfortunately that’s not actually the way things 
work. The ‘*’ in fact binds to the identifier, not the type. It can be 
placed anywhere between the type name and the identifier. So you 
could do this: 

int *u = &i, v = 0; 
 

which creates an int* u, as before, and a non-pointer int v. 
Because readers often find this confusing, it is best to follow the 
form shown in this book. 
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Assignment and type checking 
C++ is very particular about type checking, and this extends to 
pointer assignments. You can assign the address of a non-const 
object to a const pointer because you’re simply promising not to 
change something that is OK to change. However, you can’t assign 
the address of a const object to a non-const pointer because then 
you’re saying you might change the object via the pointer. Of 
course, you can always use a cast to force such an assignment, but 
this is bad programming practice because you are then breaking the 
constness of the object, along with any safety promised by the 
const. For example: 

//: C08:PointerAssignment.cpp 

int d = 1; 

const int e = 2; 

int* u = &d; // OK -- d not const 

//! int* v = &e; // Illegal -- e const 

int* w = (int*)&e; // Legal but bad practice 

int main() {} ///:~ 
 

Although C++ helps prevent errors it does not protect you from 
yourself if you want to break the safety mechanisms. 

Character array literals 
The place where strict constness is not enforced is with character 
array literals. You can say 

char* cp = "howdy"; 
 

and the compiler will accept it without complaint. This is 
technically an error because a character array literal (“howdy” in 
this case) is created by the compiler as a constant character array, 
and the result of the quoted character array is its starting address in 
memory. Modifying any of the characters in the array is a runtime 
error, although not all compilers enforce this correctly. 

So character array literals are actually constant character arrays. Of 
course, the compiler lets you get away with treating them as non-
const because there’s so much existing C code that relies on this. 
However, if you try to change the values in a character array literal, 
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the behavior is undefined, although it will probably work on many 
machines. 

If you want to be able to modify the string, put it in an array: 

char cp[] = "howdy"; 
 

Since compilers often don’t enforce the difference you won’t be 
reminded to use this latter form and so the point becomes rather 
subtle. 

Function arguments  

& return values 
The use of const to specify function arguments and return values is 
another place where the concept of constants can be confusing. If 
you are passing objects by value, specifying const has no meaning 
to the client (it means that the passed argument cannot be modified 
inside the function). If you are returning an object of a user-defined 
type by value as a const, it means the returned value cannot be 
modified. If you are passing and returning addresses, const is a 
promise that the destination of the address will not be changed. 

Passing by const value 
You can specify that function arguments are const when passing 
them by value, such as 

void f1(const int i) { 

  i++; // Illegal -- compile-time error 

} 
 

but what does this mean? You’re making a promise that the original 
value of the variable will not be changed by the function f1( ). 
However, because the argument is passed by value, you 
immediately make a copy of the original variable, so the promise to 
the client is implicitly kept. 
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Inside the function, the const takes on meaning: the argument 
cannot be changed. So it’s really a tool for the creator of the 
function, and not the caller. 

To avoid confusion to the caller, you can make the argument a 
const inside the function, rather than in the argument list. You 
could do this with a pointer, but a nicer syntax is achieved with the 
reference, a subject that will be fully developed in Chapter 11. 
Briefly, a reference is like a constant pointer that is automatically 
dereferenced, so it has the effect of being an alias to an object. To 
create a reference, you use the & in the definition. So the non-
confusing function definition looks like this: 

void f2(int ic) { 

  const int& i = ic; 

  i++;  // Illegal -- compile-time error 

} 
 

Again, you’ll get an error message, but this time the constness of 
the local object is not part of the function signature; it only has 
meaning to the implementation of the function and therefore it’s 
hidden from the client. 

Returning by const value 
A similar truth holds for the return value. If you say that a 
function’s return value is const: 

const int g(); 
 

you are promising that the original variable (inside the function 
frame) will not be modified. And again, because you’re returning it 
by value, it’s copied so the original value could never be modified 
via the return value. 

At first, this can make the specification of const seem meaningless. 
You can see the apparent lack of effect of returning consts by value 
in this example:  

//: C08:Constval.cpp 

// Returning consts by value 

// has no meaning for built-in types 
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int f3() { return 1; } 

const int f4() { return 1; } 

 

int main() { 

  const int j = f3(); // Works fine 

  int k = f4(); // But this works fine too! 

} ///:~ 
 

For built-in types, it doesn’t matter whether you return by value as 
a const, so you should avoid confusing the client programmer and 
leave off the const when returning a built-in type by value. 

Returning by value as a const becomes important when you’re 
dealing with user-defined types. If a function returns a class object 
by value as a const, the return value of that function cannot be an 
lvalue (that is, it cannot be assigned to or otherwise modified). For 
example: 

//: C08:ConstReturnValues.cpp 

// Constant return by value 

// Result cannot be used as an lvalue 

 

class X { 

  int i; 

public: 

  X(int ii = 0); 

  void modify(); 

}; 

 

X::X(int ii) { i = ii; } 

 

void X::modify() { i++; } 

 

X f5() { 

  return X(); 

} 

 

const X f6() { 

  return X(); 

} 

 

void f7(X& x) { // Pass by non-const reference 

  x.modify(); 
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} 

 

int main() { 

  f5() = X(1); // OK -- non-const return value 

  f5().modify(); // OK 

// Causes compile-time errors: 

//!  f7(f5()); 

//!  f6() = X(1); 

//!  f6().modify(); 

//!  f7(f6()); 

} ///:~ 
 

f5( ) returns a non-const X object, while f6( ) returns a const X 
object. Only the non-const return value can be used as an lvalue. 
Thus, it’s important to use const when returning an object by value 
if you want to prevent its use as an lvalue. 

The reason const has no meaning when you’re returning a built-in 
type by value is that the compiler already prevents it from being an 
lvalue (because it’s always a value, and not a variable). Only when 
you’re returning objects of user-defined types by value does it 
become an issue. 

The function f7( ) takes its argument as a non-const reference (an 
additional way of handling addresses in C++ and the subject of 
Chapter 11). This is effectively the same as taking a non-const 
pointer; it’s just that the syntax is different. The reason this won’t 
compile in C++ is because of the creation of a temporary. 

Temporaries 
Sometimes, during the evaluation of an expression, the compiler 
must create temporary objects. These are objects like any other: 
they require storage and they must be constructed and destroyed. 
The difference is that you never see them – the compiler is 
responsible for deciding that they’re needed and the details of their 
existence. But there is one thing about temporaries: they’re 
automatically const. Because you usually won’t be able to get your 
hands on a temporary object, telling it to do something that will 
change that temporary is almost certainly a mistake because you 
won’t be able to use that information. By making all temporaries 
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automatically const, the compiler informs you when you make that 
mistake. 

In the above example, f5( ) returns a non-const X object. But in 
the expression: 

f7(f5()); 
 

the compiler must manufacture a temporary object to hold the 
return value of f5( ) so it can be passed to f7( ). This would be fine 
if f7( ) took its argument by value; then the temporary would be 
copied into f7( ) and it wouldn’t matter what happened to the 
temporary X. However, f7( ) takes its argument by reference, 
which means in this example takes the address of the temporary X. 
Since f7( ) doesn’t take its argument by const reference, it has 
permission to modify the temporary object. But the compiler knows 
that the temporary will vanish as soon as the expression evaluation 
is complete, and thus any modifications you make to the temporary 
X will be lost. By making all temporary objects automatically 
const, this situation causes a compile-time error so you don’t get 
caught by what would be a very difficult bug to find. 

However, notice the expressions that are legal: 

  f5() = X(1); 

  f5().modify(); 
 

Although these pass muster for the compiler, they are actually 
problematic. f5( ) returns an X object, and for the compiler to 
satisfy the above expressions it must create a temporary to hold that 
return value. So in both expressions the temporary object is being 
modified, and as soon as the expression is over the temporary is 
cleaned up. As a result, the modifications are lost so this code is 
probably a bug – but the compiler doesn’t tell you anything about it. 
Expressions like these are simple enough for you to detect the 
problem, but when things get more complex it’s possible for a bug 
to slip through these cracks. 

The way the constness of class objects is preserved is shown later 
in the chapter. 
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Passing and returning addresses 
If you pass or return an address (either a pointer or a reference), it’s 
possible for the client programmer to take it and modify the original 
value. If you make the pointer or reference a const, you prevent 
this from happening, which may save you some grief. In fact, 
whenever you’re passing an address into a function, you should 
make it a const if at all possible. If you don’t, you’re excluding the 
possibility of using that function with anything that is a const. 

The choice of whether to return a pointer or reference to a const 
depends on what you want to allow your client programmer to do 
with it. Here’s an example that demonstrates the use of const 
pointers as function arguments and return values: 

//: C08:ConstPointer.cpp 

// Constant pointer arg/return 

 

void t(int*) {} 

 

void u(const int* cip) { 

//!  *cip = 2; // Illegal -- modifies value 

  int i = *cip; // OK -- copies value 

//!  int* ip2 = cip; // Illegal: non-const 

} 

 

const char* v() { 

  // Returns address of static character array: 

  return "result of function v()"; 

} 

 

const int* const w() { 

  static int i; 

  return &i; 

} 

 

int main() { 

  int x = 0; 

  int* ip = &x; 

  const int* cip = &x; 

  t(ip);  // OK 

//!  t(cip); // Not OK 

  u(ip);  // OK 
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  u(cip); // Also OK 

//!  char* cp = v(); // Not OK 

  const char* ccp = v(); // OK 

//!  int* ip2 = w(); // Not OK 

  const int* const ccip = w(); // OK 

  const int* cip2 = w(); // OK 

//!  *w() = 1; // Not OK 

} ///:~ 
 

The function t( ) takes an ordinary non-const pointer as an 
argument, and u( ) takes a const pointer. Inside u( ) you can see 
that attempting to modify the destination of the const pointer is 
illegal, but you can of course copy the information out into a non-
const variable. The compiler also prevents you from creating a 
non-const pointer using the address stored inside a const pointer. 

The functions v( ) and w( ) test return value semantics. v( ) 
returns a const char* that is created from a character array literal. 
This statement actually produces the address of the character array 
literal, after the compiler creates it and stores it in the static storage 
area. As mentioned earlier, this character array is technically a 
constant, which is properly expressed by the return value of v( ). 

The return value of w( ) requires that both the pointer and what it 
points to must be const. As with v( ), the value returned by w( ) is 
valid after the function returns only because it is static. You never 
want to return pointers to local stack variables because they will be 
invalid after the function returns and the stack is cleaned up. 
(Another common pointer you might return is the address of 
storage allocated on the heap, which is still valid after the function 
returns.) 

In main( ), the functions are tested with various arguments. You 
can see that t( ) will accept a non-const pointer argument, but if 
you try to pass it a pointer to a const, there’s no promise that t( ) 
will leave the pointer’s destination alone, so the compiler gives you 
an error message. u( ) takes a const pointer, so it will accept both 
types of arguments. Thus, a function that takes a const pointer is 
more general than one that does not. 
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As expected, the return value of v( ) can be assigned only to a 
pointer to a const. You would also expect that the compiler refuses 
to assign the return value of w( ) to a non-const pointer, and 
accepts a const int* const, but it might be a bit surprising to see 
that it also accepts a const int*, which is not an exact match to the 
return type. Once again, because the value (which is the address 
contained in the pointer) is being copied, the promise that the 
original variable is untouched is automatically kept. Thus, the 
second const in const int* const is only meaningful when you try 
to use it as an lvalue, in which case the compiler prevents you. 

Standard argument passing 
In C it’s very common to pass by value, and when you want to pass 
an address your only choice is to use a pointer1. However, neither of 
these approaches is preferred in C++. Instead, your first choice 
when passing an argument is to pass by reference, and by const 
reference at that. To the client programmer, the syntax is identical 
to that of passing by value, so there’s no confusion about pointers – 
they don’t even have to think about pointers. For the creator of the 
function, passing an address is virtually always more efficient than 
passing an entire class object, and if you pass by const reference it 
means your function will not change the destination of that address, 
so the effect from the client programmer’s point of view is exactly 
the same as pass-by-value (only more efficient). 

Because of the syntax of references (it looks like pass-by-value to 
the caller) it’s possible to pass a temporary object to a function that 
takes a const reference, whereas you can never pass a temporary 
object to a function that takes a pointer – with a pointer, the 
address must be explicitly taken. So passing by reference produces a 
new situation that never occurs in C: a temporary, which is always 
const, can have its address passed to a function. This is why, to 
allow temporaries to be passed to functions by reference, the 
argument must be a const reference. The following example 
demonstrates this: 

                                                   
1 Some folks go as far as saying that everything in C is pass by value, since when you 
pass a pointer a copy is made (so you’re passing the pointer by value). However 
precise this might be, I think it actually confuses the issue. 
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//: C08:ConstTemporary.cpp 

// Temporaries are const 

 

class X {}; 

 

X f() { return X(); } // Return by value 

 

void g1(X&) {} // Pass by non-const reference 

void g2(const X&) {} // Pass by const reference 

 

int main() { 

  // Error: const temporary created by f(): 

//!  g1(f()); 

  // OK: g2 takes a const reference: 

  g2(f()); 

} ///:~ 
 

f( ) returns an object of class X by value. That means when you 
immediately take the return value of f( ) and pass it to another 
function as in the calls to g1( ) and g2( ), a temporary is created 
and that temporary is const. Thus, the call in g1( ) is an error 
because g1( ) doesn’t take a const reference, but the call to g2( ) is 
OK. 

Classes 
This section shows the ways you can use const with classes. You 
may want to create a local const in a class to use inside constant 
expressions that will be evaluated at compile time. However, the 
meaning of const is different inside classes, so you must 
understand the options in order to create const data members of a 
class. 

You can also make an entire object const (and as you’ve just seen, 
the compiler always makes temporary objects const). But 
preserving the constness of an object is more complex. The 
compiler can ensure the constness of a built-in type but it cannot 
monitor the intricacies of a class. To guarantee the constness of a 
class object, the const member function is introduced: only a 
const member function may be called for a const object.  
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const in classes 
One of the places you’d like to use a const for constant expressions 
is inside classes. The typical example is when you’re creating an 
array inside a class and you want to use a const instead of a 
#define to establish the array size and to use in calculations 
involving the array. The array size is something you’d like to keep 
hidden inside the class, so if you used a name like size, for 
example, you could use that name in another class without a clash. 
The preprocessor treats all #defines as global from the point they 
are defined, so this will not achieve the desired effect.  

You might assume that the logical choice is to place a const inside 
the class. This doesn’t produce the desired result. Inside a class, 
const partially reverts to its meaning in C. It allocates storage 
within each object and represents a value that is initialized once and 
then cannot change. The use of const inside a class means “This is 
constant for the lifetime of the object.” However, each different 
object may contain a different value for that constant. 

Thus, when you create an ordinary (non-static) const inside a 
class, you cannot give it an initial value. This initialization must 
occur in the constructor, of course, but in a special place in the 
constructor. Because a const must be initialized at the point it is 
created, inside the main body of the constructor the const must 
already be initialized. Otherwise you’re left with the choice of 
waiting until some point later in the constructor body, which means 
the const would be un-initialized for a while. Also, there would be 
nothing to keep you from changing the value of the const at various 
places in the constructor body. 

The constructor initializer list 
The special initialization point is called the constructor initializer 
list, and it was originally developed for use in inheritance (covered 
in Chapter 14). The constructor initializer list – which, as the name 
implies, occurs only in the definition of the constructor – is a list of 
“constructor calls” that occur after the function argument list and a 
colon, but before the opening brace of the constructor body. This is 
to remind you that the initialization in the list occurs before any of 
the main constructor code is executed. This is the place to put all 
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const initializations. The proper form for const inside a class is 
shown here: 

//: C08:ConstInitialization.cpp 

// Initializing const in classes 

#include <iostream> 

using namespace std; 

 

class Fred { 

  const int size; 

public: 

  Fred(int sz); 

  void print(); 

}; 

 

Fred::Fred(int sz) : size(sz) {} 

void Fred::print() { cout << size << endl; } 

 

int main() { 

  Fred a(1), b(2), c(3); 

  a.print(), b.print(), c.print(); 

} ///:~ 
 

The form of the constructor initializer list shown above is confusing 
at first because you’re not used to seeing a built-in type treated as if 
it has a constructor. 

“Constructors” for built-in types 
As the language developed and more effort was put into making 
user-defined types look like built-in types, it became apparent that 
there were times when it was helpful to make built-in types look like 
user-defined types. In the constructor initializer list, you can treat a 
built-in type as if it has a constructor, like this: 

//: C08:BuiltInTypeConstructors.cpp 

#include <iostream> 

using namespace std; 

 

class B { 

  int i; 

public: 

  B(int ii); 

  void print(); 
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}; 

 

B::B(int ii) : i(ii) {} 

void B::print() { cout << i << endl; } 

 

int main() { 

  B a(1), b(2); 

  float pi(3.14159); 

  a.print(); b.print(); 

  cout << pi << endl; 

} ///:~ 
 

This is especially critical when initializing const data members 
because they must be initialized before the function body is entered. 

It made sense to extend this “constructor” for built-in types (which 
simply means assignment) to the general case, which is why the 
float pi(3.14159) definition works in the above code. 

It’s often useful to encapsulate a built-in type inside a class to 
guarantee initialization with the constructor. For example, here’s an 
Integer class: 

//: C08:EncapsulatingTypes.cpp 

#include <iostream> 

using namespace std; 

 

class Integer { 

  int i; 

public: 

  Integer(int ii = 0); 

  void print(); 

}; 

 

Integer::Integer(int ii) : i(ii) {} 

void Integer::print() { cout << i << ' '; } 

 

int main() { 

  Integer i[100]; 

  for(int j = 0; j < 100; j++) 

    i[j].print(); 

} ///:~ 
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The array of Integers in main( ) are all automatically initialized to 
zero. This initialization isn’t necessarily more costly than a for loop 
or memset( ). Many compilers easily optimize this to a very fast 
process. 

Compile-time constants in classes 
The above use of const is interesting and probably useful in cases, 
but it does not solve the original problem which is: “how do you 
make a compile-time constant inside a class?” The answer requires 
the use of an additional keyword which will not be fully introduced 
until Chapter 10: static. The static keyword, in this situation, 
means “there’s only one instance, regardless of how many objects of 
the class are created,” which is precisely what we need here: a 
member of a class which is constant, and which cannot change from 
one object of the class to another. Thus, a static const of a built-in 
type can be treated as a compile-time constant. 

There is one feature of static const when used inside classes which 
is a bit unusual: you must provide the initializer at the point of 
definition of the static const. This is something that only occurs 
with the static const; as much as you might like to use it in other 
situations it won’t work because all other data members must be 
initialized in the constructor or in other member functions. 

Here’s an example that shows the creation and use of a static 
const called size inside a class that represents a stack of string 
pointers2:  

//: C08:StringStack.cpp 

// Using static const to create a  

// compile-time constant inside a class 

#include <string> 

#include <iostream> 

using namespace std; 

 

class StringStack { 

  static const int size = 100; 

                                                   
2 At the time of this writing, not all compilers supported this feature. 
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  const string* stack[size]; 

  int index; 

public: 

  StringStack(); 

  void push(const string* s); 

  const string* pop(); 

}; 

 

StringStack::StringStack() : index(0) { 

  memset(stack, 0, size * sizeof(string*)); 

} 

 

void StringStack::push(const string* s) { 

  if(index < size) 

    stack[index++] = s; 

} 

 

const string* StringStack::pop() { 

  if(index > 0) { 

    const string* rv = stack[--index]; 

    stack[index] = 0; 

    return rv; 

  } 

  return 0; 

} 

 

string iceCream[] = { 

  "pralines & cream", 

  "fudge ripple", 

  "jamocha almond fudge", 

  "wild mountain blackberry", 

  "raspberry sorbet", 

  "lemon swirl", 

  "rocky road", 

  "deep chocolate fudge" 

}; 

 

const int iCsz =  

  sizeof iceCream / sizeof *iceCream; 

 

int main() { 

  StringStack ss; 

  for(int i = 0; i < iCsz; i++) 

    ss.push(&iceCream[i]); 

  const string* cp; 
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  while((cp = ss.pop()) != 0) 

    cout << *cp << endl; 

} ///:~ 
 

Since size is used to determine the size of the array stack, it is 
indeed a compile-time constant, but one that is hidden inside the 
class. 

Notice that push( ) takes a const string* as an argument, pop( ) 
returns a const string*, and StringStack holds const string*. If 
this were not true, you couldn’t use a StringStack to hold the 
pointers in iceCream. However, it also prevents you from doing 
anything that will change the objects contained by StringStack. Of 
course, not all containers are designed with this restriction. 

The “enum hack” in old code 
In older versions of C++, static const was not supported inside 
classes. This meant that const was useless for constant expressions 
inside classes. However, people still wanted to do this so a typical 
solution (usually referred to as the “enum hack”) was to use an 
untagged enum with no instances. An enumeration must have all 
its values established at compile time, it’s local to the class, and its 
values are available for constant expressions. Thus, you will 
commonly see: 

//: C08:EnumHack.cpp 

#include <iostream> 

using namespace std; 

 

class Bunch { 

  enum { size = 1000 }; 

  int i[size]; 

}; 

 

int main() { 

  cout << "sizeof(Bunch) = " << sizeof(Bunch)  

       << ", sizeof(i[1000]) = "  

       << sizeof(int[1000]) << endl; 

} ///:~ 
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The use of enum here is guaranteed to occupy no storage in the 
object, and the enumerators are all evaluated at compile time. You 
can also explicitly establish the values of the enumerators: 

enum { one = 1, two = 2, three }; 
 

With integral enum types, the compiler will continue counting 
from the last value, so the enumerator three will get the value 3. 

In the StringStack.cpp example above, the line: 

static const int size = 100; 
 

would be instead: 

enum { size = 100 }; 
 

Although you’ll often see the enum technique in legacy code, the 
static const feature was added to the language to solve just this 
problem. However, there is no overwhelming reason that you must 
choose static const over the enum hack, and in this book the 
enum hack is used because it is supported by more compilers at 
the time this book was written. 

const objects & member functions 
Class member functions can be made const. What does this mean? 
To understand, you must first grasp the concept of const objects. 

A const object is defined the same for a user-defined type as a 
built-in type. For example: 

const int i = 1; 

const blob b(2); 
 

Here, b is a const object of type blob. Its constructor is called with 
an argument of two. For the compiler to enforce constness, it must 
ensure that no data members of the object are changed during the 
object’s lifetime. It can easily ensure that no public data is modified, 
but how is it to know which member functions will change the data 
and which ones are “safe” for a const object? 
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If you declare a member function const, you tell the compiler the 
function can be called for a const object. A member function that is 
not specifically declared const is treated as one that will modify 
data members in an object, and the compiler will not allow you to 
call it for a const object. 

It doesn’t stop there, however. Just claiming a member function is 
const doesn’t guarantee it will act that way, so the compiler forces 
you to reiterate the const specification when defining the function. 
(The const becomes part of the function signature, so both the 
compiler and linker check for constness.) Then it enforces 
constness during the function definition by issuing an error 
message if you try to change any members of the object or call a 
non-const member function. Thus, any member function you 
declare const is guaranteed to behave that way in the definition. 

To understand the syntax for declaring const member functions, 
first notice that preceding the function declaration with const 
means the return value is const, so that doesn’t produce the 
desired results. Instead, you must place the const specifier after 
the argument list. For example, 

//: C08:ConstMember.cpp 

class X { 

  int i; 

public: 

  X(int ii); 

  int f() const; 

}; 

 

X::X(int ii) : i(ii) {} 

int X::f() const { return i; } 

 

int main() { 

  X x1(10); 

  const X x2(20); 

  x1.f(); 

  x2.f(); 

} ///:~ 
 

Note that the const keyword must be repeated in the definition or 
the compiler sees it as a different function. Since f( ) is a const 
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member function, if it attempts to change i in any way or to call 
another member function that is not const, the compiler flags it as 
an error. 

You can see that a const member function is safe to call with both 
const and non-const objects. Thus, you could think of it as the 
most general form of a member function (and because of this, it is 
unfortunate that member functions do not automatically default to 
const). Any function that doesn’t modify member data should be 
declared as const, so it can be used with const objects. 

Here’s an example that contrasts a const and non-const member 
function: 

//: C08:Quoter.cpp 

// Random quote selection 

#include <iostream> 

#include <cstdlib> // Random number generator 

#include <ctime> // To seed random generator 

using namespace std; 

 

class Quoter { 

  int lastquote; 

public: 

  Quoter(); 

  int lastQuote() const; 

  const char* quote(); 

}; 

 

Quoter::Quoter(){ 

  lastquote = -1; 

  srand(time(0)); // Seed random number generator 

} 

 

int Quoter::lastQuote() const { 

  return lastquote; 

} 

 

const char* Quoter::quote() { 

  static const char* quotes[] = { 

    "Are we having fun yet?", 

    "Doctors always know best", 

    "Is it ... Atomic?", 
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    "Fear is obscene", 

    "There is no scientific evidence " 

    "to support the idea " 

    "that life is serious", 

    "Things that make us happy, make us wise", 

  }; 

  const int qsize = sizeof quotes/sizeof *quotes; 

  int qnum = rand() % qsize; 

  while(lastquote >= 0 && qnum == lastquote) 

    qnum = rand() % qsize; 

  return quotes[lastquote = qnum]; 

} 

 

int main() { 

  Quoter q; 

  const Quoter cq; 

  cq.lastQuote(); // OK 

//!  cq.quote(); // Not OK; non const function 

  for(int i = 0; i < 20; i++) 

    cout << q.quote() << endl; 

} ///:~ 
 

Neither constructors nor destructors can be const member 
functions because they virtually always perform some modification 
on the object during initialization and cleanup. The quote( ) 
member function also cannot be const because it modifies the data 
member lastquote (see the return statement). However, 
lastQuote( ) makes no modifications, and so it can be const and 
can be safely called for the const object cq. 

mutable: bitwise vs. logical const 
What if you want to create a const member function, but you’d still 
like to change some of the data in the object? This is sometimes 
referred to as the difference between bitwise const and logical 
const (also sometimes called memberwise const). Bitwise const 
means that every bit in the object is permanent, so a bit image of 
the object will never change. Logical const means that, although 
the entire object is conceptually constant, there may be changes on 
a member-by-member basis. However, if the compiler is told that 
an object is const, it will jealously guard that object to ensure 
bitwise constness. To effect logical constness, there are two ways 
to change a data member from within a const member function. 
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The first approach is the historical one and is called casting away 
constness. It is performed in a rather odd fashion. You take this 
(the keyword that produces the address of the current object) and 
cast it to a pointer to an object of the current type. It would seem 
that this is already such a pointer. However, inside a const 
member function it’s actually a const pointer, so by casting it to an 
ordinary pointer, you remove the constness for that operation. 
Here’s an example: 

//: C08:Castaway.cpp 

// "Casting away" constness 

 

class Y { 

  int i; 

public: 

  Y(); 

  void f() const; 

}; 

 

Y::Y() { i = 0; } 

 

void Y::f() const { 

//!  i++; // Error -- const member function 

  ((Y*)this)->i++; // OK: cast away const-ness 

  // Better: use C++ explicit cast syntax: 

  (const_cast<Y*>(this))->i++; 

} 

 

int main() { 

  const Y yy; 

  yy.f(); // Actually changes it! 

} ///:~ 
 

This approach works and you’ll see it used in legacy code, but it is 
not the preferred technique. The problem is that this lack of 
constness is hidden away in a member function definition, and you 
have no clue from the class interface that the data of the object is 
actually being modified unless you have access to the source code 
(and you must suspect that constness is being cast away, and look 
for the cast). To put everything out in the open, you should use the 
mutable keyword in the class declaration to specify that a 
particular data member may be changed inside a const object: 
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//: C08:Mutable.cpp 

// The "mutable" keyword 

 

class Z { 

  int i; 

  mutable int j; 

public: 

  Z(); 

  void f() const; 

}; 

 

Z::Z() : i(0), j(0) {} 

 

void Z::f() const { 

//! i++; // Error -- const member function 

    j++; // OK: mutable 

} 

 

int main() { 

  const Z zz; 

  zz.f(); // Actually changes it! 

} ///:~ 
 

This way, the user of the class can see from the declaration which 
members are likely to be modified in a const member function. 

ROMability 
If an object is defined as const, it is a candidate to be placed in 
read-only memory (ROM), which is often an important 
consideration in embedded systems programming. Simply making 
an object const, however, is not enough – the requirements for 
ROMability are much stricter. Of course, the object must be 
bitwise-const, rather than logical-const. This is easy to see if 
logical constness is implemented only through the mutable 
keyword, but probably not detectable by the compiler if constness 
is cast away inside a const member function. In addition, 

1. The class or struct must have no user-defined constructors 
or destructor. 

2. There can be no base classes (covered in Chapter 14) or 
member objects with user-defined constructors or 
destructors. 
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The effect of a write operation on any part of a const object of a 
ROMable type is undefined. Although a suitably formed object may 
be placed in ROM, no objects are ever required to be placed in 
ROM. 

volatile 
The syntax of volatile is identical to that for const, but volatile 
means “This data may change outside the knowledge of the 
compiler.” Somehow, the environment is changing the data 
(possibly through multitasking, multithreading or interrupts), and 
volatile tells the compiler not to make any assumptions about that 
data, especially during optimization. 

If the compiler says, “I read this data into a register earlier, and I 
haven’t touched that register,” normally it wouldn’t need to read the 
data again. But if the data is volatile, the compiler cannot make 
such an assumption because the data may have been changed by 
another process, and it must reread that data rather than 
optimizing the code to remove what would normally be a redundant 
read. 

You create volatile objects using the same syntax that you use to 
create const objects. You can also create const volatile objects, 
which can’t be changed by the client programmer but instead 
change through some outside agency. Here is an example that 
might represent a class associated with some piece of 
communication hardware: 

//: C08:Volatile.cpp 

// The volatile keyword 

 

class Comm { 

  const volatile unsigned char byte; 

  volatile unsigned char flag; 

  enum { bufsize = 100 }; 

  unsigned char buf[bufsize]; 

  int index; 

public: 

  Comm(); 
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  void isr() volatile; 

  char read(int index) const; 

}; 

 

Comm::Comm() : index(0), byte(0), flag(0) {} 

 

// Only a demo; won't actually work 

// as an interrupt service routine: 

void Comm::isr() volatile { 

  flag = 0; 

  buf[index++] = byte; 

  // Wrap to beginning of buffer: 

  if(index >= bufsize) index = 0; 

} 

 

char Comm::read(int index) const { 

  if(index < 0 || index >= bufsize) 

    return 0; 

  return buf[index]; 

} 

 

int main() { 

  volatile Comm Port; 

  Port.isr(); // OK 

//!  Port.read(0); // Error, read() not volatile 

} ///:~ 
 

As with const, you can use volatile for data members, member 
functions, and objects themselves. You can only call volatile 
member functions for volatile objects. 

The reason that isr( ) can’t actually be used as an interrupt service 
routine is that in a member function, the address of the current 
object (this) must be secretly passed, and an ISR generally wants 
no arguments at all. To solve this problem, you can make isr( ) a 
static member function, a subject covered in Chapter 10. 

The syntax of volatile is identical to const, so discussions of the 
two are often treated together. The two are referred to in 
combination as the c-v qualifier. 
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Summary 
The const keyword gives you the ability to define objects, function 
arguments, return values and member functions as constants, and 
to eliminate the preprocessor for value substitution without losing 
any preprocessor benefits. All this provides a significant additional 
form of type checking and safety in your programming. The use of 
so-called const correctness (the use of const anywhere you possibly 
can) can be a lifesaver for projects. 

Although you can ignore const and continue to use old C coding 
practices, it’s there to help you. Chapters 11 and on begin using 
references heavily, and there you’ll see even more about how critical 
it is to use const with function arguments. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Create three const int values, then add them together to 
produce a value that determines the size of an array in an 
array definition. Try to compile the same code in C and 
see what happens (you can generally force your C++ 
compiler to run as a C compiler by using a command-line 
flag). 

2.  Prove to yourself that the C and C++ compilers really do 
treat constants differently. Create a global const and use 
it in a global constant expression; then compile it under 
both C and C++. 

3.  Create example const definitions for all the built-in types 
and their variants. Use these in expressions with other 
consts to make new const definitions. Make sure they 
compile successfully. 

4.  Create a const definition in a header file, include that 
header file in two .cpp files, then compile those files and 
link them. You should not get any errors. Now try the 
same experiment with C. 
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5.  Create a const whose value is determined at runtime by 
reading the time when the program starts (you’ll have to 
use the <ctime> standard header). Later in the program, 
try to read a second value of the time into your const and 
see what happens. 

6.  Create a const array of char, then try to change one of 
the chars. 

7.  Create an extern const declaration in one file, and put a 
main( ) in that file that prints the value of the extern 
const. Provide an extern const definition in a second 
file, then compile and link the two files together. 

8.  Write two pointers to const long using both forms of the 
declaration. Point one of them to an array of long. 
Demonstrate that you can increment or decrement the 
pointer, but you can’t change what it points to. 

9.  Write a const pointer to a double, and point it at an 
array of double. Show that you can change what the 
pointer points to, but you can’t increment or decrement 
the pointer. 

10.  Write a const pointer to a const object. Show that you 
can only read the value that the pointer points to, but you 
can’t change the pointer or what it points to. 

11.  Remove the comment on the error-generating line of 
code in PointerAssignment.cpp to see the error that 
your compiler generates. 

12.  Create a character array literal with a pointer that points 
to the beginning of the array. Now use the pointer to 
modify elements in the array. Does your compiler report 
this as an error? Should it? If it doesn’t, why do you think 
that is? 

13.  Create a function that takes an argument by value as a 
const; then try to change that argument in the function 
body. 

14.  Create a function that takes a float by value. Inside the 
function, bind a const float& to the argument, and only 
use the reference from then on to ensure that the 
argument is not changed. 
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15.  Modify ConstReturnValues.cpp removing comments 
on the error-causing lines one at a time, to see what error 
messages your compiler generates. 

16.  Modify ConstPointer.cpp removing comments on the 
error-causing lines one at a time, to see what error 
messages your compiler generates. 

17.  Make a new version of ConstPointer.cpp called 
ConstReference.cpp which demonstrates references 
instead of pointers (you may need to look forward to 
Chapter 11). 

18.  Modify ConstTemporary.cpp removing the comment 
on the error-causing line to see what error messages your 
compiler generates. 

19.  Create a class containing both a const and a non-const 
float. Initialize these using the constructor initializer list. 

20.  Create a class called MyString which contains a string 
and has a constructor that initializes the string, and a 
print( ) function. Modify StringStack.cpp so that the 
container holds MyString objects, and main( ) so it 
prints them. 

21.  Create a class containing a const member that you 
initialize in the constructor initializer list and an 
untagged enumeration that you use to determine an array 
size. 

22.  In ConstMember.cpp, remove the const specifier on 
the member function definition, but leave it on the 
declaration, to see what kind of compiler error message 
you get. 

23.  Create a class with both const and non-const member 
functions. Create const and non-const objects of this 
class, and try calling the different types of member 
functions for the different types of objects. 

24.  Create a class with both const and non-const member 
functions. Try to call a non-const member function from 
a const member function to see what kind of compiler 
error message you get. 
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25.  In Mutable.cpp, remove the comment on the error-
causing line to see what sort of error message your 
compiler produces. 

26.  Modify Quoter.cpp by making quote( ) a const 
member function and lastquote mutable. 

27.  Create a class with a volatile data member. Create both 
volatile and non-volatile member functions that 
modify the volatile data member, and see what the 
compiler says. Create both volatile and non-volatile 
objects of your class and try calling both the volatile and 
non-volatile member functions to see what is successful 
and what kind of error messages the compiler produces. 

28.  Create a class called bird that can fly( ) and a class rock 
that can’t. Create a rock object, take its address, and 
assign that to a void*. Now take the void*, assign it to a 
bird* (you’ll have to use a cast), and call fly( ) through 
that pointer. Is it clear why C’s permission to openly 
assign via a void* (without a cast) is a “hole” in the 
language, which couldn’t be propagated into C++? 
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9: Inline Functions 
One of the important features C++ inherits from C is 

efficiency. If the efficiency of C++ were dramatically  

less than C, there would be a significant contingent of 

programmers who couldn’t justify its use. 
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In C, one of the ways to preserve efficiency is through the use of 
macros, which allow you to make what looks like a function call 
without the normal function call overhead. The macro is 
implemented with the preprocessor instead of the compiler proper, 
and the preprocessor replaces all macro calls directly with the 
macro code, so there’s no cost involved from pushing arguments, 
making an assembly-language CALL, returning arguments, and 
performing an assembly-language RETURN. All the work is 
performed by the preprocessor, so you have the convenience and 
readability of a function call but it doesn’t cost you anything. 

 There are two problems with the use of preprocessor macros in 
C++. The first is also true with C: a macro looks like a function call, 
but doesn’t always act like one. This can bury difficult-to-find bugs. 
The second problem is specific to C++: the preprocessor has no 
permission to access class member data. This means preprocessor 
macros cannot be used as class member functions. 

To retain the efficiency of the preprocessor macro, but to add the 
safety and class scoping of true functions, C++ has the inline 
function. In this chapter, we’ll look at the problems of preprocessor 
macros in C++, how these problems are solved with inline 
functions, and guidelines and insights on the way inlines work. 

Preprocessor pitfalls 
The key to the problems of preprocessor macros is that you can be 
fooled into thinking that the behavior of the preprocessor is the 
same as the behavior of the compiler. Of course, it was intended 
that a macro look and act like a function call, so it’s quite easy to fall 
into this fiction. The difficulties begin when the subtle differences 
appear. 

As a simple example, consider the following: 

#define F (x) (x + 1) 
 

Now, if a call is made to F like this 

F(1) 
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the preprocessor expands it, somewhat unexpectedly, to the 
following: 

(x) (x + 1)(1) 
 

The problem occurs because of the gap between F and its opening 
parenthesis in the macro definition. When this gap is removed, you 
can actually call the macro with the gap 

F (1) 
 

and it will still expand properly to 

(1 + 1) 
 

The example above is fairly trivial and the problem will make itself 
evident right away. The real difficulties occur when using 
expressions as arguments in macro calls.  

There are two problems. The first is that expressions may expand 
inside the macro so that their evaluation precedence is different 
from what you expect. For example, 

#define FLOOR(x,b) x>=b?0:1 
 

Now, if expressions are used for the arguments 

if(FLOOR(a&0x0f,0x07)) // ... 
 

the macro will expand to 

if(a&0x0f>=0x07?0:1) 
 

The precedence of & is lower than that of >=, so the macro 
evaluation will surprise you. Once you discover the problem, you 
can solve it by putting parentheses around everything in the macro 
definition. (This is a good practice to use when creating 
preprocessor macros.) Thus, 

#define FLOOR(x,b) ((x)>=(b)?0:1) 
 

Discovering the problem may be difficult, however, and you may 
not find it until after you’ve taken the proper macro behavior for 



374 Thinking in C++ www.BruceEckel.com 

granted. In the un-parenthesized version of the preceding macro, 
most expressions will work correctly because the precedence of >= 
is lower than most of the operators like +, /, – –, and even the 
bitwise shift operators. So you can easily begin to think that it 
works with all expressions, including those using bitwise logical 
operators. 

The preceding problem can be solved with careful programming 
practice: parenthesize everything in a macro. However, the second 
difficulty is subtler. Unlike a normal function, every time you use an 
argument in a macro, that argument is evaluated. As long as the 
macro is called only with ordinary variables, this evaluation is 
benign, but if the evaluation of an argument has side effects, then 
the results can be surprising and will definitely not mimic function 
behavior. 

For example, this macro determines whether its argument falls 
within a certain range: 

#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0) 
 

As long as you use an “ordinary” argument, the macro works very 
much like a real function. But as soon as you relax and start 
believing it is a real function, the problems start. Thus: 

//: C09:MacroSideEffects.cpp 

#include "../require.h" 

#include <fstream> 

using namespace std; 

 

#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0) 

 

int main() { 

  ofstream out("macro.out"); 

  assure(out, "macro.out"); 

  for(int i = 4; i < 11; i++) { 

    int a = i; 

    out << "a = " << a << endl << '\t'; 

    out << "BAND(++a)=" << BAND(++a) << endl; 

    out << "\t a = " << a << endl; 

  } 

} ///:~ 
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Notice the use of all upper-case characters in the name of the 
macro. This is a helpful practice because it tells the reader this is a 
macro and not a function, so if there are problems, it acts as a little 
reminder. 

Here’s the output produced by the program, which is not at all what 
you would have expected from a true function: 

a = 4 

  BAND(++a)=0 

   a = 5 

a = 5 

  BAND(++a)=8 

   a = 8 

a = 6 

  BAND(++a)=9 

   a = 9 

a = 7 

  BAND(++a)=10 

   a = 10 

a = 8 

  BAND(++a)=0 

   a = 10 

a = 9 

  BAND(++a)=0 

   a = 11 

a = 10 

  BAND(++a)=0 

   a = 12 
 

When a is four, only the first part of the conditional occurs, so the 
expression is evaluated only once, and the side effect of the macro 
call is that a becomes five, which is what you would expect from a 
normal function call in the same situation. However, when the 
number is within the band, both conditionals are tested, which 
results in two increments. The result is produced by evaluating the 
argument again, which results in a third increment. Once the 
number gets out of the band, both conditionals are still tested so 
you get two increments. The side effects are different, depending on 
the argument. 
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This is clearly not the kind of behavior you want from a macro that 
looks like a function call. In this case, the obvious solution is to 
make it a true function, which of course adds the extra overhead 
and may reduce efficiency if you call that function a lot. 
Unfortunately, the problem may not always be so obvious, and you 
can unknowingly get a library that contains functions and macros 
mixed together, so a problem like this can hide some very difficult-
to-find bugs. For example, the putc( ) macro in cstdio may 
evaluate its second argument twice. This is specified in Standard C. 
Also, careless implementations of toupper( ) as a macro may 
evaluate the argument more than once, which will give you 
unexpected results with toupper(*p++).1 

Macros and access 
Of course, careful coding and use of preprocessor macros is 
required with C, and we could certainly get away with the same 
thing in C++ if it weren’t for one problem: a macro has no concept 
of the scoping required with member functions. The preprocessor 
simply performs text substitution, so you cannot say something like 

class X { 

  int i; 

public: 

#define VAL(X::i) // Error 
 

or anything even close. In addition, there would be no indication of 
which object you were referring to. There is simply no way to 
express class scope in a macro. Without some alternative to 
preprocessor macros, programmers will be tempted to make some 
data members public for the sake of efficiency, thus exposing the 
underlying implementation and preventing changes in that 
implementation, as well as eliminating the guarding that private 
provides. 

                                                   
1Andrew Koenig goes into more detail in his book C Traps & Pitfalls (Addison-
Wesley, 1989). 
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Inline functions 
In solving the C++ problem of a macro with access to private class 
members, all the problems associated with preprocessor macros 
were eliminated. This was done by bringing the concept of macros 
under the control of the compiler where they belong. C++ 
implements the macro as inline function, which is a true function in 
every sense. Any behavior you expect from an ordinary function, 
you get from an inline function. The only difference is that an inline 
function is expanded in place, like a preprocessor macro, so the 
overhead of the function call is eliminated. Thus, you should 
(almost) never use macros, only inline functions. 

Any function defined within a class body is automatically inline, but 
you can also make a non-class function inline by preceding it with 
the inline keyword. However, for it to have any effect, you must 
include the function body with the declaration, otherwise the 
compiler will treat it as an ordinary function declaration. Thus, 

inline int plusOne(int x); 
 

has no effect at all other than declaring the function (which may or 
may not get an inline definition sometime later). The successful 
approach provides the function body: 

inline int plusOne(int x) { return ++x; } 
 

Notice that the compiler will check (as it always does) for the proper 
use of the function argument list and return value (performing any 
necessary conversions), something the preprocessor is incapable of. 
Also, if you try to write the above as a preprocessor macro, you get 
an unwanted side effect. 

You’ll almost always want to put inline definitions in a header file. 
When the compiler sees such a definition, it puts the function type 
(the signature combined with the return value) and the function 
body in its symbol table. When you use the function, the compiler 
checks to ensure the call is correct and the return value is being 
used correctly, and then substitutes the function body for the 
function call, thus eliminating the overhead. The inline code does 
occupy space, but if the function is small, this can actually take less 
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space than the code generated to do an ordinary function call 
(pushing arguments on the stack and doing the CALL). 

An inline function in a header file has a special status, since you 
must include the header file containing the function and its 
definition in every file where the function is used, but you don’t end 
up with multiple definition errors (however, the definition must be 
identical in all places where the inline function is included). 

Inlines inside classes 
To define an inline function, you must ordinarily precede the 
function definition with the inline keyword. However, this is not 
necessary inside a class definition. Any function you define inside a 
class definition is automatically an inline. For example: 

//: C09:Inline.cpp 

// Inlines inside classes 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Point { 

  int i, j, k; 

public: 

  Point(): i(0), j(0), k(0) {} 

  Point(int ii, int jj, int kk) 

    : i(ii), j(jj), k(kk) {} 

  void print(const string& msg = "") const { 

    if(msg.size() != 0) cout << msg << endl; 

    cout << "i = " << i << ", " 

         << "j = " << j << ", " 

         << "k = " << k << endl; 

  } 

}; 

 

int main() { 

  Point p, q(1,2,3); 

  p.print("value of p"); 

  q.print("value of q"); 

} ///:~ 
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Here, the two constructors and the print( ) function are all inlines 
by default. Notice in main( ) that the fact you are using inline 
functions is transparent, as it should be. The logical behavior of a 
function must be identical regardless of whether it’s an inline 
(otherwise your compiler is broken). The only difference you’ll see 
is in performance. 

Of course, the temptation is to use inlines everywhere inside class 
declarations because they save you the extra step of making the 
external member function definition. Keep in mind, however, that 
the idea of an inline is to provide improved opportunities for 
optimization by the compiler. But inlining a big function will cause 
that code to be duplicated everywhere the function is called, 
producing code bloat that may mitigate the speed benefit (the only 
reliable course of action is to experiment to discover the effects of 
inlining on your program with your compiler). 

Access functions 
One of the most important uses of inlines inside classes is the 
access function. This is a small function that allows you to read or 
change part of the state of an object – that is, an internal variable or 
variables. The reason inlines are so important for access functions 
can be seen in the following example: 

//: C09:Access.cpp 

// Inline access functions 

 

class Access { 

  int i; 

public: 

  int read() const { return i; } 

  void set(int ii) { i = ii; } 

}; 

 

int main() { 

  Access A; 

  A.set(100); 

  int x = A.read(); 

} ///:~ 
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Here, the class user never has direct contact with the state variables 
inside the class, and they can be kept private, under the control of 
the class designer. All the access to the private data members can 
be controlled through the member function interface. In addition, 
access is remarkably efficient. Consider the read( ), for example. 
Without inlines, the code generated for the call to read( ) would 
typically include pushing this on the stack and making an assembly 
language CALL. With most machines, the size of this code would be 
larger than the code created by the inline, and the execution time 
would certainly be longer. 

Without inline functions, an efficiency-conscious class designer will 
be tempted to simply make i a public member, eliminating the 
overhead by allowing the user to directly access i. From a design 
standpoint, this is disastrous because i then becomes part of the 
public interface, which means the class designer can never change 
it. You’re stuck with an int called i. This is a problem because you 
may learn sometime later that it would be much more useful to 
represent the state information as a float rather than an int, but 
because int i is part of the public interface, you can’t change it. Or 
you may want to perform some additional calculation as part of 
reading or setting i, which you can’t do if it’s public. If, on the 
other hand, you’ve always used member functions to read and 
change the state information of an object, you can modify the 
underlying representation of the object to your heart’s content. 

In addition, the use of member functions to control data members 
allows you to add code to the member function to detect when that 
data is being changed, which can be very useful during debugging. 
If a data member is public, anyone can change it anytime without 
you knowing about it. 

Accessors and mutators 
Some people further divide the concept of access functions into 
accessors (to read state information from an object) and mutators 
(to change the state of an object). In addition, function overloading 
may be used to provide the same function name for both the 
accessor and mutator; how you call the function determines 
whether you’re reading or modifying state information. Thus, 
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//: C09:Rectangle.cpp 

// Accessors & mutators 

 

class Rectangle { 

  int wide, high; 

public: 

  Rectangle(int w = 0, int h = 0) 

    : wide(w), high(h) {} 

  int width() const { return wide; } // Read 

  void width(int w) { wide = w; } // Set 

  int height() const { return high; } // Read 

  void height(int h) { high = h; } // Set 

}; 

 

int main() { 

  Rectangle r(19, 47); 

  // Change width & height: 

  r.height(2 * r.width()); 

  r.width(2 * r.height()); 

} ///:~ 
 

The constructor uses the constructor initializer list (briefly 
introduced in Chapter 8 and covered fully in Chapter 14) to 
initialize the values of wide and high (using the pseudoconstructor 
form for built-in types). 

You cannot have member function names using the same identifiers 
as data members, so you might be tempted to distinguish the data 
members with a leading underscore. However, identifiers with 
leading underscores are reserved so you should not use them.  

You may choose instead to use “get” and “set” to indicate accessors 
and mutators: 

//: C09:Rectangle2.cpp 

// Accessors & mutators with "get" and "set" 

 

class Rectangle { 

  int width, height; 

public: 

  Rectangle(int w = 0, int h = 0) 

    : width(w), height(h) {} 

  int getWidth() const { return width; } 
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  void setWidth(int w) { width = w; } 

  int getHeight() const { return height; } 

  void setHeight(int h) { height = h; } 

}; 

 

int main() { 

  Rectangle r(19, 47); 

  // Change width & height: 

  r.setHeight(2 * r.getWidth()); 

  r.setWidth(2 * r.getHeight()); 

} ///:~ 
 

Of course, accessors and mutators don’t have to be simple pipelines 
to an internal variable. Sometimes they can perform more 
sophisticated calculations. The following example uses the Standard 
C library time functions to produce a simple Time class: 

//: C09:Cpptime.h 

// A simple time class 

#ifndef CPPTIME_H 

#define CPPTIME_H 

#include <ctime> 

#include <cstring> 

 

class Time { 

  std::time_t t; 

  std::tm local; 

  char asciiRep[26]; 

  unsigned char lflag, aflag; 

  void updateLocal() { 

    if(!lflag) { 

      local = *std::localtime(&t); 

      lflag++; 

    } 

  } 

  void updateAscii() { 

    if(!aflag) { 

      updateLocal(); 

      std::strcpy(asciiRep,std::asctime(&local)); 

      aflag++; 

    } 

  } 

public: 

  Time() { mark(); } 
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  void mark() { 

    lflag = aflag = 0; 

    std::time(&t); 

  } 

  const char* ascii() { 

    updateAscii(); 

    return asciiRep; 

  } 

  // Difference in seconds: 

  int delta(Time* dt) const { 

    return int(std::difftime(t, dt->t)); 

  } 

  int daylightSavings() { 

    updateLocal(); 

    return local.tm_isdst; 

  } 

  int dayOfYear() { // Since January 1 

    updateLocal(); 

    return local.tm_yday; 

  } 

  int dayOfWeek() { // Since Sunday 

    updateLocal(); 

    return local.tm_wday; 

  } 

  int since1900() { // Years since 1900 

    updateLocal(); 

    return local.tm_year; 

  } 

  int month() { // Since January 

    updateLocal(); 

    return local.tm_mon; 

  } 

  int dayOfMonth() { 

    updateLocal(); 

    return local.tm_mday; 

  } 

  int hour() { // Since midnight, 24-hour clock 

    updateLocal(); 

    return local.tm_hour; 

  } 

  int minute() { 

    updateLocal(); 

    return local.tm_min; 

  } 

  int second() { 
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    updateLocal(); 

    return local.tm_sec; 

  } 

}; 

#endif // CPPTIME_H ///:~ 
 

The Standard C library functions have multiple representations for 
time, and these are all part of the Time class. However, it isn’t 
necessary to update all of them, so instead the time_t t is used as 
the base representation, and the tm local and ASCII character 
representation asciiRep each have flags to indicate if they’ve been 
updated to the current time_t. The two private functions 
updateLocal( ) and updateAscii( ) check the flags and 
conditionally perform the update. 

The constructor calls the mark( ) function (which the user can also 
call to force the object to represent the current time), and this clears 
the two flags to indicate that the local time and ASCII 
representation are now invalid. The ascii( ) function calls 
updateAscii( ), which copies the result of the Standard C library 
function asctime( ) into a local buffer because asctime( ) uses a 
static data area that is overwritten if the function is called 
elsewhere. The ascii( ) function return value is the address of this 
local buffer. 

All the functions starting with daylightSavings( ) use the 
updateLocal( ) function, which causes the resulting composite 
inlines to be fairly large. This doesn’t seem worthwhile, especially 
considering you probably won’t call the functions very much. 
However, this doesn’t mean all the functions should be made non-
inline. If you make other functions non-inline, at least keep 
updateLocal( ) inline so that its code will be duplicated in the 
non-inline functions, eliminating extra function-call overhead. 

Here’s a small test program: 

//: C09:Cpptime.cpp 

// Testing a simple time class 

#include "Cpptime.h" 

#include <iostream> 

using namespace std; 
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int main() { 

  Time start; 

  for(int i = 1; i < 1000; i++) { 

    cout << i << ' '; 

    if(i%10 == 0) cout << endl; 

  } 

  Time end; 

  cout << endl; 

  cout << "start = " << start.ascii(); 

  cout << "end = " << end.ascii(); 

  cout << "delta = " << end.delta(&start); 

} ///:~ 
 

A Time object is created, then some time-consuming activity is 
performed, then a second Time object is created to mark the 
ending time. These are used to show starting, ending, and elapsed 
times. 

Stash & Stack with inlines 
Armed with inlines, we can now convert the Stash and Stack 
classes to be more efficient: 

//: C09:Stash4.h 

// Inline functions 

#ifndef STASH4_H 

#define STASH4_H 

#include "../require.h" 

 

class Stash { 

  int size;      // Size of each space 

  int quantity;  // Number of storage spaces 

  int next;      // Next empty space 

  // Dynamically allocated array of bytes: 

  unsigned char* storage; 

  void inflate(int increase); 

public: 

  Stash(int sz) : size(sz), quantity(0), 

    next(0), storage(0) {} 

  Stash(int sz, int initQuantity) : size(sz),  

    quantity(0), next(0), storage(0) {  

    inflate(initQuantity);  
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  } 

  Stash::~Stash() { 

    if(storage != 0)  

      delete []storage; 

  } 

  int add(void* element); 

  void* fetch(int index) const { 

    require(0 <= index, "Stash::fetch (-)index"); 

    if(index >= next) 

      return 0; // To indicate the end 

    // Produce pointer to desired element: 

    return &(storage[index * size]); 

  } 

  int count() const { return next; } 

}; 

#endif // STASH4_H ///:~ 
 

The small functions obviously work well as inlines, but notice that 
the two largest functions are still left as non-inlines, since inlining 
them probably wouldn’t cause any performance gains: 

//: C09:Stash4.cpp {O} 

#include "Stash4.h" 

#include <iostream> 

#include <cassert> 

using namespace std; 

const int increment = 100; 

 

int Stash::add(void* element) { 

  if(next >= quantity) // Enough space left? 

    inflate(increment); 

  // Copy element into storage, 

  // starting at next empty space: 

  int startBytes = next * size; 

  unsigned char* e = (unsigned char*)element; 

  for(int i = 0; i < size; i++) 

    storage[startBytes + i] = e[i]; 

  next++; 

  return(next - 1); // Index number 

} 

 

void Stash::inflate(int increase) { 

  assert(increase >= 0); 

  if(increase == 0) return; 
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  int newQuantity = quantity + increase; 

  int newBytes = newQuantity * size; 

  int oldBytes = quantity * size; 

  unsigned char* b = new unsigned char[newBytes]; 

  for(int i = 0; i < oldBytes; i++) 

    b[i] = storage[i]; // Copy old to new 

  delete [](storage); // Release old storage 

  storage = b; // Point to new memory 

  quantity = newQuantity; // Adjust the size 

} ///:~ 
 

Once again, the test program verifies that everything is working 
correctly: 

//: C09:Stash4Test.cpp 

//{L} Stash4 

#include "Stash4.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main() { 

  Stash intStash(sizeof(int)); 

  for(int i = 0; i < 100; i++) 

    intStash.add(&i); 

  for(int j = 0; j < intStash.count(); j++) 

    cout << "intStash.fetch(" << j << ") = " 

         << *(int*)intStash.fetch(j) 

         << endl; 

  const int bufsize = 80; 

  Stash stringStash(sizeof(char) * bufsize, 100); 

  ifstream in("Stash4Test.cpp"); 

  assure(in, "Stash4Test.cpp"); 

  string line; 

  while(getline(in, line)) 

    stringStash.add((char*)line.c_str()); 

  int k = 0; 

  char* cp; 

  while((cp = (char*)stringStash.fetch(k++))!=0) 

    cout << "stringStash.fetch(" << k << ") = " 

         << cp << endl; 

} ///:~ 
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This is the same test program that was used before, so the output 
should be basically the same. 

The Stack class makes even better use of inlines:  

//: C09:Stack4.h 

// With inlines 

#ifndef STACK4_H 

#define STACK4_H 

#include "../require.h" 

 

class Stack { 

  struct Link { 

    void* data; 

    Link* next; 

    Link(void* dat, Link* nxt):  

      data(dat), next(nxt) {} 

  }* head; 

public: 

  Stack() : head(0) {} 

  ~Stack() { 

    require(head == 0, "Stack not empty"); 

  } 

  void push(void* dat) { 

    head = new Link(dat, head); 

  } 

  void* peek() const {  

    return head ? head->data : 0; 

  } 

  void* pop() { 

    if(head == 0) return 0; 

    void* result = head->data; 

    Link* oldHead = head; 

    head = head->next; 

    delete oldHead; 

    return result; 

  } 

}; 

#endif // STACK4_H ///:~ 
 

 

Notice that the Link destructor that was present but empty in the 
previous version of Stack has been removed. In pop( ), the 
expression delete oldHead simply releases the memory used by 
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that Link (it does not destroy the data object pointed to by the 
Link). 

Most of the functions inline quite nicely and obviously, especially 
for Link. Even pop( ) seems legitimate, although anytime you have 
conditionals or local variables it’s not clear that inlines will be that 
beneficial. Here, the function is small enough that it probably won’t 
hurt anything. 

If all your functions are inlined, using the library becomes quite 
simple because there’s no linking necessary, as you can see in the 
test example (notice that there’s no Stack4.cpp): 

//: C09:Stack4Test.cpp 

//{T} Stack4Test.cpp 

#include "Stack4.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack textlines; 

  string line; 

  // Read file and store lines in the stack: 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  // Pop the lines from the stack and print them: 

  string* s; 

  while((s = (string*)textlines.pop()) != 0) { 

    cout << *s << endl; 

    delete s;  

  } 

} ///:~ 
 

People will sometimes write classes with all inline functions so that 
the whole class will be in the header file (you’ll see in this book that 
I step over the line myself). During program development this is 
probably harmless, although sometimes it can make for longer 
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compilations. Once the program stabilizes a bit, you’ll probably 
want to go back and make functions non-inline where appropriate. 

Inlines & the compiler 
To understand when inlining is effective, it’s helpful to know what 
the compiler does when it encounters an inline. As with any 
function, the compiler holds the function type (that is, the function 
prototype including the name and argument types, in combination 
with the function return value) in its symbol table. In addition, 
when the compiler sees that the inline’s function type and the 
function body parses without error, the code for the function body 
is also brought into the symbol table. Whether the code is stored in 
source form, compiled assembly instructions, or some other 
representation is up to the compiler. 

When you make a call to an inline function, the compiler first 
ensures that the call can be correctly made. That is, all the 
argument types must either be the exact types in the function’s 
argument list, or the compiler must be able to make a type 
conversion to the proper types and the return value must be the 
correct type (or convertible to the correct type) in the destination 
expression. This, of course, is exactly what the compiler does for 
any function and is markedly different from what the preprocessor 
does because the preprocessor cannot check types or make 
conversions. 

If all the function type information fits the context of the call, then 
the inline code is substituted directly for the function call, 
eliminating the call overhead and allowing for further optimizations 
by the compiler. Also, if the inline is a member function, the 
address of the object (this) is put in the appropriate place(s), which 
of course is another action the preprocessor is unable to perform. 

Limitations 
There are two situations in which the compiler cannot perform 
inlining. In these cases, it simply reverts to the ordinary form of a 
function by taking the inline definition and creating storage for the 
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function just as it does for a non-inline. If it must do this in multiple 
translation units (which would normally cause a multiple definition 
error), the linker is told to ignore the multiple definitions. 

The compiler cannot perform inlining if the function is too 
complicated. This depends upon the particular compiler, but at the 
point most compilers give up, the inline probably wouldn’t gain you 
any efficiency. In general, any sort of looping is considered too 
complicated to expand as an inline, and if you think about it, 
looping probably entails much more time inside the function than 
what is required for the function call overhead. If the function is 
just a collection of simple statements, the compiler probably won’t 
have any trouble inlining it, but if there are a lot of statements, the 
overhead of the function call will be much less than the cost of 
executing the body. And remember, every time you call a big inline 
function, the entire function body is inserted in place of each call, so 
you can easily get code bloat without any noticeable performance 
improvement. (Note that some of the examples in this book may 
exceed reasonable inline sizes in favor of conserving screen real 
estate.) 

The compiler also cannot perform inlining if the address of the 
function is taken implicitly or explicitly. If the compiler must 
produce an address, then it will allocate storage for the function 
code and use the resulting address. However, where an address is 
not required, the compiler will probably still inline the code. 

It is important to understand that an inline is just a suggestion to 
the compiler; the compiler is not forced to inline anything at all. A 
good compiler will inline small, simple functions while intelligently 
ignoring inlines that are too complicated. This will give you the 
results you want – the true semantics of a function call with the 
efficiency of a macro. 

Forward references 
If you’re imagining what the compiler is doing to implement inlines, 
you can confuse yourself into thinking there are more limitations 
than actually exist. In particular, if an inline makes a forward 
reference to a function that hasn’t yet been declared in the class 
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(whether that function is inline or not), it can seem like the 
compiler won’t be able to handle it: 

//: C09:EvaluationOrder.cpp 

// Inline evaluation order 

 

class Forward { 

  int i; 

public: 

  Forward() : i(0) {} 

  // Call to undeclared function: 

  int f() const { return g() + 1; } 

  int g() const { return i; } 

}; 

 

int main() { 

  Forward frwd; 

  frwd.f(); 

} ///:~ 
 

In f( ), a call is made to g( ), although g( ) has not yet been 
declared. This works because the language definition states that no 
inline functions in a class shall be evaluated until the closing brace 
of the class declaration. 

Of course, if g( ) in turn called f( ), you’d end up with a set of 
recursive calls, which are too complicated for the compiler to inline. 
(Also, you’d have to perform some test in f( ) or g( ) to force one of 
them to “bottom out,” or the recursion would be infinite.) 

Hidden activities in constructors & destructors 
Constructors and destructors are two places where you can be 
fooled into thinking that an inline is more efficient than it actually 
is. Constructors and destructors may have hidden activities, 
because the class can contain subobjects whose constructors and 
destructors must be called. These subobjects may be member 
objects, or they may exist because of inheritance (covered in 
Chapter 14). As an example of a class with member objects: 

//: C09:Hidden.cpp 

// Hidden activities in inlines 
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#include <iostream> 

using namespace std; 

 

class Member { 

  int i, j, k; 

public: 

  Member(int x = 0) : i(x), j(x), k(x) {} 

  ~Member() { cout << "~Member" << endl; } 

}; 

 

class WithMembers { 

  Member q, r, s; // Have constructors 

  int i; 

public: 

  WithMembers(int ii) : i(ii) {} // Trivial? 

  ~WithMembers() { 

    cout << "~WithMembers" << endl; 

  } 

}; 

 

int main() { 

  WithMembers wm(1); 

} ///:~ 
 

The constructor for Member is simple enough to inline, since 
there’s nothing special going on – no inheritance or member objects 
are causing extra hidden activities. But in class WithMembers 
there’s more going on than meets the eye. The constructors and 
destructors for the member objects q, r, and s are being called 
automatically, and those constructors and destructors are also 
inline, so the difference is significant from normal member 
functions. This doesn’t necessarily mean that you should always 
make constructor and destructor definitions non-inline; there are 
cases in which it makes sense. Also, when you’re making an initial 
“sketch” of a program by quickly writing code, it’s often more 
convenient to use inlines. But if you’re concerned about efficiency, 
it’s a place to look. 

Reducing clutter 
In a book like this, the simplicity and terseness of putting inline 
definitions inside classes is very useful because more fits on a page 
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or screen (in a seminar). However, Dan Saks2 has pointed out that 
in a real project this has the effect of needlessly cluttering the class 
interface and thereby making the class harder to use. He refers to 
member functions defined within classes using the Latin in situ (in 
place) and maintains that all definitions should be placed outside 
the class to keep the interface clean. Optimization, he argues, is a 
separate issue. If you want to optimize, use the inline keyword. 
Using this approach, the earlier Rectangle.cpp example becomes: 

//: C09:Noinsitu.cpp 

// Removing in situ functions 

 

class Rectangle { 

  int width, height; 

public: 

  Rectangle(int w = 0, int h = 0); 

  int getWidth() const; 

  void setWidth(int w); 

  int getHeight() const; 

  void setHeight(int h); 

}; 

 

inline Rectangle::Rectangle(int w, int h) 

  : width(w), height(h) {} 

 

inline int Rectangle::getWidth() const { 

  return width; 

} 

 

inline void Rectangle::setWidth(int w) { 

  width = w; 

} 

 

inline int Rectangle::getHeight() const { 

  return height; 

} 

 

inline void Rectangle::setHeight(int h) { 

  height = h; 

} 

                                                   
2 Co-author with Tom Plum of C++ Programming Guidelines, Plum Hall, 1991. 
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int main() { 

  Rectangle r(19, 47); 

  // Transpose width & height: 

  int iHeight = r.getHeight(); 

  r.setHeight(r.getWidth()); 

  r.setWidth(iHeight); 

} ///:~ 
 

Now if you want to compare the effect of inline functions to non-
inline functions, you can simply remove the inline keyword. (Inline 
functions should normally be put in header files, however, while 
non-inline functions must reside in their own translation unit.) If 
you want to put the functions into documentation, it’s a simple cut-
and-paste operation. In situ functions require more work and have 
greater potential for errors. Another argument for this approach is 
that you can always produce a consistent formatting style for 
function definitions, something that doesn’t always occur with in 
situ functions. 

More preprocessor features 
Earlier, I said that you almost always want to use inline functions 
instead of preprocessor macros. The exceptions are when you need 
to use three special features in the C preprocessor (which is also the 
C++ preprocessor): stringizing, string concatenation, and token 
pasting. Stringizing, introduced earlier in the book, is performed 
with the # directive and allows you to take an identifier and turn it 
into a character array. String concatenation takes place when two 
adjacent character arrays have no intervening punctuation, in 
which case they are combined. These two features are especially 
useful when writing debug code. Thus, 

#define DEBUG(x) cout << #x " = " << x << endl 
 

This prints the value of any variable. You can also get a trace that 
prints out the statements as they execute: 

#define TRACE(s) cerr << #s << endl; s 
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The #s stringizes the statement for output, and the second s 
reiterates the statement so it is executed. Of course, this kind of 
thing can cause problems, especially in one-line for loops: 

for(int i = 0; i < 100; i++) 

  TRACE(f(i)); 
 

Because there are actually two statements in the TRACE( ) macro, 
the one-line for loop executes only the first one. The solution is to 
replace the semicolon with a comma in the macro. 

Token pasting 
Token pasting, implemented with the ## directive, is very useful 
when you are manufacturing code. It allows you to take two 
identifiers and paste them together to automatically create a new 
identifier. For example, 

#define FIELD(a) char* a##_string; int a##_size 

class Record { 

  FIELD(one); 

  FIELD(two); 

  FIELD(three); 

  // ... 

}; 
 

Each call to the FIELD( ) macro creates an identifier to hold a 
character array and another to hold the length of that array. Not 
only is it easier to read, it can eliminate coding errors and make 
maintenance easier.  

Improved error checking 
The require.h functions have been used up to this point without 
defining them (although assert( ) has also been used to help detect 
programmer errors where it’s appropriate). Now it’s time to define 
this header file. Inline functions are convenient here because they 
allow everything to be placed in a header file, which simplifies the 
process of using the package. You just include the header file and 
you don’t need to worry about linking an implementation file. 
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You should note that exceptions (presented in detail in Volume 2 of 
this book) provide a much more effective way of handling many 
kinds of errors – especially those that you’d like to recover from – 
instead of just halting the program. The conditions that require.h 
handles, however, are ones which prevent the continuation of the 
program, such as if the user doesn’t provide enough command-line 
arguments or if a file cannot be opened. Thus, it’s acceptable that 
they call the Standard C Library function exit( ). 

The following header file is placed in the book’s root directory so it’s 
easily accessed from all chapters. 

//: :require.h 

// Test for error conditions in programs 

// Local "using namespace std" for old compilers 

#ifndef REQUIRE_H 

#define REQUIRE_H 

#include <cstdio> 

#include <cstdlib> 

#include <fstream> 

#include <string> 

 

inline void require(bool requirement,  

  const std::string& msg = "Requirement failed"){ 

  using namespace std; 

  if (!requirement) { 

    fputs(msg.c_str(), stderr); 

    fputs("\n", stderr); 

    exit(1); 

  } 

} 

 

inline void requireArgs(int argc, int args,  

  const std::string& msg =  

    "Must use %d arguments") { 

  using namespace std; 

   if (argc != args + 1) { 

     fprintf(stderr, msg.c_str(), args); 

     fputs("\n", stderr); 

     exit(1); 

   } 

} 
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inline void requireMinArgs(int argc, int minArgs, 

  const std::string& msg = 

    "Must use at least %d arguments") { 

  using namespace std; 

  if(argc < minArgs + 1) { 

    fprintf(stderr, msg.c_str(), minArgs); 

    fputs("\n", stderr); 

    exit(1); 

  } 

} 

   

inline void assure(std::ifstream& in,  

  const std::string& filename = "") { 

  using namespace std; 

  if(!in) { 

    fprintf(stderr, "Could not open file %s\n", 

      filename.c_str()); 

    exit(1); 

  } 

} 

 

inline void assure(std::ofstream& out,  

  const std::string& filename = "") { 

  using namespace std; 

  if(!out) { 

    fprintf(stderr, "Could not open file %s\n",  

      filename.c_str()); 

    exit(1); 

  } 

} 

#endif // REQUIRE_H ///:~ 
 

The default values provide reasonable messages that can be 
changed if necessary. 

You’ll notice that instead of using char* arguments, const 
string& arguments are used. This allows both char* and strings 
as arguments to these functions, and thus is more generally useful 
(you may want to follow this form in your own coding). 

In the definitions for requireArgs( ) and requireMinArgs( ), 
one is added to the number of arguments you need on the 
command line because argc always includes the name of the 
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program being executed as argument zero, and so always has a 
value that is one more than the number of actual arguments on the 
command line. 

Note the use of local “using namespace std” declarations within 
each function. This is because some compilers at the time of this 
writing incorrectly did not include the C standard library functions 
in namespace std, so explicit qualification would cause a compile-
time error. The local declaration allows require.h to work with 
both correct and incorrect libraries without opening up the 
namespace std for anyone who includes this header file. 

Here’s a simple program to test require.h: 

//: C09:ErrTest.cpp 

//{T} ErrTest.cpp 

// Testing require.h 

#include "../require.h" 

#include <fstream> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  int i = 1; 

  require(i, "value must be nonzero"); 

  requireArgs(argc, 1); 

  requireMinArgs(argc, 1); 

  ifstream in(argv[1]); 

  assure(in, argv[1]); // Use the file name 

  ifstream nofile("nofile.xxx"); 

  // Fails: 

//!  assure(nofile); // The default argument 

  ofstream out("tmp.txt"); 

  assure(out); 

} ///:~ 
 

You might be tempted to go one step further for opening files and 
add a macro to require.h: 

#define IFOPEN(VAR, NAME) \ 

  ifstream VAR(NAME); \ 

  assure(VAR, NAME); 
 

Which could then be used like this: 
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IFOPEN(in, argv[1]) 
 

At first, this might seem appealing since it means there’s less to 
type. It’s not terribly unsafe, but it’s a road best avoided. Note that, 
once again, a macro looks like a function but behaves differently; 
it’s actually creating an object (in) whose scope persists beyond the 
macro. You may understand this, but for new programmers and 
code maintainers it’s just one more thing they have to puzzle out. 
C++ is complicated enough without adding to the confusion, so try 
to talk yourself out of using preprocessor macros whenever you can. 

Summary 
It’s critical that you be able to hide the underlying implementation 
of a class because you may want to change that implementation 
sometime later. You’ll make these changes for efficiency, or because 
you get a better understanding of the problem, or because some 
new class becomes available that you want to use in the 
implementation. Anything that jeopardizes the privacy of the 
underlying implementation reduces the flexibility of the language. 
Thus, the inline function is very important because it virtually 
eliminates the need for preprocessor macros and their attendant 
problems. With inlines, member functions can be as efficient as 
preprocessor macros. 

The inline function can be overused in class definitions, of course. 
The programmer is tempted to do so because it’s easier, so it will 
happen. However, it’s not that big of an issue because later, when 
looking for size reductions, you can always change the functions to 
non-inlines with no effect on their functionality. The development 
guideline should be “First make it work, then optimize it.” 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Write a program that uses the F( ) macro shown at the 
beginning of the chapter and demonstrates that it does 
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not expand properly, as described in the text. Repair the 
macro and show that it works correctly. 

2.  Write a program that uses the FLOOR( ) macro shown 
at the beginning of the chapter. Show the conditions 
under which it does not work properly. 

3.  Modify MacroSideEffects.cpp so that BAND( ) works 
properly. 

4.  Create two identical functions, f1( ) and f2( ). Inline f1( ) 
and leave f2( ) as an non-inline function. Use the 
Standard C Library function clock( ) that is found in 
<ctime> to mark the starting point and ending points 
and compare the two functions to see which one is faster. 
You may need to make repeated calls to the functions 
inside your timing loop in order to get useful numbers.  

5.  Experiment with the size and complexity of the code 
inside the functions in Exercise 4 to see if you can find a 
break-even point where the inline function and the non-
inline function take the same amount of time. If you have 
them available, try this with different compilers and note 
the differences. 

6.  Prove that inline functions default to internal linkage. 

7.  Create a class that contains an array of char. Add an 
inline constructor that uses the Standard C library 
function memset( ) to initialize the array to the 
constructor argument (default this to ‘ ’), and an inline 
member function called print( ) to print out all the 
characters in the array. 

8.  Take the NestFriend.cpp example from Chapter 5 and 
replace all the member functions with inlines. Make them 
non-in situ inline functions. Also change the initialize( ) 
functions to constructors. 

9.  Modify StringStack.cpp from Chapter 8 to use inline 
functions. 

10.  Create an enum called Hue containing red, blue, and 
yellow. Now create a class called Color containing a 
data member of type Hue and a constructor that sets the 
Hue from its argument. Add access functions to “get” 
and “set” the Hue. Make all of the functions inlines. 
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11.  Modify Exercise 10 to use the “accessor” and “mutator” 
approach. 

12.  Modify Cpptime.cpp so that it measures the time from 
the time that the program begins running to the time 
when the user presses the “Enter” or “Return” key. 

13.  Create a class with two inline member functions, such 
that the first function that’s defined in the class calls the 
second function, without the need for a forward 
declaration. Write a main that creates an object of the 
class and calls the first function. 

14.  Create a class A with an inline default constructor that 
announces itself. Now make a new class B and put an 
object of A as a member of B, and give B an inline 
constructor. Create an array of B objects and see what 
happens. 

15.  Create a large quantity of the objects from the previous 
Exercise, and use the Time class to time the difference 
between non-inline constructors and inline constructors. 
(If you have a profiler, also try using that.)  

16.  Write a program that takes a string as the command-line 
argument. Write a for loop that removes one character 
from the string with each pass, and use the DEBUG( ) 
macro from this chapter to print the string each time. 

17.  Correct the TRACE( ) macro as specified in this chapter, 
and prove that it works correctly. 

18.  Modify the FIELD( ) macro so that it also contains an 
index number. Create a class whose members are 
composed of calls to the FIELD( ) macro. Add a member 
function that allows you to look up a field using its index 
number. Write a main( ) to test the class. 

19.  Modify the FIELD( ) macro so that it automatically 
generates access functions for each field (the data should 
still be private, however). Create a class whose members 
are composed of calls to the FIELD( ) macro. Write a 
main( ) to test the class. 

20.  Write a program that takes two command-line 
arguments: the first is an int and the second is a file 
name. Use require.h to ensure that you have the right 
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number of arguments, that the int is between 5 and 10, 
and that the file can successfully be opened. 

21.  Write a program that uses the IFOPEN( ) macro to open 
a file as an input stream. Note the creation of the 
ifstream object and its scope. 

22.  (Challenging) Determine how to get your compiler to 
generate assembly code. Create a file containing a very 
small function and a main( ) that calls the function. 
Generate assembly code when the function is inlined and 
not inlined, and demonstrate that the inlined version 
does not have the function call overhead. 
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10: Name Control 
Creating names is a fundamental activity in 

programming, and when a project gets large, the 

number of names can easily be overwhelming. 
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C++ allows you a great deal of control over the creation and 
visibility of names, where storage for those names is placed, and 
linkage for names. 

The static keyword was overloaded in C before people knew what 
the term “overload” meant, and C++ has added yet another 
meaning. The underlying concept with all uses of static seems to be 
“something that holds its position” (like static electricity), whether 
that means a physical location in memory or visibility within a file. 

In this chapter, you’ll learn how static controls storage and 
visibility, and an improved way to control access to names via C++’s 
namespace feature. You’ll also find out how to use functions that 
were written and compiled in C. 

Static elements from C 
In both C and C++ the keyword static has two basic meanings, 
which unfortunately often step on each other’s toes: 

1. Allocated once at a fixed address; that is, the object is created 
in a special static data area rather than on the stack each 
time a function is called. This is the concept of static storage.  

2. Local to a particular translation unit (and local to a class 
scope in C++, as you will see later). Here, static controls the 
visibility of a name, so that name cannot be seen outside the 
translation unit or class. This also describes the concept of 
linkage, which determines what names the linker will see. 

This section will look at the above meanings of static as they were 
inherited from C. 

static variables inside functions 
When you create a local variable inside a function, the compiler 
allocates storage for that variable each time the function is called by 
moving the stack pointer down an appropriate amount. If there is 
an initializer for the variable, the initialization is performed each 
time that sequence point is passed. 
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Sometimes, however, you want to retain a value between function 
calls. You could accomplish this by making a global variable, but 
then that variable would not be under the sole control of the 
function. C and C++ allow you to create a static object inside a 
function; the storage for this object is not on the stack but instead in 
the program’s static data area. This object is initialized only once, 
the first time the function is called, and then retains its value 
between function invocations. For example, the following function 
returns the next character in the array each time the function is 
called: 

//: C10:StaticVariablesInfunctions.cpp 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

char oneChar(const char* charArray = 0) { 

  static const char* s; 

  if(charArray) { 

    s = charArray; 

    return *s; 

  } 

  else 

    require(s, "un-initialized s"); 

  if(*s == '\0') 

    return 0; 

  return *s++; 

} 

 

char* a = "abcdefghijklmnopqrstuvwxyz"; 

 

int main() { 

  // oneChar(); // require() fails 

  oneChar(a); // Initializes s to a 

  char c; 

  while((c = oneChar()) != 0) 

    cout << c << endl; 

} ///:~ 
 

The static char* s holds its value between calls of oneChar( ) 
because its storage is not part of the stack frame of the function, but 
is in the static storage area of the program. When you call 
oneChar( ) with a char* argument, s is assigned to that 
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argument, and the first character of the array is returned. Each 
subsequent call to oneChar( ) without an argument produces the 
default value of zero for charArray, which indicates to the 
function that you are still extracting characters from the previously 
initialized value of s. The function will continue to produce 
characters until it reaches the null terminator of the character 
array, at which point it stops incrementing the pointer so it doesn’t 
overrun the end of the array. 

But what happens if you call oneChar( ) with no arguments and 
without previously initializing the value of s? In the definition for s, 
you could have provided an initializer, 

static char* s = 0; 
 

but if you do not provide an initializer for a static variable of a built-
in type, the compiler guarantees that variable will be initialized to 
zero (converted to the proper type) at program start-up. So in 
oneChar( ), the first time the function is called, s is zero. In this 
case, the if(!s) conditional will catch it. 

The initialization above for s is very simple, but initialization for 
static objects (like all other objects) can be arbitrary expressions 
involving constants and previously declared variables and 
functions. 

You should be aware that the function above is very vulnerable to 
multithreading problems; whenever you design functions 
containing static variables you should keep multithreading issues in 
mind. 

static class objects inside functions 
The rules are the same for static objects of user-defined types, 
including the fact that some initialization is required for the object. 
However, assignment to zero has meaning only for built-in types; 
user-defined types must be initialized with constructor calls. Thus, 
if you don’t specify constructor arguments when you define the 
static object, the class must have a default constructor. For 
example, 
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//: C10:StaticObjectsInFunctions.cpp 

#include <iostream> 

using namespace std; 

 

class X { 

  int i; 

public: 

  X(int ii = 0) : i(ii) {} // Default 

  ~X() { cout << "X::~X()" << endl; } 

}; 

 

void f() { 

  static X x1(47); 

  static X x2; // Default constructor required 

} 

 

int main() { 

  f(); 

} ///:~ 
 

The static objects of type X inside f( ) can be initialized either with 
the constructor argument list or with the default constructor. This 
construction occurs the first time control passes through the 
definition, and only the first time. 

Static object destructors 
Destructors for static objects (that is, all objects with static storage, 
not just local static objects as in the example above) are called when 
main( ) exits or when the Standard C library function exit( ) is 
explicitly called. In most implementations, main( ) just calls 
exit( ) when it terminates. This means that it can be dangerous to 
call exit( ) inside a destructor because you can end up with infinite 
recursion. Static object destructors are not called if you exit the 
program using the Standard C library function abort( ). 

You can specify actions to take place when leaving main( ) (or 
calling exit( )) by using the Standard C library function atexit( ). 
In this case, the functions registered by atexit( ) may be called 
before the destructors for any objects constructed before leaving 
main( ) (or calling exit( )). 
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Like ordinary destruction, destruction of static objects occurs in the 
reverse order of initialization. However, only objects that have been 
constructed are destroyed. Fortunately, the C++ development tools 
keep track of initialization order and the objects that have been 
constructed. Global objects are always constructed before main( ) 
is entered and destroyed as main( ) exits, but if a function 
containing a local static object is never called, the constructor for 
that object is never executed, so the destructor is also not executed. 
For example, 

//: C10:StaticDestructors.cpp 

// Static object destructors 

#include <fstream> 

using namespace std; 

ofstream out("statdest.out"); // Trace file 

 

class Obj { 

  char c; // Identifier 

public: 

  Obj(char cc) : c(cc) { 

    out << "Obj::Obj() for " << c << endl; 

  } 

  ~Obj() { 

    out << "Obj::~Obj() for " << c << endl; 

  } 

}; 

 

Obj a('a'); // Global (static storage) 

// Constructor & destructor always called 

 

void f() { 

  static Obj b('b'); 

} 

 

void g() { 

  static Obj c('c'); 

} 

 

int main() { 

  out << "inside main()" << endl; 

  f(); // Calls static constructor for b 

  // g() not called 

  out << "leaving main()" << endl; 
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} ///:~ 
 

In Obj, the char c acts as an identifier so the constructor and 
destructor can print out information about the object they’re 
working on. The Obj a is a global object, so the constructor is 
always called for it before main( ) is entered, but the constructors 
for the static Obj b inside f( ) and the static Obj c inside g( ) are 
called only if those functions are called. 

To demonstrate which constructors and destructors are called, only 
f( ) is called. The output of the program is 

Obj::Obj() for a 

inside main() 

Obj::Obj() for b 

leaving main() 

Obj::~Obj() for b 

Obj::~Obj() for a 
 

The constructor for a is called before main( ) is entered, and the 
constructor for b is called only because f( ) is called. When main( ) 
exits, the destructors for the objects that have been constructed are 
called in reverse order of their construction. This means that if g( ) 
is called, the order in which the destructors for b and c are called 
depends on whether f( ) or g( ) is called first. 

Notice that the trace file ofstream object out is also a static object 
– since it is defined outside of all functions, it lives in the static 
storage area. It is important that its definition (as opposed to an 
extern declaration) appear at the beginning of the file, before there 
is any possible use of out. Otherwise, you’ll be using an object 
before it is properly initialized. 

In C++, the constructor for a global static object is called before 
main( ) is entered, so you now have a simple and portable way to 
execute code before entering main( ) and to execute code with the 
destructor after exiting main( ). In C, this was always a trial that 
required you to root around in the compiler vendor’s assembly-
language startup code. 
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Controlling linkage 
Ordinarily, any name at file scope (that is, not nested inside a class 
or function) is visible throughout all translation units in a program. 
This is often called external linkage because at link time the name 
is visible to the linker everywhere, external to that translation unit. 
Global variables and ordinary functions have external linkage. 

There are times when you’d like to limit the visibility of a name. You 
might like to have a variable at file scope so all the functions in that 
file can use it, but you don’t want functions outside that file to see 
or access that variable, or to inadvertently cause name clashes with 
identifiers outside the file. 

An object or function name at file scope that is explicitly declared 
static is local to its translation unit (in the terms of this book, the 
cpp file where the declaration occurs). That name has internal 
linkage. This means that you can use the same name in other 
translation units without a name clash. 

One advantage to internal linkage is that the name can be placed in 
a header file without worrying that there will be a clash at link time. 
Names that are commonly placed in header files, such as const 
definitions and inline functions, default to internal linkage. 
(However, const defaults to internal linkage only in C++; in C it 
defaults to external linkage.) Note that linkage refers only to 
elements that have addresses at link/load time; thus, class 
declarations and local variables have no linkage. 

Confusion 
Here’s an example of how the two meanings of static can cross over 
each other. All global objects implicitly have static storage class, so 
if you say (at file scope), 

int a = 0; 
 

then storage for a will be in the program’s static data area, and the 
initialization for a will occur once, before main( ) is entered. In 
addition, the visibility of a is global across all translation units. In 
terms of visibility, the opposite of static (visible only in this 
translation unit) is extern, which explicitly states that the visibility 
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of the name is across all translation units. So the definition above is 
equivalent to saying 

extern int a = 0; 
 

But if you say instead, 

static int a = 0; 
 

all you’ve done is change the visibility, so a has internal linkage. 
The storage class is unchanged – the object resides in the static data 
area whether the visibility is static or extern. 

Once you get into local variables, static stops altering the visibility 
and instead alters the storage class.  

If you declare what appears to be a local variable as extern, it 
means that the storage exists elsewhere (so the variable is actually 
global to the function). For example: 

//: C10:LocalExtern.cpp 

//{L} LocalExtern2 

#include <iostream> 

 

int main() { 

  extern int i; 

  std::cout << i; 

} ///:~ 

 

//: C10:LocalExtern2.cpp {O} 

int i = 5; 

///:~ 
 

With function names (for non-member functions), static and 
extern can only alter visibility, so if you say 

extern void f(); 
 

it’s the same as the unadorned declaration 

void f(); 
 

and if you say, 
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static void f(); 
 

it means f( ) is visible only within this translation unit – this is 
sometimes called file static. 

Other storage class specifiers 
You will see static and extern used commonly. There are two 
other storage class specifiers that occur less often. The auto 
specifier is almost never used because it tells the compiler that this 
is a local variable. auto is short for “automatic” and it refers to the 
way the compiler automatically allocates storage for the variable. 
The compiler can always determine this fact from the context in 
which the variable is defined, so auto is redundant. 

A register variable is a local (auto) variable, along with a hint to 
the compiler that this particular variable will be heavily used so the 
compiler ought to keep it in a register if it can. Thus, it is an 
optimization aid. Various compilers respond differently to this hint; 
they have the option to ignore it. If you take the address of the 
variable, the register specifier will almost certainly be ignored. 
You should avoid using register because the compiler can usually 
do a better job of optimization than you. 

Namespaces 
Although names can be nested inside classes, the names of global 
functions, global variables, and classes are still in a single global 
name space. The static keyword gives you some control over this 
by allowing you to give variables and functions internal linkage 
(that is, to make them file static). But in a large project, lack of 
control over the global name space can cause problems. To solve 
these problems for classes, vendors often create long complicated 
names that are unlikely to clash, but then you’re stuck typing those 
names. (A typedef is often used to simplify this.) It’s not an 
elegant, language-supported solution. 

You can subdivide the global name space into more manageable 
pieces using the namespace feature of C++. The namespace 
keyword, similar to class, struct, enum, and union, puts the 
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names of its members in a distinct space. While the other keywords 
have additional purposes, the creation of a new name space is the 
only purpose for namespace. 

Creating a namespace 
The creation of a namespace is notably similar to the creation of a 
class: 

//: C10:MyLib.cpp 

namespace MyLib { 

  // Declarations 

} 

int main() {} ///:~ 
 

This produces a new namespace containing the enclosed 
declarations. There are significant differences from class, struct, 
union and enum, however: 

�� A namespace definition can appear only at global scope, or 
nested within another namespace. 

�� No terminating semicolon is necessary after the closing brace 
of a namespace definition. 

�� A namespace definition can be “continued” over multiple 
header files using a syntax that, for a class, would appear to 
be a redefinition: 

//: C10:Header1.h 

#ifndef HEADER1_H 

#define HEADER1_H 

namespace MyLib { 

  extern int x; 

  void f(); 

  // ... 

}  
 

#endif // HEADER1_H ///:~ 

//: C10:Header2.h 

#ifndef HEADER2_H 

#define HEADER2_H 

#include "Header1.h" 
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// Add more names to MyLib 

namespace MyLib { // NOT a redefinition! 

  extern int y; 

  void g(); 

  // ... 

}  
 

#endif // HEADER2_H ///:~ 

//: C10:Continuation.cpp 

#include "Header2.h" 

int main() {} ///:~ 
 

�� A namespace name can be aliased to another name, so you 
don’t have to type an unwieldy name created by a library 
vendor: 

//: C10:BobsSuperDuperLibrary.cpp 

namespace BobsSuperDuperLibrary { 

  class Widget { /* ... */ }; 

  class Poppit { /* ... */ }; 

  // ... 

} 

// Too much to type! I’ll alias it: 

namespace Bob = BobsSuperDuperLibrary; 

int main() {} ///:~ 
 

�� You cannot create an instance of a namespace as you can 
with a class. 

Unnamed namespaces 
Each translation unit contains an unnamed namespace that you can 
add to by saying “namespace” without an identifier: 

//: C10:UnnamedNamespaces.cpp 

namespace { 

  class Arm  { /* ... */ }; 

  class Leg  { /* ... */ }; 

  class Head { /* ... */ }; 

  class Robot { 

    Arm arm[4]; 

    Leg leg[16]; 

    Head head[3]; 

    // ... 

  } xanthan; 

10: Name Control  417 

  int i, j, k; 

} 

int main() {} ///:~ 
 

The names in this space are automatically available in that 
translation unit without qualification. It is guaranteed that an 
unnamed space is unique for each translation unit. If you put local 
names in an unnamed namespace, you don’t need to give them 
internal linkage by making them static. 

C++ deprecates the use of file statics in favor of the unnamed 
namespace. 

Friends 
You can inject a friend declaration into a namespace by declaring 
it within an enclosed class: 

//: C10:FriendInjection.cpp 

namespace Me { 

  class Us { 

    //... 

    friend void you(); 

  }; 

}  

int main() {} ///:~ 
 

Now the function you( ) is a member of the namespace Me. 

If you introduce a friend within a class in the global namespace, the 
friend is injected globally. 

Using a namespace 
You can refer to a name within a namespace in three ways: by 
specifying the name using the scope resolution operator, with a 
using directive to introduce all names in the namespace, or with a 
using declaration to introduce names one at a time. 

Scope resolution 
Any name in a namespace can be explicitly specified using the scope 
resolution operator in the same way that you can refer to the names 
within a class: 
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//: C10:ScopeResolution.cpp 

namespace X { 

  class Y { 

    static int i; 

  public: 

    void f(); 

  }; 

  class Z; 

  void func(); 

} 

int X::Y::i = 9; 

class X::Z { 

  int u, v, w; 

public: 

  Z(int i); 

  int g(); 

}; 

X::Z::Z(int i) { u = v = w = i; } 

int X::Z::g() { return u = v = w = 0; } 

void X::func() { 

  X::Z a(1); 

  a.g(); 

} 

int main(){} ///:~ 
 

Notice that the definition X::Y::i could just as easily be referring to 
a data member of a class Y nested in a class X instead of a 
namespace X. 

So far, namespaces look very much like classes. 

The using directive 
Because it can rapidly get tedious to type the full qualification for an 
identifier in a namespace, the using keyword allows you to import 
an entire namespace at once. When used in conjunction with the 
namespace keyword this is called a using directive. The using 
directive makes names appear as if they belong to the nearest 
enclosing namespace scope, so you can conveniently use the 
unqualified names. Consider a simple namespace: 

//: C10:NamespaceInt.h 

#ifndef NAMESPACEINT_H 
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#define NAMESPACEINT_H 

namespace Int { 

  enum sign { positive, negative }; 

  class Integer { 

    int i; 

    sign s; 

  public: 

    Integer(int ii = 0)  

      : i(ii), 

        s(i >= 0 ? positive : negative) 

    {} 

    sign getSign() const { return s; } 

    void setSign(sign sgn) { s = sgn; } 

    // ... 

  }; 

}  

#endif // NAMESPACEINT_H ///:~ 
 

One use of the using directive is to bring all of the names in Int 
into another namespace, leaving those names nested within the 
namespace: 

//: C10:NamespaceMath.h 

#ifndef NAMESPACEMATH_H 

#define NAMESPACEMATH_H 

#include "NamespaceInt.h" 

namespace Math { 

  using namespace Int; 

  Integer a, b; 

  Integer divide(Integer, Integer); 

  // ... 

}  

#endif // NAMESPACEMATH_H ///:~ 
 

You can also declare all of the names in Int inside a function, but 
leave those names nested within the function: 

//: C10:Arithmetic.cpp 

#include "NamespaceInt.h" 

void arithmetic() { 

  using namespace Int; 

  Integer x; 

  x.setSign(positive); 

} 
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int main(){} ///:~ 
 

Without the using directive, all the names in the namespace would 
need to be fully qualified. 

One aspect of the using directive may seem slightly 
counterintuitive at first. The visibility of the names introduced with 
a using directive is the scope in which the directive is made. But 
you can override the names from the using directive as if they’ve 
been declared globally to that scope!  

//: C10:NamespaceOverriding1.cpp 

#include "NamespaceMath.h" 

int main() { 

  using namespace Math; 

  Integer a; // Hides Math::a; 

  a.setSign(negative); 

  // Now scope resolution is necessary 

  // to select Math::a : 

  Math::a.setSign(positive); 

} ///:~ 
 

Suppose you have a second namespace that contains some of the 
names in namespace Math: 

//: C10:NamespaceOverriding2.h 

#ifndef NAMESPACEOVERRIDING2_H 

#define NAMESPACEOVERRIDING2_H 

#include "NamespaceInt.h" 

namespace Calculation { 

  using namespace Int; 

  Integer divide(Integer, Integer); 

  // ... 

}  

#endif // NAMESPACEOVERRIDING2_H ///:~ 
 

Since this namespace is also introduced with a using directive, you 
have the possibility of a collision. However, the ambiguity appears 
at the point of use of the name, not at the using directive: 

//: C10:OverridingAmbiguity.cpp 

#include "NamespaceMath.h" 

#include "NamespaceOverriding2.h" 

void s() { 

10: Name Control  421 

  using namespace Math; 

  using namespace Calculation; 

  // Everything's ok until: 

  //! divide(1, 2); // Ambiguity 

} 

int main() {} ///:~ 
 

Thus, it’s possible to write using directives to introduce a number 
of namespaces with conflicting names without ever producing an 
ambiguity. 

The using declaration 
You can inject names one at a time into the current scope with a 
using declaration. Unlike the using directive, which treats names 
as if they were declared globally to the scope, a using declaration is 
a declaration within the current scope. This means it can override 
names from a using directive: 

//: C10:UsingDeclaration.h 

#ifndef USINGDECLARATION_H 

#define USINGDECLARATION_H 

namespace U { 

  inline void f() {} 

  inline void g() {} 

} 

namespace V { 

  inline void f() {} 

  inline void g() {} 

}  

#endif // USINGDECLARATION_H ///:~ 
 

//: C10:UsingDeclaration1.cpp 

#include "UsingDeclaration.h" 

void h() { 

  using namespace U; // Using directive 

  using V::f; // Using declaration 

  f(); // Calls V::f(); 

  U::f(); // Must fully qualify to call 

} 

int main() {} ///:~ 
 

The using declaration just gives the fully specified name of the 
identifier, but no type information. This means that if the 
namespace contains a set of overloaded functions with the same 
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name, the using declaration declares all the functions in the 
overloaded set. 

You can put a using declaration anywhere a normal declaration 
can occur. A using declaration works like a normal declaration in 
all ways but one: because you don’t give an argument list, it’s 
possible for a using declaration to cause the overload of a function 
with the same argument types (which isn’t allowed with normal 
overloading). This ambiguity, however, doesn’t show up until the 
point of use, rather than the point of declaration. 

A using declaration can also appear within a namespace, and it has 
the same effect as anywhere else – that name is declared within the 
space: 

//: C10:UsingDeclaration2.cpp 

#include "UsingDeclaration.h" 

namespace Q { 

  using U::f; 

  using V::g; 

  // ... 

} 

void m() { 

  using namespace Q; 

  f(); // Calls U::f(); 

  g(); // Calls V::g(); 

} 

int main() {} ///:~ 
 

A using declaration is an alias, and it allows you to declare the 
same function in separate namespaces. If you end up re-declaring 
the same function by importing different namespaces, it’s OK – 
there won’t be any ambiguities or duplications. 

The use of namespaces 
Some of the rules above may seem a bit daunting at first, especially 
if you get the impression that you’ll be using them all the time. In 
general, however, you can get away with very simple usage of 
namespaces as long as you understand how they work. The key 
thing to remember is that when you introduce a global using 
directive (via a “using namespace” outside of any scope) you 
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have thrown open the namespace for that file. This is usually fine 
for an implementation file (a “cpp” file) because the using 
directive is only in effect until the end of the compilation of that file. 
That is, it doesn’t affect any other files, so you can adjust the control 
of the namespaces one implementation file at a time. For example, 
if you discover a name clash because of too many using directives 
in a particular implementation file, it is a simple matter to change 
that file so that it uses explicit qualifications or using declarations 
to eliminate the clash, without modifying other implementation 
files. 

Header files are a different issue. You virtually never want to 
introduce a global using directive into a header file, because that 
would mean that any other file that included your header would 
also have the namespace thrown open (and header files can include 
other header files).  

So, in header files you should either use explicit qualification or 
scoped using directives and using declarations. This is the 
practice that you will find in this book, and by following it you will 
not “pollute” the global namespace and throw yourself back into the 
pre-namespace world of C++.  

Static members in C++ 
There are times when you need a single storage space to be used by 
all objects of a class. In C, you would use a global variable, but this 
is not very safe. Global data can be modified by anyone, and its 
name can clash with other identical names in a large project. It 
would be ideal if the data could be stored as if it were global, but be 
hidden inside a class, and clearly associated with that class. 

This is accomplished with static data members inside a class. 
There is a single piece of storage for a static data member, 
regardless of how many objects of that class you create. All objects 
share the same static storage space for that data member, so it is a 
way for them to “communicate” with each other. But the static data 
belongs to the class; its name is scoped inside the class and it can be 
public, private, or protected. 
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Defining storage for static data members 
Because static data has a single piece of storage regardless of how 
many objects are created, that storage must be defined in a single 
place. The compiler will not allocate storage for you. The linker will 
report an error if a static data member is declared but not defined. 

The definition must occur outside the class (no inlining is allowed), 
and only one definition is allowed. Thus, it is common to put it in 
the implementation file for the class. The syntax sometimes gives 
people trouble, but it is actually quite logical. For example, if you 
create a static data member inside a class like this: 

class A { 

  static int i; 

public: 

  //... 

}; 
 

Then you must define storage for that static data member in the 
definition file like this: 

int A::i = 1; 
 

If you were to define an ordinary global variable, you would say 

int i = 1; 
 

but here, the scope resolution operator and the class name are used 
to specify A::i. 

Some people have trouble with the idea that A::i is private, and 
yet here’s something that seems to be manipulating it right out in 
the open. Doesn’t this break the protection mechanism? It’s a 
completely safe practice for two reasons. First, the only place this 
initialization is legal is in the definition. Indeed, if the static data 
were an object with a constructor, you would call the constructor 
instead of using the = operator. Second, once the definition has 
been made, the end-user cannot make a second definition – the 
linker will report an error. And the class creator is forced to create 
the definition or the code won’t link during testing. This ensures 
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that the definition happens only once and that it’s in the hands of 
the class creator. 

The entire initialization expression for a static member is in the 
scope of the class. For example, 

//: C10:Statinit.cpp 

// Scope of static initializer 

#include <iostream> 

using namespace std; 

 

int x = 100; 

 

class WithStatic { 

  static int x; 

  static int y; 

public: 

  void print() const { 

    cout << "WithStatic::x = " << x << endl; 

    cout << "WithStatic::y = " << y << endl; 

  } 

}; 

 

int WithStatic::x = 1; 

int WithStatic::y = x + 1; 

// WithStatic::x NOT ::x 

 

int main() { 

  WithStatic ws; 

  ws.print(); 

} ///:~ 
 

Here, the qualification WithStatic:: extends the scope of 
WithStatic to the entire definition. 

static array initialization 
Chapter 8 introduced the static const variable that allows you to 
define a constant value inside a class body. It’s also possible to 
create arrays of static objects, both const and non-const. The 
syntax is reasonably consistent: 

//: C10:StaticArray.cpp 

// Initializing static arrays in classes 
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class Values { 

  // static consts are initialized in-place: 

  static const int scSize = 100; 

  static const long scLong = 100; 

  // Automatic counting works with static arrays. 

  // Arrays, Non-integral and non-const statics  

  // must be initialized externally: 

  static const int scInts[]; 

  static const long scLongs[]; 

  static const float scTable[]; 

  static const char scLetters[]; 

  static int size; 

  static const float scFloat; 

  static float table[]; 

  static char letters[]; 

}; 

 

int Values::size = 100; 

const float Values::scFloat = 1.1; 

 

const int Values::scInts[] = { 

  99, 47, 33, 11, 7 

}; 

 

const long Values::scLongs[] = { 

  99, 47, 33, 11, 7 

}; 

 

const float Values::scTable[] = { 

  1.1, 2.2, 3.3, 4.4 

}; 

 

const char Values::scLetters[] = { 

  'a', 'b', 'c', 'd', 'e', 

  'f', 'g', 'h', 'i', 'j' 

}; 

 

float Values::table[4] = { 

  1.1, 2.2, 3.3, 4.4 

}; 

 

char Values::letters[10] = { 

  'a', 'b', 'c', 'd', 'e', 

  'f', 'g', 'h', 'i', 'j' 

}; 
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int main() { Values v; } ///:~ 
 

With static consts of integral types you can provide the definitions 
inside the class, but for everything else (including arrays of integral 
types, even if they are static const) you must provide a single 
external definition for the member. These definitions have internal 
linkage, so they can be placed in header files. The syntax for 
initializing static arrays is the same as for any aggregate, including 
automatic counting. 

You can also create static const objects of class types and arrays of 
such objects. However, you cannot initialize them using the “inline 
syntax” allowed for static consts of integral built-in types: 

//: C10:StaticObjectArrays.cpp 

// Static arrays of class objects 

class X { 

  int i; 

public: 

  X(int ii) : i(ii) {} 

}; 

 

class Stat { 

  // This doesn't work, although  

  // you might want it to: 

//!  static const X x(100); 

  // Both const and non-const static class  

  // objects must be initialized externally: 

  static X x2; 

  static X xTable2[]; 

  static const X x3; 

  static const X xTable3[]; 

}; 

 

X Stat::x2(100); 

 

X Stat::xTable2[] = { 

  X(1), X(2), X(3), X(4) 

}; 

 

const X Stat::x3(100); 
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const X Stat::xTable3[] = { 

  X(1), X(2), X(3), X(4) 

}; 

 

int main() { Stat v; } ///:~ 
 

The initialization of both const and non-const static arrays of 
class objects must be performed the same way, following the typical 
static definition syntax. 

Nested and local classes 
You can easily put static data members in classes that are nested 
inside other classes. The definition of such members is an intuitive 
and obvious extension – you simply use another level of scope 
resolution. However, you cannot have static data members inside 
local classes (a local class is a class defined inside a function). Thus, 

//: C10:Local.cpp 

// Static members & local classes 

#include <iostream> 

using namespace std; 

 

// Nested class CAN have static data members: 

class Outer { 

  class Inner { 

    static int i; // OK 

  }; 

}; 

 

int Outer::Inner::i = 47; 

 

// Local class cannot have static data members: 

void f() { 

  class Local { 

  public: 

//! static int i;  // Error 

    // (How would you define i?) 

  } x; 

}  

 

int main() { Outer x; f(); } ///:~ 
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You can see the immediate problem with a static member in a local 
class: How do you describe the data member at file scope in order to 
define it? In practice, local classes are used very rarely. 

static member functions 
You can also create static member functions that, like static data 
members, work for the class as a whole rather than for a particular 
object of a class. Instead of making a global function that lives in 
and “pollutes” the global or local namespace, you bring the function 
inside the class. When you create a static member function, you 
are expressing an association with a particular class. 

You can call a static member function in the ordinary way, with the 
dot or the arrow, in association with an object. However, it’s more 
typical to call a static member function by itself, without any 
specific object, using the scope-resolution operator, like this: 

//: C10:SimpleStaticMemberFunction.cpp  

class X { 

public: 

  static void f(){}; 

}; 

 

int main() { 

  X::f(); 

} ///:~ 
 

When you see static member functions in a class, remember that 
the designer intended that function to be conceptually associated 
with the class as a whole. 

A static member function cannot access ordinary data members, 
only static data members. It can call only other static member 
functions. Normally, the address of the current object (this) is 
quietly passed in when any member function is called, but a static 
member has no this, which is the reason it cannot access ordinary 
members. Thus, you get the tiny increase in speed afforded by a 
global function because a static member function doesn’t have the 
extra overhead of passing this. At the same time you get the 
benefits of having the function inside the class. 
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For data members, static indicates that only one piece of storage 
for member data exists for all objects of a class. This parallels the 
use of static to define objects inside a function to mean that only 
one copy of a local variable is used for all calls of that function. 

Here’s an example showing static data members and static 
member functions used together: 

//: C10:StaticMemberFunctions.cpp 

class X { 

  int i; 

  static int j; 

public: 

  X(int ii = 0) : i(ii) { 

     // Non-static member function can access 

     // static member function or data: 

    j = i; 

  } 

  int val() const { return i; } 

  static int incr() { 

    //! i++; // Error: static member function 

    // cannot access non-static member data 

    return ++j; 

  } 

  static int f() { 

    //! val(); // Error: static member function 

    // cannot access non-static member function 

    return incr(); // OK -- calls static 

  } 

}; 

 

int X::j = 0; 

 

int main() { 

  X x; 

  X* xp = &x; 

  x.f(); 

  xp->f(); 

  X::f(); // Only works with static members 

} ///:~ 
 

Because they have no this pointer, static member functions can 
neither access non-static data members nor call non-static 
member functions. 
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Notice in main( ) that a static member can be selected using the 
usual dot or arrow syntax, associating that function with an object, 
but also with no object (because a static member is associated with 
a class, not a particular object), using the class name and scope 
resolution operator. 

Here’s an interesting feature: Because of the way initialization 
happens for static member objects, you can put a static data 
member of the same class inside that class. Here’s an example that 
allows only a single object of type Egg to exist by making the 
constructor private. You can access that object, but you can’t create 
any new Egg objects: 

//: C10:Singleton.cpp 

// Static member of same type, ensures that 

// only one object of this type exists. 

// Also referred to as the "singleton" pattern. 

#include <iostream> 

using namespace std; 

 

class Egg { 

  static Egg e; 

  int i; 

  Egg(int ii) : i(ii) {} 

  Egg(const Egg&); // Prevent copy-construction 

public: 

  static Egg* instance() { return &e; } 

  int val() const { return i; } 

}; 

 

Egg Egg::e(47); 

 

int main() { 

//!  Egg x(1); // Error -- can't create an Egg 

  // You can access the single instance: 

  cout << Egg::instance()->val() << endl; 

} ///:~ 
 

The initialization for E happens after the class declaration is 
complete, so the compiler has all the information it needs to 
allocate storage and make the constructor call. 
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To completely prevent the creation of any other objects, something 
else has been added: a second private constructor called the copy-
constructor. At this point in the book, you cannot know why this is 
necessary since the copy constructor will not be introduced until the 
next chapter. However, as a sneak preview, if you were to remove 
the copy-constructor defined in the example above, you’d be able to 
create an Egg object like this: 

Egg e = *Egg::instance(); 

Egg e2(*Egg::instance()); 
 

Both of these use the copy-constructor, so to seal off that possibility 
the copy-constructor is declared as private (no definition is 
necessary because it never gets called). A large portion of the next 
chapter is a discussion of the copy-constructor so it should become 
clear to you then. 

Static initialization dependency 
Within a specific translation unit, the order of initialization of static 
objects is guaranteed to be the order in which the object definitions 
appear in that translation unit. The order of destruction is 
guaranteed to be the reverse of the order of initialization. 

However, there is no guarantee concerning the order of 
initialization of static objects across translation units, and the 
language provides no way to specify this order. This can cause 
significant problems. As an example of an instant disaster (which 
will halt primitive operating systems and kill the process on 
sophisticated ones), if one file contains 

// First file 

#include <fstream> 

std::ofstream out("out.txt"); 
 

and another file uses the out object in one of its initializers 

// Second file 

#include <fstream> 

extern std::ofstream out; 

class Oof { 
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public: 

  Oof() { std::out << "ouch"; } 

} oof; 
 

the program may work, and it may not. If the programming 
environment builds the program so that the first file is initialized 
before the second file, then there will be no problem. However, if 
the second file is initialized before the first, the constructor for Oof 
relies upon the existence of out, which hasn’t been constructed yet 
and this causes chaos.  

This problem only occurs with static object initializers that depend 
on each other. The statics in a translation unit are initialized before 
the first invocation of a function in that unit – but it could be after 
main( ). You can’t be sure about the order of initialization of static 
objects if they’re in different files. 

A subtler example can be found in the ARM.1 In one file you have at 
the global scope: 

extern int y; 

int x = y + 1; 
 

and in a second file you have at the global scope: 

extern int x; 

int y = x + 1; 
 

For all static objects, the linking-loading mechanism guarantees a 
static initialization to zero before the dynamic initialization 
specified by the programmer takes place. In the previous example, 
zeroing of the storage occupied by the fstream out object has no 
special meaning, so it is truly undefined until the constructor is 
called. However, with built-in types, initialization to zero does have 
meaning, and if the files are initialized in the order they are shown 
above, y begins as statically initialized to zero, so x becomes one, 
and y is dynamically initialized to two. However, if the files are 

                                                   
1Bjarne Stroustrup and Margaret Ellis, The Annotated C++ Reference Manual, 
Addison-Wesley, 1990, pp. 20-21. 
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initialized in the opposite order, x is statically initialized to zero, y 
is dynamically initialized to one, and x then becomes two. 

Programmers must be aware of this because they can create a 
program with static initialization dependencies and get it working 
on one platform, but move it to another compiling environment 
where it suddenly, mysteriously, doesn’t work. 

What to do 
There are three approaches to dealing with this problem: 

1. Don’t do it. Avoiding static initialization dependencies is the 
best solution. 

2. If you must do it, put the critical static object definitions in a 
single file, so you can portably control their initialization by 
putting them in the correct order. 

3. If you’re convinced it’s unavoidable to scatter static objects 
across translation units – as in the case of a library, where 
you can’t control the programmer who uses it – there are two 
programmatic techniques to solve the problem. 

Technique one 
This technique was pioneered by Jerry Schwarz while creating the 
iostream library (because the definitions for cin, cout, and cerr 
are static and live in a separate file). It’s actually inferior to the 
second technique but it’s been around a long time and so you may 
come across code that uses it; thus it’s important that you 
understand how it works. 

This technique requires an additional class in your library header 
file. This class is responsible for the dynamic initialization of your 
library’s static objects. Here is a simple example: 

//: C10:Initializer.h 

// Static initialization technique 

#ifndef INITIALIZER_H 

#define INITIALIZER_H 

#include <iostream> 
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extern int x; // Declarations, not definitions 

extern int y; 

 

class Initializer { 

  static int initCount; 

public: 

  Initializer() { 

    std::cout << "Initializer()" << std::endl; 

    // Initialize first time only 

    if(initCount++ == 0) { 

      std::cout << "performing initialization" 

                << std::endl; 

      x = 100; 

      y = 200; 

    } 

  } 

  ~Initializer() { 

    std::cout << "~Initializer()" << std::endl; 

    // Clean up last time only 

    if(--initCount == 0) { 

      std::cout << "performing cleanup"  

                << std::endl; 

      // Any necessary cleanup here 

    } 

  } 

}; 

 

// The following creates one object in each 

// file where Initializer.h is included, but that 

// object is only visible within that file: 

static Initializer init; 

#endif // INITIALIZER_H ///:~ 
 

The declarations for x and y announce only that these objects exist, 
but they don’t allocate storage for the objects. However, the 
definition for the Initializer init allocates storage for that object 
in every file where the header is included. But because the name is 
static (controlling visibility this time, not the way storage is 
allocated; storage is at file scope by default), it is visible only within 
that translation unit, so the linker will not complain about multiple 
definition errors. 

Here is the file containing the definitions for x, y, and initCount: 
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//: C10:InitializerDefs.cpp {O} 

// Definitions for Initializer.h 

#include "Initializer.h" 

// Static initialization will force 

// all these values to zero: 

int x; 

int y; 

int Initializer::initCount; 

///:~ 
 

(Of course, a file static instance of init is also placed in this file 
when the header is included.) Suppose that two other files are 
created by the library user: 

//: C10:Initializer.cpp {O} 

// Static initialization 

#include "Initializer.h" 

///:~ 
 

and 

//: C10:Initializer2.cpp 

//{L} InitializerDefs Initializer 

// Static initialization 

#include "Initializer.h" 

using namespace std; 

 

int main() { 

  cout << "inside main()" << endl; 

  cout << "leaving main()" << endl; 

} ///:~ 
 

Now it doesn’t matter which translation unit is initialized first. The 
first time a translation unit containing Initializer.h is initialized, 
initCount will be zero so the initialization will be performed. (This 
depends heavily on the fact that the static storage area is set to zero 
before any dynamic initialization takes place.) For all the rest of the 
translation units, initCount will be nonzero and the initialization 
will be skipped. Cleanup happens in the reverse order, and 
~Initializer( ) ensures that it will happen only once. 

This example used built-in types as the global static objects. The 
technique also works with classes, but those objects must then be 
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dynamically initialized by the Initializer class. One way to do this 
is to create the classes without constructors and destructors, but 
instead with initialization and cleanup member functions using 
different names. A more common approach, however, is to have 
pointers to objects and to create them using new inside 
Initializer( ). 

Technique two 
Long after technique one was in use, someone (I don’t know who) 
came up with the technique explained in this section, which is much 
simpler and cleaner than technique one. The fact that it took so long 
to discover is a tribute to the complexity of C++. 

This technique relies on the fact that static objects inside functions 
are initialized the first time (only) that the function is called. Keep 
in mind that the problem we’re really trying to solve here is not 
when the static objects are initialized (that can be controlled 
separately) but rather making sure that the initialization happens in 
the proper order. 

This technique is very neat and clever. For any initialization 
dependency, you place a static object inside a function that returns 
a reference to that object. This way, the only way you can access the 
static object is by calling the function, and if that object needs to 
access other static objects on which it is dependent it must call their 
functions. And the first time a function is called, it forces the 
initialization to take place. The order of static initialization is 
guaranteed to be correct because of the design of the code, not 
because of an arbitrary order established by the linker. 

To set up an example, here are two classes that depend on each 
other. The first one contains a bool that is initialized only by the 
constructor, so you can tell if the constructor has been called for a 
static instance of the class (the static storage area is initialized to 
zero at program startup, which produces a false value for the bool 
if the constructor has not been called): 

//: C10:Dependency1.h 

#ifndef DEPENDENCY1_H 

#define DEPENDENCY1_H 
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#include <iostream> 

 

class Dependency1 { 

  bool init; 

public: 

  Dependency1() : init(true) { 

    std::cout << "Dependency1 construction"  

              << std::endl; 

  } 

  void print() const { 

    std::cout << "Dependency1 init: "  

              << init << std::endl; 

  } 

}; 

#endif // DEPENDENCY1_H ///:~ 
 

The constructor also announces when it is being called, and you can 
print( ) the state of the object to find out if it has been initialized. 

The second class is initialized from an object of the first class, which 
is what will cause the dependency: 

//: C10:Dependency2.h 

#ifndef DEPENDENCY2_H 

#define DEPENDENCY2_H 

#include "Dependency1.h" 

 

class Dependency2 { 

  Dependency1 d1; 

public: 

  Dependency2(const Dependency1& dep1): d1(dep1){ 

    std::cout << "Dependency2 construction "; 

    print(); 

  } 

  void print() const { d1.print(); } 

}; 

#endif // DEPENDENCY2_H ///:~ 
 

The constructor announces itself and prints the state of the d1 
object so you can see if it has been initialized by the time the 
constructor is called. 

To demonstrate what can go wrong, the following file first puts the 
static object definitions in the wrong order, as they would occur if 
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the linker happened to initialize the Dependency2 object before 
the Dependency1 object. Then the order is reversed to show how 
it works correctly if the order happens to be “right.” Lastly, 
technique two is demonstrated. 

To provide more readable output, the function separator( ) is 
created. The trick is that you can’t call a function globally unless 
that function is being used to perform the initialization of a 
variable, so separator( ) returns a dummy value that is used to 
initialize a couple of global variables. 

//: C10:Technique2.cpp 

#include "Dependency2.h" 

using namespace std; 

 

// Returns a value so it can be called as 

// a global initializer: 

int separator() { 

  cout << "---------------------" << endl; 

  return 1; 

} 

 

// Simulate the dependency problem: 

extern Dependency1 dep1; 

Dependency2 dep2(dep1); 

Dependency1 dep1; 

int x1 = separator(); 

 

// But if it happens in this order it works OK: 

Dependency1 dep1b; 

Dependency2 dep2b(dep1b); 

int x2 = separator(); 

 

// Wrapping static objects in functions succeeds 

Dependency1& d1() { 

  static Dependency1 dep1; 

  return dep1; 

} 

 

Dependency2& d2() { 

  static Dependency2 dep2(d1()); 

  return dep2; 

} 
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int main() { 

  Dependency2& dep2 = d2(); 

} ///:~ 
 

The functions d1( ) and d2( ) wrap static instances of 
Dependency1 and Dependency2 objects. Now, the only way you 
can get to the static objects is by calling the functions and that 
forces static initialization on the first function call. This means that 
initialization is guaranteed to be correct, which you’ll see when you 
run the program and look at the output. 

Here’s how you would actually organize the code to use the 
technique. Ordinarily, the static objects would be defined in 
separate files (because you’re forced to for some reason; remember 
that defining the static objects in separate files is what causes the 
problem), so instead you define the wrapping functions in separate 
files. But they’ll need to be declared in header files: 

//: C10:Dependency1StatFun.h 

#ifndef DEPENDENCY1STATFUN_H 

#define DEPENDENCY1STATFUN_H 

#include "Dependency1.h" 

extern Dependency1& d1(); 

#endif // DEPENDENCY1STATFUN_H ///:~ 
 

Actually, the “extern” is redundant for the function declaration. 
Here’s the second header file: 

//: C10:Dependency2StatFun.h 

#ifndef DEPENDENCY2STATFUN_H 

#define DEPENDENCY2STATFUN_H 

#include "Dependency2.h" 

extern Dependency2& d2(); 

#endif // DEPENDENCY2STATFUN_H ///:~ 
 

Now, in the implementation files where you would previously have 
placed the static object definitions, you instead place the wrapping 
function definitions: 

//: C10:Dependency1StatFun.cpp {O} 

#include "Dependency1StatFun.h" 

Dependency1& d1() { 

10: Name Control  441 

  static Dependency1 dep1; 

  return dep1; 

} ///:~ 
 

Presumably, other code might also be placed in these files. Here’s 
the other file: 

//: C10:Dependency2StatFun.cpp {O} 

#include "Dependency1StatFun.h" 

#include "Dependency2StatFun.h" 

Dependency2& d2() { 

  static Dependency2 dep2(d1()); 

  return dep2; 

} ///:~ 
 

So now there are two files that could be linked in any order and if 
they contained ordinary static objects could produce any order of 
initialization. But since they contain the wrapping functions, there’s 
no threat of incorrect initialization: 

//: C10:Technique2b.cpp 

//{L} Dependency1StatFun Dependency2StatFun 

#include "Dependency2StatFun.h" 

int main() { d2(); } ///:~ 
 

When you run this program you’ll see that the initialization of the 
Dependency1 static object always happens before the 
initialization of the Dependency2 static object. You can also see 
that this is a much simpler approach than technique one. 

You might be tempted to write d1( ) and d2( ) as inline functions 
inside their respective header files, but this is something you must 
definitely not do. An inline function can be duplicated in every file 
in which it appears – and this duplication includes the static object 
definition. Because inline functions automatically default to 
internal linkage, this would result in having multiple static objects 
across the various translation units, which would certainly cause 
problems. So you must ensure that there is only one definition of 
each wrapping function, and this means not making the wrapping 
functions inline. 
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Alternate linkage specifications 
What happens if you’re writing a program in C++ and you want to 
use a C library? If you make the C function declaration, 

float f(int a, char b); 
 

the C++ compiler will decorate this name to something like 
_f_int_char to support function overloading (and type-safe 
linkage). However, the C compiler that compiled your C library has 
most definitely not decorated the name, so its internal name will be 
_f. Thus, the linker will not be able to resolve your C++ calls to f( ). 

The escape mechanism provided in C++ is the alternate linkage 
specification, which was produced in the language by overloading 
the extern keyword. The extern is followed by a string that 
specifies the linkage you want for the declaration, followed by the 
declaration: 

extern "C" float f(int a, char b); 
 

This tells the compiler to give C linkage to f( ) so that the compiler 
doesn’t decorate the name. The only two types of linkage 
specifications supported by the standard are “C” and “C++,” but 
compiler vendors have the option of supporting other languages in 
the same way. 

If you have a group of declarations with alternate linkage, put them 
inside braces, like this: 

extern "C" { 

  float f(int a, char b); 

  double d(int a, char b); 

} 
 

Or, for a header file, 

extern "C" { 

#include "Myheader.h" 

} 
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Most C++ compiler vendors handle the alternate linkage 
specifications inside their header files that work with both C and 
C++, so you don’t have to worry about it. 

Summary 
The static keyword can be confusing because in some situations it 
controls the location of storage, and in others it controls visibility 
and linkage of a name. 

With the introduction of C++ namespaces, you have an improved 
and more flexible alternative to control the proliferation of names 
in large projects. 

The use of static inside classes is one more way to control names in 
a program. The names do not clash with global names, and the 
visibility and access is kept within the program, giving you greater 
control in the maintenance of your code. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Create a function with a static variable that is a pointer 
(with a default argument of zero). When the caller 
provides a value for this argument it is used to point at 
the beginning of an array of int. If you call the function 
with a zero argument (using the default argument), the 
function returns the next value in the array, until it sees a 
“-1” value in the array (to act as an end-of-array 
indicator). Exercise this function in main( ). 

2.  Create a function that returns the next value in a 
Fibonacci sequence every time you call it. Add an 
argument that is a bool with a default value of false such 
that when you give the argument with true it “resets” the 
function to the beginning of the Fibonacci sequence. 
Exercise this function in main( ). 
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3.  Create a class that holds an array of ints. Set the size of 
the array using static const int inside the class. Add a 
const int variable, and initialize it in the constructor 
initializer list; make the constructor inline. Add a static 
int member variable and initialize it to a specific value. 
Add a static member function that prints the static data 
member. Add an inline member function called print( ) 
to print out all the values in the array and to call the 
static member function. Exercise this class in main( ). 

4.  Create a class called Monitor that keeps track of the 
number of times that its incident( ) member function 
has been called. Add a print( ) member function that 
displays the number of incidents. Now create a global 
function (not a member function) containing a static 
Monitor object. Each time you call the function it should 
call the print( ) member function to display the incident 
count. Exercise the function in main( ). 

5.  Modify the Monitor class from Exercise 4 so that you 
can decrement( ) the incident count. Make a class 
Monitor2 that takes as a constructor argument a pointer 
to a Monitor1, and which stores that pointer and calls 
incident( ) and print( ). In the destructor for 
Monitor2, call decrement( ) and print( ). Now make 
a static object of Monitor2 inside a function. Inside 
main( ), experiment with calling the function and not 
calling the function to see what happens with the 
destructor of Monitor2. 

6.  Make a global object of Monitor2 and see what happens. 

7.  Create a class with a destructor that prints a message and 
then calls exit( ). Create a global object of this class and 
see what happens. 

8.  In StaticDestructors.cpp, experiment with the order 
of constructor and destructor calls by calling f( ) and g( )  
inside main( ) in different orders. Does your compiler 
get it right? 

9.  In StaticDestructors.cpp, test the default error 
handling of your implementation by turning the original 
definition of out into an extern declaration and putting 
the actual definition after the definition of a (whose Obj 
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constructor sends information to out). Make sure there’s 
nothing else important running on your machine when 
you run the program or that your machine will handle 
faults robustly. 

10.  Prove that file static variables in header files don’t clash 
with each other when included in more than one cpp file. 

11.  Create a simple class containing an int, a constructor that 
initializes the int from its argument, a member function 
to set the int from its argument, and a print( ) function 
that prints the int. Put your class in a header file, and 
include the header file in two cpp files. In one cpp file 
make an instance of your class, and in the other declare 
that identifier extern and test it inside main( ). 
Remember, you’ll have to link the two object files or else 
the linker won’t find the object. 

12.  Make the instance of the object in Exercise 11 static and 
verify that it cannot be found by the linker because of 
this. 

13.  Declare a function in a header file. Define the function in 
one cpp file and call it inside main( ) in a second cpp 
file. Compile and verify that it works. Now change the 
function definition so that it is static and verify that the 
linker cannot find it. 

14.  Modify Volatile.cpp from Chapter 8 to make 
comm::isr( ) something that could actually work as an 
interrupt service routine. Hint: an interrupt service 
routine doesn’t take any arguments. 

15.  Write and compile a simple program that uses the auto 
and register keywords. 

16.  Create a header file containing a namespace. Inside the 
namespace create several function declarations. Now 
create a second header file that includes the first one and 
continues the namespace, adding several more function 
declarations. Now create a cpp file that includes the 
second header file. Alias your namespace to another 
(shorter) name. Inside a function definition, call one of 
your functions using scope resolution. Inside a separate 
function definition, write a using directive to introduce 
your namespace into that function scope, and show that 
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you don’t need scope resolution to call the functions from 
your namespace. 

17.  Create a header file with an unnamed namespace. 
Include the header in two separate cpp files and show 
that an unnamed space is unique for each translation 
unit. 

18.  Using the header file from Exercise 17, show that the 
names in an unnamed namespace are automatically 
available in a translation unit without qualification. 

19.  Modify FriendInjection.cpp to add a definition for the 
friend function and to call the function inside main( ). 

20.  In Arithmetic.cpp, demonstrate that the using 
directive does not extend outside the function in which 
the directive was made. 

21.  Repair the problem in OverridingAmbiguity.cpp, first 
with scope resolution, then instead with a using 
declaration that forces the compiler to choose one of the 
identical function names. 

22.  In two header files, create two namespaces, each 
containing a class (with all inline definitions) with a name 
identical to that in the other namespace. Create a cpp file 
that includes both header files. Create a function, and 
inside the function use the using directive to introduce 
both namespaces. Try creating an object of the class and 
see what happens. Make the using directives global 
(outside of the function) to see if it makes any difference. 
Repair the problem using scope resolution, and create 
objects of both classes. 

23.  Repair the problem in Exercise 22 with a using 
declaration that forces the compiler to choose one of the 
identical class names. 

24.  Extract the namespace declarations in 
BobsSuperDuperLibrary.cpp and 
UnnamedNamespaces.cpp and put them in separate 
header files, giving the unnamed namespace a name in 
the process. In a third header file create a new namespace 
that combines the elements of the other two namespaces 
with using declarations. In main( ), introduce your new 

10: Name Control  447 

namespace with a using directive and access all the 
elements of your namespace. 

25.  Create a header file that includes <string> and 
<iostream> but does not use any using directives or 
using declarations. Add “include guards” as you’ve seen 
in the header files in this book. Create a class with all 
inline functions that contains a string member, with a 
constructor that initializes that string from its argument 
and a print( ) function that displays the string. Create a 
cpp file and exercise your class in main( ). 

26.  Create a class containing a static double and long. 
Write a static member function that prints out the 
values. 

27.  Create a class containing an int, a constructor that 
initializes the int from its argument, and a print( ) 
function to display the int. Now create a second class that 
contains a static object of the first one. Add a static 
member function that calls the static object’s print( ) 
function. Exercise your class in main( ). 

28.  Create a class containing both a const and a non-const 
static array of int. Write static methods to print out the 
arrays. Exercise your class in main( ). 

29.  Create a class containing a string, with a constructor 
that initializes the string from its argument, and a 
print( ) function to display the string. Create another 
class that contains both const and non-const static 
arrays of objects of the first class, and static methods to 
print out these arrays. Exercise this second class in 
main( ).  

30.  Create a struct that contains an int and a default 
constructor that initializes the int to zero. Make this 
struct local to a function. Inside that function, create an 
array of objects of your struct and demonstrate that each 
int in the array has automatically been initialized to zero. 

31.  Create a class that represents a printer connection, and 
that only allows you to have one printer. 

32.  In a header file, create a class Mirror that contains two 
data members: a pointer to a Mirror object and a bool. 
Give it two constructors: the default constructor 
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initializes the bool to true and the Mirror pointer to 
zero. The second constructor takes as an argument a 
pointer to a Mirror object, which it assigns to the 
object’s internal pointer; it sets the bool to false. Add a 
member function test( ): if the object’s pointer is 
nonzero, it returns the value of test( ) called through the 
pointer. If the pointer is zero, it returns the bool. Now 
create five cpp files, each of which includes the Mirror 
header. The first cpp file defines a global Mirror object 
using the default constructor. The second file declares the 
object in the first file as extern, and defines a global 
Mirror object using the second constructor, with a 
pointer to the first object. Keep doing this until you reach 
the last file, which will also contain a global object 
definition. In that file, main( ) should call the test( ) 
function and report the result. If the result is true, find 
out how to change the linking order for your linker and 
change it until the result is false. 

33.  Repair the problem in Exercise 32 using technique one 
shown in this book. 

34.  Repair the problem in Exercise 32 using technique two 
shown in this book. 

35.  Without including a header file, declare the function 
puts( ) from the Standard C Library. Call this function 
from main( ). 
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the Copy-Constructor 
References are like constant pointers that are 

automatically dereferenced by the compiler.  
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Although references also exist in Pascal, the C++ version was taken 
from the Algol language. They are essential in C++ to support the 
syntax of operator overloading (see Chapter 12), but they are also a 
general convenience to control the way arguments are passed into 
and out of functions. 

This chapter will first look briefly at the differences between 
pointers in C and C++, then introduce references. But the bulk of 
the chapter will delve into a rather confusing issue for the new C++ 
programmer: the copy-constructor, a special constructor (requiring 
references) that makes a new object from an existing object of the 
same type. The copy-constructor is used by the compiler to pass and 
return objects by value into and out of functions. 

Finally, the somewhat obscure C++ pointer-to-member feature is 
illuminated. 

Pointers in C++ 
The most important difference between pointers in C and those in 
C++ is that C++ is a more strongly typed language. This stands out 
where void* is concerned. C doesn’t let you casually assign a 
pointer of one type to another, but it does allow you to accomplish 
this through a void*. Thus, 

bird* b; 

rock* r; 

void* v; 

v = r; 

b = v; 
 

Because this “feature” of C allows you to quietly treat any type like 
any other type, it leaves a big hole in the type system. C++ doesn’t 
allow this; the compiler gives you an error message, and if you 
really want to treat one type as another, you must make it explicit, 
both to the compiler and to the reader, using a cast. (Chapter 3 
introduced C++’s improved “explicit” casting syntax.) 

11: References & the Copy-Constructor 451 

References in C++ 
A reference (&) is like a constant pointer that is automatically 
dereferenced. It is usually used for function argument lists and 
function return values. But you can also make a free-standing 
reference. For example, 

//: C11:FreeStandingReferences.cpp 

#include <iostream> 

using namespace std; 

 

// Ordinary free-standing reference: 

int y; 

int& r = y; 

// When a reference is created, it must  

// be initialized to a live object.  

// However, you can also say: 

const int& q = 12;  // (1) 

// References are tied to someone else's storage: 

int x = 0;          // (2) 

int& a = x;         // (3) 

int main() { 

  cout << "x = " << x << ", a = " << a << endl; 

  a++; 

  cout << "x = " << x << ", a = " << a << endl; 

} ///:~ 
 

In line (1), the compiler allocates a piece of storage, initializes it 
with the value 12, and ties the reference to that piece of storage. The 
point is that any reference must be tied to someone else’s piece of 
storage. When you access a reference, you’re accessing that storage. 
Thus, if you write lines like (2) and (3), then incrementing a is 
actually incrementing x, as is shown in main( ). Again, the easiest 
way to think about a reference is as a fancy pointer. One advantage 
of this “pointer” is that you never have to wonder whether it’s been 
initialized (the compiler enforces it) and how to dereference it (the 
compiler does it). 

There are certain rules when using references: 

1. A reference must be initialized when it is created. (Pointers 
can be initialized at any time.) 



452 Thinking in C++ www.BruceEckel.com 

2. Once a reference is initialized to an object, it cannot be 
changed to refer to another object. (Pointers can be pointed 
to another object at any time.) 

3. You cannot have NULL references. You must always be able 
to assume that a reference is connected to a legitimate piece 
of storage. 

References in functions 
The most common place you’ll see references is as function 
arguments and return values. When a reference is used as a 
function argument, any modification to the reference inside the 
function will cause changes to the argument outside the function. 
Of course, you could do the same thing by passing a pointer, but a 
reference has much cleaner syntax. (You can think of a reference as 
nothing more than a syntax convenience, if you want.) 

If you return a reference from a function, you must take the same 
care as if you return a pointer from a function. Whatever the 
reference is connected to shouldn’t go away when the function 
returns, otherwise you’ll be referring to unknown memory. 

Here’s an example: 

//: C11:Reference.cpp 

// Simple C++ references 

 

int* f(int* x) { 

  (*x)++; 

  return x; // Safe, x is outside this scope 

} 

 

int& g(int& x) { 

  x++; // Same effect as in f() 

  return x; // Safe, outside this scope 

} 

 

int& h() { 

  int q; 

//!  return q;  // Error 

  static int x; 
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  return x; // Safe, x lives outside this scope 

} 

 

int main() { 

  int a = 0; 

  f(&a); // Ugly (but explicit) 

  g(a);  // Clean (but hidden) 

} ///:~ 
 

The call to f( ) doesn’t have the convenience and cleanliness of 
using references, but it’s clear that an address is being passed. In 
the call to g( ), an address is being passed (via a reference), but you 
don’t see it. 

const references 
The reference argument in Reference.cpp works only when the 
argument is a non-const object. If it is a const object, the function 
g( ) will not accept the argument, which is actually a good thing, 
because the function does modify the outside argument. If you 
know the function will respect the constness of an object, making 
the argument a const reference will allow the function to be used in 
all situations. This means that, for built-in types, the function will 
not modify the argument, and for user-defined types, the function 
will call only const member functions, and won’t modify any 
public data members. 

The use of const references in function arguments is especially 
important because your function may receive a temporary object. 
This might have been created as a return value of another function 
or explicitly by the user of your function. Temporary objects are 
always const, so if you don’t use a const reference, that argument 
won’t be accepted by the compiler. As a very simple example, 

//: C11:ConstReferenceArguments.cpp 

// Passing references as const 

 

void f(int&) {} 

void g(const int&) {} 

 

int main() { 

//!  f(1); // Error 

  g(1); 
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} ///:~ 
 

The call to f(1) causes a compile-time error because the compiler 
must first create a reference. It does so by allocating storage for an 
int, initializing it to one and producing the address to bind to the 
reference. The storage must be a const because changing it would 
make no sense – you can never get your hands on it again. With all 
temporary objects you must make the same assumption: that 
they’re inaccessible. It’s valuable for the compiler to tell you when 
you’re changing such data because the result would be lost 
information. 

Pointer references 
In C, if you want to modify the contents of the pointer rather than 
what it points to, your function declaration looks like:  

void f(int**); 
 

and you’d have to take the address of the pointer when passing it in: 

int i = 47; 

int* ip = &i; 

f(&ip); 
 

With references in C++, the syntax is cleaner. The function 
argument becomes a reference to a pointer, and you no longer have 
to take the address of that pointer. Thus, 

//: C11:ReferenceToPointer.cpp 

#include <iostream> 

using namespace std; 

 

void increment(int*& i) { i++; } 

 

int main() { 

  int* i = 0; 

  cout << "i = " << i << endl; 

  increment(i); 

  cout << "i = " << i << endl; 

} ///:~ 
 

By running this program, you’ll prove to yourself that the pointer is 
incremented, not what it points to. 
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Argument-passing guidelines 
Your normal habit when passing an argument to a function should 
be to pass by const reference. Although at first this may seem like 
only an efficiency concern (and you normally don’t want to concern 
yourself with efficiency tuning while you’re designing and 
assembling your program), there’s more at stake: as you’ll see in the 
remainder of the chapter, a copy-constructor is required to pass an 
object by value, and this isn’t always available. 

The efficiency savings can be substantial for such a simple habit: to 
pass an argument by value requires a constructor and destructor 
call, but if you’re not going to modify the argument then passing by 
const reference only needs an address pushed on the stack. 

In fact, virtually the only time passing an address isn’t preferable is 
when you’re going to do such damage to an object that passing by 
value is the only safe approach (rather than modifying the outside 
object, something the caller doesn’t usually expect). This is the 
subject of the next section. 

The copy-constructor 
Now that you understand the basics of the reference in C++, you’re 
ready to tackle one of the more confusing concepts in the language: 
the copy-constructor, often called X(X&) (“X of X ref”). This 
constructor is essential to control passing and returning of user-
defined types by value during function calls. It’s so important, in 
fact, that the compiler will automatically synthesize a copy-
constructor if you don’t provide one yourself, as you will see. 

Passing & returning by value 
To understand the need for the copy-constructor, consider the way 
C handles passing and returning variables by value during function 
calls. If you declare a function and make a function call, 

int f(int x, char c); 

int g = f(a, b); 
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how does the compiler know how to pass and return those 
variables? It just knows! The range of the types it must deal with is 
so small – char, int, float, double, and their variations – that this 
information is built into the compiler.  

If you figure out how to generate assembly code with your compiler 
and determine the statements generated by the function call to f( ), 
you’ll get the equivalent of: 

push  b 

push  a 

call  f() 

add  sp,4 

mov  g, register a 
 

This code has been cleaned up significantly to make it generic; the 
expressions for b and a will be different depending on whether the 
variables are global (in which case they will be _b and _a) or local 
(the compiler will index them off the stack pointer). This is also true 
for the expression for g. The appearance of the call to f( ) will 
depend on your name-decoration scheme, and “register a” depends 
on how the CPU registers are named within your assembler. The 
logic behind the code, however, will remain the same. 

In C and C++, arguments are first pushed on the stack from right to 
left, then the function call is made. The calling code is responsible 
for cleaning the arguments off the stack (which accounts for the 
add sp,4). But notice that to pass the arguments by value, the 
compiler simply pushes copies on the stack – it knows how big they 
are and that pushing those arguments makes accurate copies of 
them. 

The return value of f( ) is placed in a register. Again, the compiler 
knows everything there is to know about the return value type 
because that type is built into the language, so the compiler can 
return it by placing it in a register. With the primitive data types in 
C, the simple act of copying the bits of the value is equivalent to 
copying the object. 
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Passing & returning large objects 
But now consider user-defined types. If you create a class and you 
want to pass an object of that class by value, how is the compiler 
supposed to know what to do? This is not a type built into the 
compiler; it’s a type you have created. 

To investigate this, you can start with a simple structure that is 
clearly too large to return in registers: 

//: C11:PassingBigStructures.cpp 

struct Big { 

  char buf[100]; 

  int i; 

  long d; 

} B, B2; 

 

Big bigfun(Big b) { 

  b.i = 100; // Do something to the argument 

  return b; 

} 

 

int main() { 

  B2 = bigfun(B); 

} ///:~ 
 

Decoding the assembly output is a little more complicated here 
because most compilers use “helper” functions instead of putting all 
functionality inline. In main( ), the call to bigfun( ) starts as you 
might guess – the entire contents of B is pushed on the stack. 
(Here, you might see some compilers load registers with the 
address of the Big and its size, then call a helper function to push 
the Big onto the stack.) 

In the previous code fragment, pushing the arguments onto the 
stack was all that was required before making the function call. In 
PassingBigStructures.cpp, however, you’ll see an additional 
action: the address of B2 is pushed before making the call, even 
though it’s obviously not an argument. To comprehend what’s going 
on here, you need to understand the constraints on the compiler 
when it’s making a function call. 
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Function-call stack frame 
When the compiler generates code for a function call, it first pushes 
all the arguments on the stack, then makes the call. Inside the 
function, code is generated to move the stack pointer down even 
farther to provide storage for the function’s local variables. (“Down” 
is relative here; your machine may increment or decrement the 
stack pointer during a push.) But during the assembly-language 
CALL, the CPU pushes the address in the program code where the 
function call came from, so the assembly-language RETURN can 
use that address to return to the calling point. This address is of 
course sacred, because without it your program will get completely 
lost. Here’s what the stack frame looks like after the CALL and the 
allocation of local variable storage in the function: 

Function arguments

Return address

Local variables

 

The code generated for the rest of the function expects the memory 
to be laid out exactly this way, so that it can carefully pick from the 
function arguments and local variables without touching the return 
address. I shall call this block of memory, which is everything used 
by a function in the process of the function call, the function frame. 

You might think it reasonable to try to return values on the stack. 
The compiler could simply push it, and the function could return an 
offset to indicate how far down in the stack the return value begins. 

Re-entrancy 
The problem occurs because functions in C and C++ support 
interrupts; that is, the languages are re-entrant. They also support 
recursive function calls. This means that at any point in the 
execution of a program an interrupt can occur without breaking the 
program. Of course, the person who writes the interrupt service 
routine (ISR) is responsible for saving and restoring all the registers 
that are used in the ISR, but if the ISR needs to use any memory 
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further down on the stack, this must be a safe thing to do. (You can 
think of an ISR as an ordinary function with no arguments and 
void return value that saves and restores the CPU state. An ISR 
function call is triggered by some hardware event instead of an 
explicit call from within a program.) 

Now imagine what would happen if an ordinary function tried to 
return values on the stack. You can’t touch any part of the stack 
that’s above the return address, so the function would have to push 
the values below the return address. But when the assembly-
language RETURN is executed, the stack pointer must be pointing 
to the return address (or right below it, depending on your 
machine), so right before the RETURN, the function must move the 
stack pointer up, thus clearing off all its local variables. If you’re 
trying to return values on the stack below the return address, you 
become vulnerable at that moment because an interrupt could come 
along. The ISR would move the stack pointer down to hold its 
return address and its local variables and overwrite your return 
value. 

To solve this problem, the caller could be responsible for allocating 
the extra storage on the stack for the return values before calling the 
function. However, C was not designed this way, and C++ must be 
compatible. As you’ll see shortly, the C++ compiler uses a more 
efficient scheme. 

Your next idea might be to return the value in some global data 
area, but this doesn’t work either. Reentrancy means that any 
function can be an interrupt routine for any other function, 
including the same function you’re currently inside. Thus, if you 
put the return value in a global area, you might return into the same 
function, which would overwrite that return value. The same logic 
applies to recursion. 

The only safe place to return values is in the registers, so you’re 
back to the problem of what to do when the registers aren’t large 
enough to hold the return value. The answer is to push the address 
of the return value’s destination on the stack as one of the function 
arguments, and let the function copy the return information 
directly into the destination. This not only solves all the problems, 
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it’s more efficient. It’s also the reason that, in 
PassingBigStructures.cpp, the compiler pushes the address of 
B2 before the call to bigfun( ) in main( ). If you look at the 
assembly output for bigfun( ), you can see it expects this hidden 
argument and performs the copy to the destination inside the 
function. 

Bitcopy versus initialization 
So far, so good. There’s a workable process for passing and 
returning large simple structures. But notice that all you have is a 
way to copy the bits from one place to another, which certainly 
works fine for the primitive way that C looks at variables. But in 
C++ objects can be much more sophisticated than a patch of bits; 
they have meaning. This meaning may not respond well to having 
its bits copied. 

Consider a simple example: a class that knows how many objects of 
its type exist at any one time. From Chapter 10, you know the way 
to do this is by including a static data member: 

//: C11:HowMany.cpp 

// A class that counts its objects 

#include <fstream> 

#include <string> 

using namespace std; 

ofstream out("HowMany.out"); 

 

class HowMany { 

  static int objectCount; 

public: 

  HowMany() { objectCount++; } 

  static void print(const string& msg = "") { 

    if(msg.size() != 0) out << msg << ": "; 

    out << "objectCount = " 

         << objectCount << endl; 

  } 

  ~HowMany() { 

    objectCount--; 

    print("~HowMany()"); 

  } 

}; 
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int HowMany::objectCount = 0; 

 

// Pass and return BY VALUE: 

HowMany f(HowMany x) { 

  x.print("x argument inside f()"); 

  return x; 

} 

 

int main() { 

  HowMany h; 

  HowMany::print("after construction of h"); 

  HowMany h2 = f(h); 

  HowMany::print("after call to f()"); 

} ///:~ 
 

The class HowMany contains a static int objectCount and a 
static member function print( ) to report the value of that 
objectCount, along with an optional message argument. The 
constructor increments the count each time an object is created, 
and the destructor decrements it. 

The output, however, is not what you would expect: 

after construction of h: objectCount = 1 

x argument inside f(): objectCount = 1 

~HowMany(): objectCount = 0 

after call to f(): objectCount = 0 

~HowMany(): objectCount = -1 

~HowMany(): objectCount = -2 
 

After h is created, the object count is one, which is fine. But after 
the call to f( ) you would expect to have an object count of two, 
because h2 is now in scope as well. Instead, the count is zero, which 
indicates something has gone horribly wrong. This is confirmed by 
the fact that the two destructors at the end make the object count go 
negative, something that should never happen. 

Look at the point inside f( ), which occurs after the argument is 
passed by value. This means the original object h exists outside the 
function frame, and there’s an additional object inside the function 
frame, which is the copy that has been passed by value. However, 
the argument has been passed using C’s primitive notion of 
bitcopying, whereas the C++ HowMany class requires true 
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initialization to maintain its integrity, so the default bitcopy fails to 
produce the desired effect. 

When the local object goes out of scope at the end of the call to f( ), 
the destructor is called, which decrements objectCount, so 
outside the function, objectCount is zero. The creation of h2 is 
also performed using a bitcopy, so the constructor isn’t called there 
either, and when h and h2 go out of scope, their destructors cause 
the negative values of objectCount. 

Copy-construction 
The problem occurs because the compiler makes an assumption 
about how to create a new object from an existing object. When you 
pass an object by value, you create a new object, the passed object 
inside the function frame, from an existing object, the original 
object outside the function frame. This is also often true when 
returning an object from a function. In the expression  

HowMany h2 = f(h); 
 

h2, a previously unconstructed object, is created from the return 
value of f( ), so again a new object is created from an existing one. 

The compiler’s assumption is that you want to perform this creation 
using a bitcopy, and in many cases this may work fine, but in 
HowMany it doesn’t fly because the meaning of initialization goes 
beyond simply copying. Another common example occurs if the 
class contains pointers – what do they point to, and should you 
copy them or should they be connected to some new piece of 
memory? 

Fortunately, you can intervene in this process and prevent the 
compiler from doing a bitcopy. You do this by defining your own 
function to be used whenever the compiler needs to make a new 
object from an existing object. Logically enough, you’re making a 
new object, so this function is a constructor, and also logically 
enough, the single argument to this constructor has to do with the 
object you’re constructing from. But that object can’t be passed into 
the constructor by value because you’re trying to define the function 
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that handles passing by value, and syntactically it doesn’t make 
sense to pass a pointer because, after all, you’re creating the new 
object from an existing object. Here, references come to the rescue, 
so you take the reference of the source object. This function is called 
the copy-constructor and is often referred to as X(X&), which is its 
appearance for a class called X. 

If you create a copy-constructor, the compiler will not perform a 
bitcopy when creating a new object from an existing one. It will 
always call your copy-constructor. So, if you don’t create a copy-
constructor, the compiler will do something sensible, but you have 
the choice of taking over complete control of the process. 

Now it’s possible to fix the problem in HowMany.cpp: 

//: C11:HowMany2.cpp 

// The copy-constructor 

#include <fstream> 

#include <string> 

using namespace std; 

ofstream out("HowMany2.out"); 

 

class HowMany2 { 

  string name; // Object identifier 

  static int objectCount; 

public: 

  HowMany2(const string& id = "") : name(id) { 

    ++objectCount; 

    print("HowMany2()"); 

  } 

  ~HowMany2() { 

    --objectCount; 

    print("~HowMany2()"); 

  } 

  // The copy-constructor: 

  HowMany2(const HowMany2& h) : name(h.name) { 

    name += " copy"; 

    ++objectCount; 

    print("HowMany2(const HowMany2&)"); 

  } 

  void print(const string& msg = "") const { 

    if(msg.size() != 0)  

      out << msg << endl; 
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    out << '\t' << name << ": " 

        << "objectCount = " 

        << objectCount << endl; 

  } 

}; 

 

int HowMany2::objectCount = 0; 

 

// Pass and return BY VALUE: 

HowMany2 f(HowMany2 x) { 

  x.print("x argument inside f()"); 

  out << "Returning from f()" << endl; 

  return x; 

} 

 

int main() { 

  HowMany2 h("h"); 

  out << "Entering f()" << endl; 

  HowMany2 h2 = f(h); 

  h2.print("h2 after call to f()"); 

  out << "Call f(), no return value" << endl; 

  f(h); 

  out << "After call to f()" << endl; 

} ///:~ 
 

There are a number of new twists thrown in here so you can get a 
better idea of what’s happening. First, the string name acts as an 
object identifier when information about that object is printed. In 
the constructor, you can put an identifier string (usually the name 
of the object) that is copied to name using the string constructor. 
The default = "" creates an empty string. The constructor 
increments the objectCount as before, and the destructor 
decrements it. 

Next is the copy-constructor, HowMany2(const HowMany2&). 
The copy-constructor can create a new object only from an existing 
one, so the existing object’s name is copied to name, followed by 
the word “copy” so you can see where it came from. If you look 
closely, you’ll see that the call name(h.name) in the constructor 
initializer list is actually calling the string copy-constructor. 
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Inside the copy-constructor, the object count is incremented just as 
it is inside the normal constructor. This means you’ll now get an 
accurate object count when passing and returning by value. 

The print( ) function has been modified to print out a message, the 
object identifier, and the object count. It must now access the 
name data of a particular object, so it can no longer be a static 
member function. 

Inside main( ), you can see that a second call to f( ) has been 
added. However, this call uses the common C approach of ignoring 
the return value. But now that you know how the value is returned 
(that is, code inside the function handles the return process, putting 
the result in a destination whose address is passed as a hidden 
argument), you might wonder what happens when the return value 
is ignored. The output of the program will throw some illumination 
on this. 

Before showing the output, here’s a little program that uses 
iostreams to add line numbers to any file: 

//: C11:Linenum.cpp 

//{T} Linenum.cpp 

// Add line numbers 

#include "../require.h" 

#include <vector> 

#include <string> 

#include <fstream> 

#include <iostream> 

#include <cmath> 

using namespace std; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1, "Usage: linenum file\n" 

    "Adds line numbers to file"); 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  string line; 

  vector<string> lines; 

  while(getline(in, line)) // Read in entire file 

    lines.push_back(line); 

  if(lines.size() == 0) return 0; 
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  int num = 0; 

  // Number of lines in file determines width: 

  const int width = int(log10(lines.size())) + 1; 

  for(int i = 0; i < lines.size(); i++) { 

    cout.setf(ios::right, ios::adjustfield); 

    cout.width(width); 

    cout << ++num << ") " << lines[i] << endl; 

  } 

} ///:~ 
 

The entire file is read into a vector<string>, using the same code 
that you’ve seen earlier in the book. When printing the line 
numbers, we’d like all the lines to be aligned with each other, and 
this requires adjusting for the number of lines in the file so that the 
width allowed for the line numbers is consistent. We can easily 
determine the number of lines using vector::size( ), but what we 
really need to know is whether there are more than 10 lines, 100 
lines, 1,000 lines, etc. If you take the logarithm, base 10, of the 
number of lines in the file, truncate it to an int and add one to the 
value, you’ll find out the maximum width that your line count will 
be. 

You’ll notice a couple of strange calls inside the for loop: setf( ) 
and width( ). These are ostream calls that allow you to control, in 
this case, the justification and width of the output. However, they 
must be called each time a line is output and that is why they are 
inside the for loop. Volume 2 of this book has an entire chapter 
explaining iostreams that will tell you more about these calls as well 
as other ways to control iostreams. 

When Linenum.cpp is applied to HowMany2.out, the result is 

 1) HowMany2() 

 2)   h: objectCount = 1 

 3) Entering f() 

 4) HowMany2(const HowMany2&) 

 5)   h copy: objectCount = 2 

 6) x argument inside f() 

 7)   h copy: objectCount = 2 

 8) Returning from f() 

 9) HowMany2(const HowMany2&) 

10)   h copy copy: objectCount = 3 
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11) ~HowMany2() 

12)   h copy: objectCount = 2 

13) h2 after call to f() 

14)   h copy copy: objectCount = 2 

15) Call f(), no return value 

16) HowMany2(const HowMany2&) 

17)   h copy: objectCount = 3 

18) x argument inside f() 

19)   h copy: objectCount = 3 

20) Returning from f() 

21) HowMany2(const HowMany2&) 

22)   h copy copy: objectCount = 4 

23) ~HowMany2() 

24)   h copy: objectCount = 3 

25) ~HowMany2() 

26)   h copy copy: objectCount = 2 

27) After call to f() 

28) ~HowMany2() 

29)   h copy copy: objectCount = 1 

30) ~HowMany2() 

31)   h: objectCount = 0 

 

As you would expect, the first thing that happens is that the normal 
constructor is called for h, which increments the object count to 
one. But then, as f( ) is entered, the copy-constructor is quietly 
called by the compiler to perform the pass-by-value. A new object is 
created, which is the copy of h (thus the name “h copy”) inside the 
function frame of f( ), so the object count becomes two, courtesy of 
the copy-constructor. 

Line eight indicates the beginning of the return from f( ). But 
before the local variable “h copy” can be destroyed (it goes out of 
scope at the end of the function), it must be copied into the return 
value, which happens to be h2. A previously unconstructed object 
(h2) is created from an existing object (the local variable inside 
f( )), so of course the copy-constructor is used again in line nine. 
Now the name becomes “h copy copy” for h2’s identifier because 
it’s being copied from the copy that is the local object inside f( ). 
After the object is returned, but before the function ends, the object 
count becomes temporarily three, but then the local object “h copy” 
is destroyed. After the call to f( ) completes in line 13, there are only 
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two objects, h and h2, and you can see that h2 did indeed end up 
as “h copy copy.” 

Temporary objects 
Line 15 begins the call to f(h), this time ignoring the return value. 
You can see in line 16 that the copy-constructor is called just as 
before to pass the argument in. And also, as before, line 21 shows 
the copy-constructor is called for the return value. But the copy-
constructor must have an address to work on as its destination (a 
this pointer). Where does this address come from? 

It turns out the compiler can create a temporary object whenever it 
needs one to properly evaluate an expression. In this case it creates 
one you don’t even see to act as the destination for the ignored 
return value of f( ). The lifetime of this temporary object is as short 
as possible so the landscape doesn’t get cluttered up with 
temporaries waiting to be destroyed and taking up valuable 
resources. In some cases, the temporary might immediately be 
passed to another function, but in this case it isn’t needed after the 
function call, so as soon as the function call ends by calling the 
destructor for the local object (lines 23 and 24), the temporary 
object is destroyed (lines 25 and 26). 

Finally, in lines 28-31, the h2 object is destroyed, followed by h, 
and the object count goes correctly back to zero. 

Default copy-constructor 
Because the copy-constructor implements pass and return by value, 
it’s important that the compiler creates one for you in the case of 
simple structures – effectively, the same thing it does in C. 
However, all you’ve seen so far is the default primitive behavior: a 
bitcopy. 

When more complex types are involved, the C++ compiler will still 
automatically create a copy-constructor if you don’t make one. 
Again, however, a bitcopy doesn’t make sense, because it doesn’t 
necessarily implement the proper meaning. 
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Here’s an example to show the more intelligent approach the 
compiler takes. Suppose you create a new class composed of objects 
of several existing classes. This is called, appropriately enough, 
composition, and it’s one of the ways you can make new classes 
from existing classes. Now take the role of a naive user who’s trying 
to solve a problem quickly by creating a new class this way. You 
don’t know about copy-constructors, so you don’t create one. The 
example demonstrates what the compiler does while creating the 
default copy-constructor for your new class: 

//: C11:DefaultCopyConstructor.cpp 

// Automatic creation of the copy-constructor 

#include <iostream> 

#include <string> 

using namespace std; 

 

class WithCC { // With copy-constructor 

public: 

  // Explicit default constructor required: 

  WithCC() {} 

  WithCC(const WithCC&) { 

    cout << "WithCC(WithCC&)" << endl; 

  } 

}; 

 

class WoCC { // Without copy-constructor 

  string id; 

public: 

  WoCC(const string& ident = "") : id(ident) {} 

  void print(const string& msg = "") const { 

    if(msg.size() != 0) cout << msg << ": "; 

    cout << id << endl; 

  } 

}; 

 

class Composite { 

  WithCC withcc; // Embedded objects 

  WoCC wocc; 

public: 

  Composite() : wocc("Composite()") {} 

  void print(const string& msg = "") const { 

    wocc.print(msg); 

  } 
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}; 

 

int main() { 

  Composite c; 

  c.print("Contents of c"); 

  cout << "Calling Composite copy-constructor" 

       << endl; 

  Composite c2 = c;  // Calls copy-constructor 

  c2.print("Contents of c2"); 

} ///:~ 
 

The class WithCC contains a copy-constructor, which simply 
announces that it has been called, and this brings up an interesting 
issue. In the class Composite, an object of WithCC is created 
using a default constructor. If there were no constructors at all in 
WithCC, the compiler would automatically create a default 
constructor, which would do nothing in this case. However, if you 
add a copy-constructor, you’ve told the compiler you’re going to 
handle constructor creation, so it no longer creates a default 
constructor for you and will complain unless you explicitly create a 
default constructor as was done for WithCC. 

The class WoCC has no copy-constructor, but its constructor will 
store a message in an internal string that can be printed out using 
print( ). This constructor is explicitly called in Composite’s 
constructor initializer list (briefly introduced in Chapter 8 and 
covered fully in Chapter 14). The reason for this becomes apparent 
later. 

The class Composite has member objects of both WithCC and 
WoCC (note the embedded object wocc is initialized in the 
constructor-initializer list, as it must be), and no explicitly defined 
copy-constructor. However, in main( ) an object is created using 
the copy-constructor in the definition: 

Composite c2 = c; 
 

The copy-constructor for Composite is created automatically by 
the compiler, and the output of the program reveals the way that it 
is created: 

Contents of c: Composite() 
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Calling Composite copy-constructor 

WithCC(WithCC&) 

Contents of c2: Composite() 
 

To create a copy-constructor for a class that uses composition (and 
inheritance, which is introduced in Chapter 14), the compiler 
recursively calls the copy-constructors for all the member objects 
and base classes. That is, if the member object also contains 
another object, its copy-constructor is also called. So in this case, 
the compiler calls the copy-constructor for WithCC. The output 
shows this constructor being called. Because WoCC has no copy-
constructor, the compiler creates one for it that just performs a 
bitcopy, and calls that inside the Composite copy-constructor. The 
call to Composite::print( ) in main shows that this happens 
because the contents of c2.wocc are identical to the contents of 
c.wocc. The process the compiler goes through to synthesize a 
copy-constructor is called memberwise initialization. 

It’s always best to create your own copy-constructor instead of 
letting the compiler do it for you. This guarantees that it will be 
under your control. 

Alternatives to copy-construction 
At this point your head may be swimming, and you might be 
wondering how you could have possibly written a working class 
without knowing about the copy-constructor. But remember: You 
need a copy-constructor only if you’re going to pass an object of 
your class by value. If that never happens, you don’t need a copy-
constructor. 

Preventing pass-by-value 
“But,” you say, “if I don’t make a copy-constructor, the compiler will 
create one for me. So how do I know that an object will never be 
passed by value?” 

There’s a simple technique for preventing pass-by-value: declare a 
private copy-constructor. You don’t even need to create a 
definition, unless one of your member functions or a friend 
function needs to perform a pass-by-value. If the user tries to pass 
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or return the object by value, the compiler will produce an error 
message because the copy-constructor is private. It can no longer 
create a default copy-constructor because you’ve explicitly stated 
that you’re taking over that job. 

Here’s an example: 

//: C11:NoCopyConstruction.cpp 

// Preventing copy-construction 

 

class NoCC { 

  int i; 

  NoCC(const NoCC&); // No definition 

public: 

  NoCC(int ii = 0) : i(ii) {} 

}; 

 

void f(NoCC); 

 

int main() { 

  NoCC n; 

//! f(n); // Error: copy-constructor called 

//! NoCC n2 = n; // Error: c-c called 

//! NoCC n3(n); // Error: c-c called 

} ///:~ 
 

Notice the use of the more general form  

NoCC(const NoCC&); 

using the const. 

Functions that modify outside objects 
Reference syntax is nicer to use than pointer syntax, yet it clouds 
the meaning for the reader. For example, in the iostreams library 
one overloaded version of the get( ) function takes a char& as an 
argument, and the whole point of the function is to modify its 
argument by inserting the result of the get( ). However, when you 
read code using this function it’s not immediately obvious to you 
that the outside object is being modified: 

char c; 

cin.get(c); 
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Instead, the function call looks like a pass-by-value, which suggests 
the outside object is not modified. 

Because of this, it’s probably safer from a code maintenance 
standpoint to use pointers when you’re passing the address of an 
argument to modify. If you always pass addresses as const 
references except when you intend to modify the outside object via 
the address, where you pass by non-const pointer, then your code 
is far easier for the reader to follow. 

Pointers to members 
A pointer is a variable that holds the address of some location. You 
can change what a pointer selects at runtime, and the destination of 
the pointer can be either data or a function. The C++ 
pointer-to-member follows this same concept, except that what it 
selects is a location inside a class. The dilemma here is that a 
pointer needs an address, but there is no “address” inside a class; 
selecting a member of a class means offsetting into that class. You 
can’t produce an actual address until you combine that offset with 
the starting address of a particular object. The syntax of pointers to 
members requires that you select an object at the same time you’re 
dereferencing the pointer to member. 

To understand this syntax, consider a simple structure, with a 
pointer sp and an object so for this structure. You can select 
members with the syntax shown: 

//: C11:SimpleStructure.cpp 

struct Simple { int a; }; 

int main() { 

  Simple so, *sp = &so; 

  sp->a; 

  so.a; 

} ///:~ 
 

Now suppose you have an ordinary pointer to an integer, ip. To 
access what ip is pointing to, you dereference the pointer with a ‘*’: 

*ip = 4; 
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Finally, consider what happens if you have a pointer that happens 
to point to something inside a class object, even if it does in fact 
represent an offset into the object. To access what it’s pointing at, 
you must dereference it with *. But it’s an offset into an object, so 
you must also refer to that particular object. Thus, the * is 
combined with the object dereference. So the new syntax becomes 
–>* for a pointer to an object, and .* for the object or a reference, 
like this: 

objectPointer->*pointerToMember = 47; 

object.*pointerToMember = 47; 
 

Now, what is the syntax for defining pointerToMember? Like 
any pointer, you have to say what type it’s pointing at, and you use a 
* in the definition. The only difference is that you must say what 
class of objects this pointer-to-member is used with. Of course, this 
is accomplished with the name of the class and the scope resolution 
operator. Thus, 

int ObjectClass::*pointerToMember; 
 

defines a pointer-to-member variable called pointerToMember 
that points to any int inside ObjectClass. You can also initialize 
the pointer-to-member when you define it (or at any other time): 

int ObjectClass::*pointerToMember = &ObjectClass::a; 
 

There is actually no “address” of ObjectClass::a because you’re 
just referring to the class and not an object of that class. Thus, 
&ObjectClass::a can be used only as pointer-to-member syntax. 

Here’s an example that shows how to create and use pointers to 
data members: 

//: C11:PointerToMemberData.cpp 

#include <iostream> 

using namespace std; 

 

class Data { 

public:   

  int a, b, c;  

  void print() const { 
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    cout << "a = " << a << ", b = " << b 

         << ", c = " << c << endl; 

  } 

}; 

 

int main() { 

  Data d, *dp = &d; 

  int Data::*pmInt = &Data::a; 

  dp->*pmInt = 47; 

  pmInt = &Data::b; 

  d.*pmInt = 48; 

  pmInt = &Data::c; 

  dp->*pmInt = 49; 

  dp->print(); 

} ///:~ 
 

Obviously, these are too awkward to use anywhere except for 
special cases (which is exactly what they were intended for). 

Also, pointers to members are quite limited: they can be assigned 
only to a specific location inside a class. You could not, for example, 
increment or compare them as you can with ordinary pointers. 

Functions 
A similar exercise produces the pointer-to-member syntax for 
member functions. A pointer to a function (introduced at the end of 
Chapter 3) is defined like this: 

int (*fp)(float); 
 

The parentheses around (*fp) are necessary to force the compiler 
to evaluate the definition properly. Without them this would appear 
to be a function that returns an int*.  

Parentheses also play an important role when defining and using 
pointers to member functions. If you have a function inside a class, 
you define a pointer to that member function by inserting the class 
name and scope resolution operator into an ordinary function 
pointer definition: 

//: C11:PmemFunDefinition.cpp 

class Simple2 {  
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public:  

  int f(float) const { return 1; } 

}; 

int (Simple2::*fp)(float) const; 

int (Simple2::*fp2)(float) const = &Simple2::f; 

int main() { 

  fp = &Simple2::f; 

} ///:~ 
 

In the definition for fp2 you can see that a pointer to member 
function can also be initialized when it is created, or at any other 
time. Unlike non-member functions, the & is not optional when 
taking the address of a member function. However, you can give the 
function identifier without an argument list, because overload 
resolution can be determined by the type of the pointer to member.  

An example 
The value of a pointer is that you can change what it points to at 
runtime, which provides an important flexibility in your 
programming because through a pointer you can select or change 
behavior at runtime. A pointer-to-member is no different; it allows 
you to choose a member at runtime. Typically, your classes will only 
have member functions publicly visible (data members are usually 
considered part of the underlying implementation), so the following 
example selects member functions at runtime. 

//: C11:PointerToMemberFunction.cpp 

#include <iostream> 

using namespace std; 

 

class Widget { 

public: 

  void f(int) const { cout << "Widget::f()\n"; } 

  void g(int) const { cout << "Widget::g()\n"; } 

  void h(int) const { cout << "Widget::h()\n"; } 

  void i(int) const { cout << "Widget::i()\n"; } 

}; 

 

int main() { 

  Widget w; 

  Widget* wp = &w; 

  void (Widget::*pmem)(int) const = &Widget::h; 

  (w.*pmem)(1); 
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  (wp->*pmem)(2); 

} ///:~ 
 

Of course, it isn’t particularly reasonable to expect the casual user 
to create such complicated expressions. If the user must directly 
manipulate a pointer-to-member, then a typedef is in order. To 
really clean things up, you can use the pointer-to-member as part of 
the internal implementation mechanism. Here’s the preceding 
example using a pointer-to-member inside the class. All the user 
needs to do is pass a number in to select a function.1 

//: C11:PointerToMemberFunction2.cpp 

#include <iostream> 

using namespace std; 

 

class Widget { 

  void f(int) const { cout << "Widget::f()\n"; } 

  void g(int) const { cout << "Widget::g()\n"; } 

  void h(int) const { cout << "Widget::h()\n"; } 

  void i(int) const { cout << "Widget::i()\n"; } 

  enum { cnt = 4 }; 

  void (Widget::*fptr[cnt])(int) const; 

public: 

  Widget() { 

    fptr[0] = &Widget::f; // Full spec required 

    fptr[1] = &Widget::g; 

    fptr[2] = &Widget::h; 

    fptr[3] = &Widget::i; 

  } 

  void select(int i, int j) { 

    if(i < 0 || i >= cnt) return; 

    (this->*fptr[i])(j); 

  } 

  int count() { return cnt; } 

}; 

 

int main() { 

  Widget w; 

  for(int i = 0; i < w.count(); i++) 

    w.select(i, 47); 

} ///:~ 

                                                   
1 Thanks to Owen Mortensen for this example 
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In the class interface and in main( ), you can see that the entire 
implementation, including the functions, has been hidden away. 
The code must even ask for the count( ) of functions. This way, the 
class implementer can change the quantity of functions in the 
underlying implementation without affecting the code where the 
class is used. 

The initialization of the pointers-to-members in the constructor 
may seem overspecified. Shouldn’t you be able to say 

fptr[1] = &g; 
 

because the name g occurs in the member function, which is 
automatically in the scope of the class? The problem is this doesn’t 
conform to the pointer-to-member syntax, which is required so 
everyone, especially the compiler, can figure out what’s going on. 
Similarly, when the pointer-to-member is dereferenced, it seems 
like 

(this->*fptr[i])(j); 
 

is also over-specified; this looks redundant. Again, the syntax 
requires that a pointer-to-member always be bound to an object 
when it is dereferenced. 

Summary 
Pointers in C++ are almost identical to pointers in C, which is good. 
Otherwise, a lot of C code wouldn’t compile properly under C++. 
The only compile-time errors you will produce occur with 
dangerous assignments. If these are in fact what are intended, the 
compile-time errors can be removed with a simple (and explicit!) 
cast. 

C++ also adds the reference from Algol and Pascal, which is like a 
constant pointer that is automatically dereferenced by the compiler. 
A reference holds an address, but you treat it like an object. 
References are essential for clean syntax with operator overloading 
(the subject of the next chapter), but they also add syntactic 

11: References & the Copy-Constructor 479 

convenience for passing and returning objects for ordinary 
functions. 

The copy-constructor takes a reference to an existing object of the 
same type as its argument, and it is used to create a new object from 
an existing one. The compiler automatically calls the copy-
constructor when you pass or return an object by value. Although 
the compiler will automatically create a copy-constructor for you, if 
you think one will be needed for your class, you should always 
define it yourself to ensure that the proper behavior occurs. If you 
don’t want the object passed or returned by value, you should create 
a private copy-constructor. 

Pointers-to-members have the same functionality as ordinary 
pointers: You can choose a particular region of storage (data or 
function) at runtime. Pointers-to-members just happen to work 
with class members instead of with global data or functions. You get 
the programming flexibility that allows you to change behavior at 
runtime. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Turn the “bird & rock” code fragment at the beginning of 
this chapter into a C program (using structs for the data 
types), and show that it compiles. Now try to compile it 
with the C++ compiler and see what happens. 

2.  Take the code fragments in the beginning of the section 
titled “References in C++” and put them into a main( ). 
Add statements to print output so that you can prove to 
yourself that references are like pointers that are 
automatically dereferenced. 

3.  Write a program in which you try to (1) Create a reference 
that is not initialized when it is created. (2) Change a 
reference to refer to another object after it is initialized. 
(3) Create a NULL reference. 
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4.  Write a function that takes a pointer argument, modifies 
what the pointer points to, and then returns the 
destination of the pointer as a reference. 

5.  Create a class with some member functions, and make 
that the object that is pointed to by the argument of 
Exercise 4. Make the pointer a const and make some of 
the member functions const and prove that you can only 
call the const member functions inside your function. 
Make the argument to your function a reference instead 
of a pointer. 

6.  Take the code fragments at the beginning of the section 
titled “Pointer references” and turn them into a program. 

7.  Create a function that takes an argument of a reference to 
a pointer to a pointer and modifies that argument. In 
main( ), call the function. 

8.  Create a function that takes a char& argument and 
modifies that argument. In main( ), print out a char 
variable, call your function for that variable, and print it 
out again to prove to yourself that it has been changed. 
How does this affect program readability? 

9.  Write a class that has a const member function and a 
non-const member function. Write three functions that 
take an object of that class as an argument; the first takes 
it by value, the second by reference, and the third by 
const reference. Inside the functions, try to call both 
member functions of your class and explain the results. 

10.  (Somewhat challenging) Write a simple function that 
takes an int as an argument, increments the value, and 
returns it. In main( ), call your function. Now discover 
how your compiler generates assembly code and trace 
through the assembly statements so that you understand 
how arguments are passed and returned, and how local 
variables are indexed off the stack. 

11.  Write a function that takes as its arguments a char, int, 
float, and double. Generate assembly code with your 
compiler and find the statements that push the 
arguments on the stack before a function call. 

12.  Write a function that returns a double. Generate 
assembly code and determine how the value is returned. 
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13.  Produce assembly code for 
PassingBigStructures.cpp. Trace through and 
demystify the way your compiler generates code to pass 
and return large structures. 

14.  Write a simple recursive function that decrements its 
argument and returns zero if the argument becomes zero, 
otherwise it calls itself. Generate assembly code for this 
function and explain how the way that the assembly code 
is created by the compiler supports recursion. 

15.  Write code to prove that the compiler automatically 
synthesizes a copy-constructor if you don’t create one 
yourself. Prove that the synthesized copy-constructor 
performs a bitcopy of primitive types and calls the copy-
constructor of user-defined types. 

16.  Write a class with a copy-constructor that announces 
itself to cout. Now create a function that passes an object 
of your new class in by value and another one that creates 
a local object of your new class and returns it by value. 
Call these functions to prove to yourself that the copy-
constructor is indeed quietly called when passing and 
returning objects by value.  

17.  Create a class that contains a double*. The constructor 
initializes the double* by calling new double and 
assigning a value to the resulting storage from the 
constructor argument. The destructor prints the value 
that’s pointed to, assigns that value to -1, calls delete for 
the storage, and then sets the pointer to zero. Now create 
a function that takes an object of your class by value, and 
call this function in main( ). What happens? Fix the 
problem by writing a copy-constructor. 

18.  Create a class with a constructor that looks like a copy-
constructor, but that has an extra argument with a 
default value. Show that this is still used as the copy-
constructor. 

19.  Create a class with a copy-constructor that announces 
itself. Make a second class containing a member object of 
the first class, but do not create a copy-constructor. Show 
that the synthesized copy-constructor in the second class 
automatically calls the copy-constructor of the first class. 
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20.  Create a very simple class, and a function that returns an 
object of that class by value. Create a second function that 
takes a reference to an object of your class. Call the first 
function as the argument of the second function, and 
demonstrate that the second function must use a const 
reference as its argument. 

21.  Create a simple class without a copy-constructor, and a 
simple function that takes an object of that class by value. 
Now change your class by adding a private declaration 
(only) for the copy-constructor. Explain what happens 
when your function is compiled. 

22.  This exercise creates an alternative to using the copy-
constructor. Create a class X and declare (but don’t 
define) a private copy-constructor. Make a public 
clone( ) function as a const member function that 
returns a copy of the object that is created using new. 
Now write a function that takes as an argument a const 
X& and clones a local copy that can be modified. The 
drawback to this approach is that you are responsible for 
explicitly destroying the cloned object (using delete) 
when you’re done with it. 

23.  Explain what’s wrong with both Mem.cpp and 
MemTest.cpp from Chapter 7. Fix the problem. 

24.  Create a class containing a double and a print( ) 
function that prints the double. In main( ), create 
pointers to members for both the data member and the 
function in your class. Create an object of your class and a 
pointer to that object, and manipulate both class 
elements via your pointers to members, using both the 
object and the pointer to the object. 

25.  Create a class containing an array of int. Can you index 
through this array using a pointer to member? 

26.  Modify PmemFunDefinition.cpp by adding an 
overloaded member function f( ) (you can determine the 
argument list that causes the overload). Now make a 
second pointer to member, assign it to the overloaded 
version of f( ), and call the function through that pointer. 
How does the overload resolution happen in this case? 
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27.  Start with FunctionTable.cpp from Chapter 3. Create a 
class that contains a vector of pointers to functions, with 
add( ) and remove( ) member functions to add and 
remove pointers to functions. Add a run( ) function that 
moves through the vector and calls all of the functions. 

28.  Modify the above Exercise 27 so that it works with 
pointers to member functions instead. 
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12: Operator Overloading 
Operator overloading is just “syntactic sugar,” which 

means it is simply another way for you to make a 

function call. 
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The difference is that the arguments for this function don’t appear 
inside parentheses, but instead they surround or are next to 
characters you’ve always thought of as immutable operators. 

There are two differences between the use of an operator and an 
ordinary function call. The syntax is different; an operator is often 
“called” by placing it between or sometimes after the arguments. 
The second difference is that the compiler determines which 
“function” to call. For instance, if you are using the operator + with 
floating-point arguments, the compiler “calls” the function to 
perform floating-point addition (this “call” is typically the act of 
inserting in-line code, or a floating-point-processor instruction). If 
you use operator + with a floating-point number and an integer, the 
compiler “calls” a special function to turn the int into a float, and 
then “calls” the floating-point addition code. 

But in C++, it’s possible to define new operators that work with 
classes. This definition is just like an ordinary function definition 
except that the name of the function consists of the keyword 
operator followed by the operator. That’s the only difference, and 
it becomes a function like any other function, which the compiler 
calls when it sees the appropriate pattern. 

Warning & reassurance 
It’s tempting to become overenthusiastic with operator overloading. 
It’s a fun toy, at first. But remember it’s only syntactic sugar, 
another way of calling a function. Looking at it this way, you have 
no reason to overload an operator except if it will make the code 
involving your class easier to write and especially easier to read. 
(Remember, code is read much more than it is written.) If this isn’t 
the case, don’t bother. 

Another common response to operator overloading is panic; 
suddenly, C operators have no familiar meaning anymore. 
“Everything’s changed and all my C code will do different things!” 
This isn’t true. All the operators used in expressions that contain 
only built-in data types cannot be changed. You can never overload 
operators such that 
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1 << 4; 
 

behaves differently, or 

1.414 << 2; 
 

has meaning. Only an expression containing a user-defined type 
can have an overloaded operator. 

Syntax 
Defining an overloaded operator is like defining a function, but the 
name of that function is operator@, in which @ represents the 
operator that’s being overloaded. The number of arguments in the 
overloaded operator’s argument list depends on two factors: 

1. Whether it’s a unary operator (one argument) or a binary 
operator (two arguments). 

2. Whether the operator is defined as a global function (one 
argument for unary, two for binary) or a member function 
(zero arguments for unary, one for binary – the object 
becomes the left-hand argument). 

Here’s a small class that shows the syntax for operator overloading: 

//: C12:OperatorOverloadingSyntax.cpp 

#include <iostream> 

using namespace std; 

 

class Integer { 

  int i; 

public: 

  Integer(int ii) : i(ii) {} 

  const Integer 

  operator+(const Integer& rv) const { 

    cout << "operator+" << endl; 

    return Integer(i + rv.i); 

  } 

  Integer& 

  operator+=(const Integer& rv) { 

    cout << "operator+=" << endl; 
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    i += rv.i; 

    return *this; 

  } 

}; 

 

int main() { 

  cout << "built-in types:" << endl; 

  int i = 1, j = 2, k = 3; 

  k += i + j; 

  cout << "user-defined types:" << endl; 

  Integer ii(1), jj(2), kk(3); 

  kk += ii + jj; 

} ///:~ 
 

The two overloaded operators are defined as inline member 
functions that announce when they are called. The single argument 
is what appears on the right-hand side of the operator for binary 
operators. Unary operators have no arguments when defined as 
member functions. The member function is called for the object on 
the left-hand side of the operator. 

For non-conditional operators (conditionals usually return a 
Boolean value), you’ll almost always want to return an object or 
reference of the same type you’re operating on if the two arguments 
are the same type. (If they’re not the same type, the interpretation 
of what it should produce is up to you.) This way, complicated 
expressions can be built up: 

kk += ii + jj; 
 

The operator+ produces a new Integer (a temporary) that is used 
as the rv argument for the operator+=. This temporary is 
destroyed as soon as it is no longer needed. 

Overloadable operators 
Although you can overload almost all the operators available in C, 
the use of operator overloading is fairly restrictive. In particular, 
you cannot combine operators that currently have no meaning in C 
(such as ** to represent exponentiation), you cannot change the 
evaluation precedence of operators, and you cannot change the 
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number of arguments required by an operator. This makes sense – 
all of these actions would produce operators that confuse meaning 
rather than clarify it. 

The next two subsections give examples of all the “regular” 
operators, overloaded in the form that you’ll most likely use. 

Unary operators 
The following example shows the syntax to overload all the unary 
operators, in the form of both global functions (non-member 
friend functions) and as member functions. These will expand 
upon the Integer class shown previously and add a new byte class. 
The meaning of your particular operators will depend on the way 
you want to use them, but consider the client programmer before 
doing something unexpected. 

Here is a catalog of all the unary functions: 

//: C12:OverloadingUnaryOperators.cpp 

#include <iostream> 

using namespace std; 

 

// Non-member functions: 

class Integer { 

  long i; 

  Integer* This() { return this; } 

public: 

  Integer(long ll = 0) : i(ll) {} 

  // No side effects takes const& argument: 

  friend const Integer& 

    operator+(const Integer& a); 

  friend const Integer 

    operator-(const Integer& a); 

  friend const Integer 

    operator~(const Integer& a); 

  friend Integer* 

    operator&(Integer& a); 

  friend int 

    operator!(const Integer& a); 

  // Side effects have non-const& argument: 

  // Prefix: 

  friend const Integer& 
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    operator++(Integer& a); 

  // Postfix: 

  friend const Integer 

    operator++(Integer& a, int); 

  // Prefix: 

  friend const Integer& 

    operator--(Integer& a); 

  // Postfix: 

  friend const Integer 

    operator--(Integer& a, int); 

}; 

 

// Global operators: 

const Integer& operator+(const Integer& a) { 

  cout << "+Integer\n"; 

  return a; // Unary + has no effect 

} 

const Integer operator-(const Integer& a) { 

  cout << "-Integer\n"; 

  return Integer(-a.i); 

} 

const Integer operator~(const Integer& a) { 

  cout << "~Integer\n"; 

  return Integer(~a.i); 

} 

Integer* operator&(Integer& a) { 

  cout << "&Integer\n"; 

  return a.This(); // &a is recursive! 

} 

int operator!(const Integer& a) { 

  cout << "!Integer\n"; 

  return !a.i; 

} 

// Prefix; return incremented value 

const Integer& operator++(Integer& a) { 

  cout << "++Integer\n"; 

  a.i++; 

  return a; 

} 

// Postfix; return the value before increment: 

const Integer operator++(Integer& a, int) { 

  cout << "Integer++\n"; 

  Integer before(a.i); 

  a.i++; 

  return before; 
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} 

// Prefix; return decremented value 

const Integer& operator--(Integer& a) { 

  cout << "--Integer\n"; 

  a.i--; 

  return a; 

} 

// Postfix; return the value before decrement: 

const Integer operator--(Integer& a, int) { 

  cout << "Integer--\n"; 

  Integer before(a.i); 

  a.i--; 

  return before; 

} 

 

// Show that the overloaded operators work: 

void f(Integer a) { 

  +a; 

  -a; 

  ~a; 

  Integer* ip = &a; 

  !a; 

  ++a; 

  a++; 

  --a; 

  a--; 

} 

 

// Member functions (implicit "this"): 

class Byte { 

  unsigned char b; 

public: 

  Byte(unsigned char bb = 0) : b(bb) {} 

  // No side effects: const member function: 

  const Byte& operator+() const { 

    cout << "+Byte\n"; 

    return *this; 

  } 

  const Byte operator-() const { 

    cout << "-Byte\n"; 

    return Byte(-b); 

  } 

  const Byte operator~() const { 

    cout << "~Byte\n"; 

    return Byte(~b); 
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  } 

  Byte operator!() const { 

    cout << "!Byte\n"; 

    return Byte(!b); 

  } 

  Byte* operator&() { 

    cout << "&Byte\n"; 

    return this; 

  } 

  // Side effects: non-const member function: 

  const Byte& operator++() { // Prefix 

    cout << "++Byte\n"; 

    b++; 

    return *this; 

  } 

  const Byte operator++(int) { // Postfix 

    cout << "Byte++\n"; 

    Byte before(b); 

    b++; 

    return before; 

  } 

  const Byte& operator--() { // Prefix 

    cout << "--Byte\n"; 

    --b; 

    return *this; 

  } 

  const Byte operator--(int) { // Postfix 

    cout << "Byte--\n"; 

    Byte before(b); 

    --b; 

    return before; 

  } 

}; 

 

void g(Byte b) { 

  +b; 

  -b; 

  ~b; 

  Byte* bp = &b; 

  !b; 

  ++b; 

  b++; 

  --b; 

  b--; 

} 
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int main() { 

  Integer a; 

  f(a); 

  Byte b; 

  g(b); 

} ///:~ 
 

The functions are grouped according to the way their arguments are 
passed. Guidelines for how to pass and return arguments are given 
later. The forms above (and the ones that follow in the next section) 
are typically what you’ll use, so start with them as a pattern when 
overloading your own operators. 

Increment & decrement 
The overloaded ++ and – – operators present a dilemma because 
you want to be able to call different functions depending on 
whether they appear before (prefix) or after (postfix) the object 
they’re acting upon. The solution is simple, but people sometimes 
find it a bit confusing at first. When the compiler sees, for example, 
++a (a pre-increment), it generates a call to operator++(a); but 
when it sees a++, it generates a call to operator++(a, int). That 
is, the compiler differentiates between the two forms by making 
calls to different overloaded functions. In 
OverloadingUnaryOperators.cpp for the member function 
versions, if the compiler sees ++b, it generates a call to 
B::operator++( ); if it sees b++ it calls B::operator++(int). 

All the user sees is that a different function gets called for the prefix 
and postfix versions. Underneath, however, the two functions calls 
have different signatures, so they link to two different function 
bodies. The compiler passes a dummy constant value for the int 
argument (which is never given an identifier because the value is 
never used) to generate the different signature for the postfix 
version. 

Binary operators 
The following listing repeats the example of 
OverloadingUnaryOperators.cpp for binary operators so you 
have an example of all the operators you might want to overload. 
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Again, both global versions and member function versions are 
shown. 

//: C12:Integer.h 

// Non-member overloaded operators 

#ifndef INTEGER_H 

#define INTEGER_H 

#include <iostream> 

 

// Non-member functions: 

class Integer {  

  long i; 

public: 

  Integer(long ll = 0) : i(ll) {} 

  // Operators that create new, modified value: 

  friend const Integer 

    operator+(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator-(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator*(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator/(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator%(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator^(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator&(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator|(const Integer& left, 

              const Integer& right); 

  friend const Integer 

    operator<<(const Integer& left, 

               const Integer& right); 

  friend const Integer 

    operator>>(const Integer& left, 
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               const Integer& right); 

  // Assignments modify & return lvalue: 

  friend Integer& 

    operator+=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator-=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator*=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator/=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator%=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator^=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator&=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator|=(Integer& left, 

               const Integer& right); 

  friend Integer& 

    operator>>=(Integer& left, 

                const Integer& right); 

  friend Integer& 

    operator<<=(Integer& left, 

                const Integer& right); 

  // Conditional operators return true/false: 

  friend int 

    operator==(const Integer& left, 

               const Integer& right); 

  friend int 

    operator!=(const Integer& left, 

               const Integer& right); 

  friend int 

    operator<(const Integer& left, 

              const Integer& right); 

  friend int 

    operator>(const Integer& left, 

              const Integer& right); 
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  friend int 

    operator<=(const Integer& left, 

               const Integer& right); 

  friend int 

    operator>=(const Integer& left, 

               const Integer& right); 

  friend int 

    operator&&(const Integer& left, 

               const Integer& right); 

  friend int 

    operator||(const Integer& left, 

               const Integer& right); 

  // Write the contents to an ostream: 

  void print(std::ostream& os) const { os << i; } 

};  

#endif // INTEGER_H ///:~ 
 

//: C12:Integer.cpp {O} 

// Implementation of overloaded operators 

#include "Integer.h" 

#include "../require.h" 

 

const Integer 

  operator+(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i + right.i); 

} 

const Integer 

  operator-(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i - right.i); 

} 

const Integer 

  operator*(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i * right.i); 

} 

const Integer 

  operator/(const Integer& left, 

            const Integer& right) { 

  require(right.i != 0, "divide by zero"); 

  return Integer(left.i / right.i); 

} 

const Integer 

  operator%(const Integer& left, 
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            const Integer& right) { 

  require(right.i != 0, "modulo by zero"); 

  return Integer(left.i % right.i); 

} 

const Integer 

  operator^(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i ^ right.i); 

} 

const Integer 

  operator&(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i & right.i); 

} 

const Integer 

  operator|(const Integer& left, 

            const Integer& right) { 

  return Integer(left.i | right.i); 

} 

const Integer 

  operator<<(const Integer& left, 

             const Integer& right) { 

  return Integer(left.i << right.i); 

} 

const Integer 

  operator>>(const Integer& left, 

             const Integer& right) { 

  return Integer(left.i >> right.i); 

} 

// Assignments modify & return lvalue: 

Integer& operator+=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i += right.i; 

   return left; 

} 

Integer& operator-=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i -= right.i; 

   return left; 

} 

Integer& operator*=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 
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   left.i *= right.i; 

   return left; 

} 

Integer& operator/=(Integer& left, 

                    const Integer& right) { 

   require(right.i != 0, "divide by zero"); 

   if(&left == &right) {/* self-assignment */} 

   left.i /= right.i; 

   return left; 

} 

Integer& operator%=(Integer& left, 

                    const Integer& right) { 

   require(right.i != 0, "modulo by zero"); 

   if(&left == &right) {/* self-assignment */} 

   left.i %= right.i; 

   return left; 

} 

Integer& operator^=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i ^= right.i; 

   return left; 

} 

Integer& operator&=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i &= right.i; 

   return left; 

} 

Integer& operator|=(Integer& left, 

                    const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i |= right.i; 

   return left; 

} 

Integer& operator>>=(Integer& left, 

                     const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i >>= right.i; 

   return left; 

} 

Integer& operator<<=(Integer& left, 

                     const Integer& right) { 

   if(&left == &right) {/* self-assignment */} 

   left.i <<= right.i; 
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   return left; 

} 

// Conditional operators return true/false: 

int operator==(const Integer& left, 

               const Integer& right) { 

    return left.i == right.i; 

} 

int operator!=(const Integer& left, 

               const Integer& right) { 

    return left.i != right.i; 

} 

int operator<(const Integer& left, 

              const Integer& right) { 

    return left.i < right.i; 

} 

int operator>(const Integer& left, 

              const Integer& right) { 

    return left.i > right.i; 

} 

int operator<=(const Integer& left, 

               const Integer& right) { 

    return left.i <= right.i; 

} 

int operator>=(const Integer& left, 

               const Integer& right) { 

    return left.i >= right.i; 

} 

int operator&&(const Integer& left, 

               const Integer& right) { 

    return left.i && right.i; 

} 

int operator||(const Integer& left, 

               const Integer& right) { 

    return left.i || right.i; 

} ///:~ 
 

//: C12:IntegerTest.cpp 

//{L} Integer 

#include "Integer.h" 

#include <fstream> 

using namespace std; 

ofstream out("IntegerTest.out"); 

 

void h(Integer& c1, Integer& c2) { 

  // A complex expression: 
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  c1 += c1 * c2 + c2 % c1; 

  #define TRY(OP) \ 

    out << "c1 = "; c1.print(out); \ 

    out << ", c2 = "; c2.print(out); \ 

    out << ";  c1 " #OP " c2 produces "; \ 

    (c1 OP c2).print(out); \ 

    out << endl; 

  TRY(+) TRY(-) TRY(*) TRY(/) 

  TRY(%) TRY(^) TRY(&) TRY(|) 

  TRY(<<) TRY(>>) TRY(+=) TRY(-=) 

  TRY(*=) TRY(/=) TRY(%=) TRY(^=) 

  TRY(&=) TRY(|=) TRY(>>=) TRY(<<=) 

  // Conditionals: 

  #define TRYC(OP) \ 

    out << "c1 = "; c1.print(out); \ 

    out << ", c2 = "; c2.print(out); \ 

    out << ";  c1 " #OP " c2 produces "; \ 

    out << (c1 OP c2); \ 

    out << endl; 

  TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=) 

  TRYC(>=) TRYC(&&) TRYC(||) 

}  

 

int main() { 

  cout << "friend functions" << endl; 

  Integer c1(47), c2(9); 

  h(c1, c2); 

} ///:~ 
 

//: C12:Byte.h 

// Member overloaded operators 

#ifndef BYTE_H 

#define BYTE_H 

#include "../require.h" 

#include <iostream> 

// Member functions (implicit "this"): 

class Byte {  

  unsigned char b; 

public: 

  Byte(unsigned char bb = 0) : b(bb) {} 

  // No side effects: const member function: 

  const Byte 

    operator+(const Byte& right) const { 

    return Byte(b + right.b); 

  } 
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  const Byte 

    operator-(const Byte& right) const { 

    return Byte(b - right.b); 

  } 

  const Byte 

    operator*(const Byte& right) const { 

    return Byte(b * right.b); 

  } 

  const Byte 

    operator/(const Byte& right) const { 

    require(right.b != 0, "divide by zero"); 

    return Byte(b / right.b); 

  } 

  const Byte 

    operator%(const Byte& right) const { 

    require(right.b != 0, "modulo by zero"); 

    return Byte(b % right.b); 

  } 

  const Byte 

    operator^(const Byte& right) const { 

    return Byte(b ^ right.b); 

  } 

  const Byte 

    operator&(const Byte& right) const { 

    return Byte(b & right.b); 

  } 

  const Byte 

    operator|(const Byte& right) const { 

    return Byte(b | right.b); 

  } 

  const Byte 

    operator<<(const Byte& right) const { 

    return Byte(b << right.b); 

  } 

  const Byte 

    operator>>(const Byte& right) const { 

    return Byte(b >> right.b); 

  } 

  // Assignments modify & return lvalue. 

  // operator= can only be a member function: 

  Byte& operator=(const Byte& right) { 

    // Handle self-assignment: 

    if(this == &right) return *this; 

    b = right.b; 

    return *this; 
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  } 

  Byte& operator+=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b += right.b; 

    return *this; 

  } 

  Byte& operator-=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b -= right.b; 

    return *this; 

  } 

  Byte& operator*=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b *= right.b; 

    return *this; 

  } 

  Byte& operator/=(const Byte& right) { 

    require(right.b != 0, "divide by zero"); 

    if(this == &right) {/* self-assignment */} 

    b /= right.b; 

    return *this; 

  } 

  Byte& operator%=(const Byte& right) { 

    require(right.b != 0, "modulo by zero"); 

    if(this == &right) {/* self-assignment */} 

    b %= right.b; 

    return *this; 

  } 

  Byte& operator^=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b ^= right.b; 

    return *this; 

  } 

  Byte& operator&=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b &= right.b; 

    return *this; 

  } 

  Byte& operator|=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b |= right.b; 

    return *this; 

  } 

  Byte& operator>>=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 
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    b >>= right.b; 

    return *this; 

  } 

  Byte& operator<<=(const Byte& right) { 

    if(this == &right) {/* self-assignment */} 

    b <<= right.b; 

    return *this; 

  } 

  // Conditional operators return true/false: 

  int operator==(const Byte& right) const { 

      return b == right.b; 

  } 

  int operator!=(const Byte& right) const { 

      return b != right.b; 

  } 

  int operator<(const Byte& right) const { 

      return b < right.b; 

  } 

  int operator>(const Byte& right) const { 

      return b > right.b; 

  } 

  int operator<=(const Byte& right) const { 

      return b <= right.b; 

  } 

  int operator>=(const Byte& right) const { 

      return b >= right.b; 

  } 

  int operator&&(const Byte& right) const { 

      return b && right.b; 

  } 

  int operator||(const Byte& right) const { 

      return b || right.b; 

  } 

  // Write the contents to an ostream: 

  void print(std::ostream& os) const { 

    os << "0x" << std::hex << int(b) << std::dec; 

  } 

};  

#endif // BYTE_H ///:~ 
 

//: C12:ByteTest.cpp 

#include "Byte.h" 

#include <fstream> 

using namespace std; 

ofstream out("ByteTest.out"); 
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void k(Byte& b1, Byte& b2) { 

  b1 = b1 * b2 + b2 % b1; 

 

  #define TRY2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    (b1 OP b2).print(out); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 

  TRY2(+) TRY2(-) TRY2(*) TRY2(/) 

  TRY2(%) TRY2(^) TRY2(&) TRY2(|) 

  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=) 

  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=) 

  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=) 

  TRY2(=) // Assignment operator 

 

  // Conditionals: 

  #define TRYC2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    out << (b1 OP b2); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 

  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=) 

  TRYC2(>=) TRYC2(&&) TRYC2(||) 

 

  // Chained assignment: 

  Byte b3 = 92; 

  b1 = b2 = b3; 

} 

 

int main() { 

  out << "member functions:" << endl; 

  Byte b1(47), b2(9); 

  k(b1, b2); 

} ///:~ 
 

You can see that operator= is only allowed to be a member 
function. This is explained later. 

12: Operator Overloading 505 

Notice that all of the assignment operators have code to check for 
self-assignment; this is a general guideline. In some cases this is not 
necessary; for example, with operator+= you often want to say 
A+=A and have it add A to itself. The most important place to 
check for self-assignment is operator= because with complicated 
objects disastrous results may occur. (In some cases it’s OK, but you 
should always keep it in mind when writing operator=.) 

All of the operators shown in the previous two examples are 
overloaded to handle a single type. It’s also possible to overload 
operators to handle mixed types, so you can add apples to oranges, 
for example. Before you start on an exhaustive overloading of 
operators, however, you should look at the section on automatic 
type conversion later in this chapter. Often, a type conversion in the 
right place can save you a lot of overloaded operators. 

Arguments & return values 
It may seem a little confusing at first when you look at 
OverloadingUnaryOperators.cpp, Integer.h and Byte.h and 
see all the different ways that arguments are passed and returned. 
Although you can pass and return arguments any way you want to, 
the choices in these examples were not selected at random. They 
follow a logical pattern, the same one you’ll want to use in most of 
your choices. 

1. As with any function argument, if you only need to read from 
the argument and not change it, default to passing it as a 
const reference. Ordinary arithmetic operations (like + and 
–, etc.) and Booleans will not change their arguments, so pass 
by const reference is predominantly what you’ll use. When 
the function is a class member, this translates to making it a 
const member function. Only with the operator-assignments 
(like +=) and the operator=, which change the left-hand 
argument, is the left argument not a constant, but it’s still 
passed in as an address because it will be changed. 

2. The type of return value you should select depends on the 
expected meaning of the operator. (Again, you can do 
anything you want with the arguments and return values.) If 
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the effect of the operator is to produce a new value, you will 
need to generate a new object as the return value. For 
example, Integer::operator+ must produce an Integer 
object that is the sum of the operands. This object is returned 
by value as a const, so the result cannot be modified as an 
lvalue. 

3. All the assignment operators modify the lvalue. To allow the 
result of the assignment to be used in chained expressions, 
like a=b=c, it’s expected that you will return a reference to 
that same lvalue that was just modified. But should this 
reference be a const or nonconst? Although you read 
a=b=c from left to right, the compiler parses it from right to 
left, so you’re not forced to return a nonconst to support 
assignment chaining. However, people do sometimes expect 
to be able to perform an operation on the thing that was just 
assigned to, such as (a=b).func( ); to call func( ) on a after 
assigning b to it. Thus, the return value for all of the 
assignment operators should be a nonconst reference to the 
lvalue. 

4. For the logical operators, everyone expects to get at worst an 
int back, and at best a bool. (Libraries developed before 
most compilers supported C++’s built-in bool will use int or 
an equivalent typedef.) 

The increment and decrement operators present a dilemma because 
of the pre- and postfix versions. Both versions change the object 
and so cannot treat the object as a const. The prefix version returns 
the value of the object after it was changed, so you expect to get 
back the object that was changed. Thus, with prefix you can just 
return *this as a reference. The postfix version is supposed to 
return the value before the value is changed, so you’re forced to 
create a separate object to represent that value and return it. So 
with postfix you must return by value if you want to preserve the 
expected meaning. (Note that you’ll sometimes find the increment 
and decrement operators returning an int or bool to indicate, for 
example, whether an object designed to move through a list is at the 
end of that list.) Now the question is: Should these be returned as 
const or nonconst? If you allow the object to be modified and 
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someone writes (++a).func( ), func( ) will be operating on a 
itself, but with (a++).func( ), func( ) operates on the temporary 
object returned by the postfix operator++. Temporary objects are 
automatically const, so this would be flagged by the compiler, but 
for consistency’s sake it may make more sense to make them both 
const, as was done here. Or you may choose to make the prefix 
version non-const and the postfix const. Because of the variety of 
meanings you may want to give the increment and decrement 
operators, they will need to be considered on a case-by-case basis. 

Return by value as const 
Returning by value as a const can seem a bit subtle at first, so it 
deserves a bit more explanation. Consider the binary operator+. If 
you use it in an expression such as f(a+b), the result of a+b 
becomes a temporary object that is used in the call to f( ). Because 
it’s a temporary, it’s automatically const, so whether you explicitly 
make the return value const or not has no effect. 

However, it’s also possible for you to send a message to the return 
value of a+b, rather than just passing it to a function. For example, 
you can say (a+b).g( ), in which g( ) is some member function of 
Integer, in this case. By making the return value const, you state 
that only a const member function can be called for that return 
value. This is const-correct, because it prevents you from storing 
potentially valuable information in an object that will most likely be 
lost. 

The return optimization 
When new objects are created to return by value, notice the form 
used. In operator+, for example: 

return Integer(left.i + right.i); 
 

This may look at first like a “function call to a constructor,” but it’s 
not. The syntax is that of a temporary object; the statement says 
“make a temporary Integer object and return it.” Because of this, 
you might think that the result is the same as creating a named local 
object and returning that. However, it’s quite different. If you were 
to say instead: 
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Integer tmp(left.i + right.i); 

return tmp; 
 

three things will happen. First, the tmp object is created including 
its constructor call. Second, the copy-constructor copies the tmp to 
the location of the outside return value. Third, the destructor is 
called for tmp at the end of the scope. 

In contrast, the “returning a temporary” approach works quite 
differently. When the compiler sees you do this, it knows that you 
have no other need for the object it’s creating than to return it. The 
compiler takes advantage of this by building the object directly into 
the location of the outside return value. This requires only a single 
ordinary constructor call (no copy-constructor is necessary) and 
there’s no destructor call because you never actually create a local 
object. Thus, while it doesn’t cost anything but programmer 
awareness, it’s significantly more efficient. This is often called the 
return value optimization. 

Unusual operators 
Several additional operators have a slightly different syntax for 
overloading. 

The subscript, operator[ ], must be a member function and it 
requires a single argument. Because operator[ ] implies that the 
object it’s being called for acts like an array, you will often return a 
reference from this operator, so it can be conveniently used on the 
left-hand side of an equal sign. This operator is commonly 
overloaded; you’ll see examples in the rest of the book. 

The operators new and delete control dynamic storage allocation 
and can be overloaded in a number of different ways. This topic is 
covered in the Chapter 13. 

Operator comma 
The comma operator is called when it appears next to an object of 
the type the comma is defined for. However, “operator,” is not 
called for function argument lists, only for objects that are out in 
the open, separated by commas. There doesn’t seem to be a lot of 
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practical uses for this operator; it’s in the language for consistency. 
Here’s an example showing how the comma function can be called 
when the comma appears before an object, as well as after: 

//: C12:OverloadingOperatorComma.cpp 

#include <iostream> 

using namespace std; 

 

class After { 

public: 

  const After& operator,(const After&) const { 

    cout << "After::operator,()" << endl; 

    return *this; 

  } 

}; 

 

class Before {}; 

 

Before& operator,(int, Before& b) { 

  cout << "Before::operator,()" << endl; 

  return b; 

} 

 

int main() { 

  After a, b; 

  a, b;  // Operator comma called 

 

  Before c; 

  1, c;  // Operator comma called 

} ///:~ 
 

The global function allows the comma to be placed before the object 
in question. The usage shown is fairly obscure and questionable. 
Although you would probably use a comma-separated list as part of 
a more complex expression, it’s too subtle to use in most situations. 

Operator-> 
The operator–> is generally used when you want to make an 
object appear to be a pointer. Since such an object has more 
“smarts” built into it than exist for a typical pointer, an object like 
this is often called a smart pointer. These are especially useful if 
you want to “wrap” a class around a pointer to make that pointer 
safe, or in the common usage of an iterator, which is an object that 
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moves through a collection /container of other objects and selects 
them one at a time, without providing direct access to the 
implementation of the container. (You’ll often find containers and 
iterators in class libraries, such as in the Standard C++ Library, 
described in Volume 2 of this book.) 

A pointer dereference operator must be a member function. It has 
additional, atypical constraints: It must return an object (or 
reference to an object) that also has a pointer dereference operator, 
or it must return a pointer that can be used to select what the 
pointer dereference operator arrow is pointing at. Here’s a simple 
example: 

//: C12:SmartPointer.cpp 

#include <iostream> 

#include <vector> 

#include "../require.h" 

using namespace std; 

 

class Obj { 

  static int i, j; 

public: 

  void f() const { cout << i++ << endl; } 

  void g() const { cout << j++ << endl; } 

}; 

 

// Static member definitions: 

int Obj::i = 47; 

int Obj::j = 11; 

 

// Container: 

class ObjContainer { 

  vector<Obj*> a; 

public: 

  void add(Obj* obj) { a.push_back(obj); } 

  friend class SmartPointer; 

}; 

 

class SmartPointer { 

  ObjContainer& oc; 

  int index; 

public: 

  SmartPointer(ObjContainer& objc) : oc(objc) { 
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    index = 0; 

  } 

  // Return value indicates end of list: 

  bool operator++() { // Prefix 

    if(index >= oc.a.size()) return false; 

    if(oc.a[++index] == 0) return false; 

    return true; 

  } 

  bool operator++(int) { // Postfix 

    return operator++(); // Use prefix version 

  } 

  Obj* operator->() const { 

    require(oc.a[index] != 0, "Zero value " 

      "returned by SmartPointer::operator->()"); 

    return oc.a[index]; 

  } 

}; 

 

int main() { 

  const int sz = 10; 

  Obj o[sz]; 

  ObjContainer oc; 

  for(int i = 0; i < sz; i++) 

    oc.add(&o[i]); // Fill it up 

  SmartPointer sp(oc); // Create an iterator 

  do { 

    sp->f(); // Pointer dereference operator call 

    sp->g(); 

  } while(sp++); 

} ///:~ 
 

The class Obj defines the objects that are manipulated in this 
program. The functions f( ) and g( ) simply print out interesting 
values using static data members. Pointers to these objects are 
stored inside containers of type ObjContainer using its add( ) 
function. ObjContainer looks like an array of pointers, but you’ll 
notice there’s no way to get the pointers back out again. However, 
SmartPointer is declared as a friend class, so it has permission 
to look inside the container. The SmartPointer class looks very 
much like an intelligent pointer – you can move it forward using 
operator++ (you can also define an operator– –), it won’t go 
past the end of the container it’s pointing to, and it produces (via 
the pointer dereference operator) the value it’s pointing to. Notice 
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that the SmartPointer is a custom fit for the container it’s created 
for; unlike an ordinary pointer, there isn’t a “general purpose” 
smart pointer. You will learn more about the smart pointers called 
“iterators” in the last chapter of this book and in Volume 2 
(downloadable from www.BruceEckel.com). 

In main( ), once the container oc is filled with Obj objects, a 
SmartPointer sp is created. The smart pointer calls happen in the 
expressions: 

sp->f(); // Smart pointer calls 

sp->g(); 
 

Here, even though sp doesn’t actually have f( ) and g( ) member 
functions, the pointer dereference operator automatically calls 
those functions for the Obj* that is returned by 
SmartPointer::operator–>. The compiler performs all the 
checking to make sure the function call works properly. 

Although the underlying mechanics of the pointer dereference 
operator are more complex than the other operators, the goal is 
exactly the same: to provide a more convenient syntax for the users 
of your classes. 

A nested iterator 
It’s more common to see a “smart pointer” or “iterator” class nested 
within the class that it services. The previous example can be 
rewritten to nest SmartPointer inside ObjContainer like this: 

//: C12:NestedSmartPointer.cpp 

#include <iostream> 

#include <vector> 

#include "../require.h" 

using namespace std; 

 

class Obj { 

  static int i, j; 

public: 

  void f() { cout << i++ << endl; } 

  void g() { cout << j++ << endl; } 

}; 
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// Static member definitions: 

int Obj::i = 47; 

int Obj::j = 11; 

 

// Container: 

class ObjContainer { 

  vector<Obj*> a; 

public: 

  void add(Obj* obj) { a.push_back(obj); } 

  class SmartPointer; 

  friend SmartPointer; 

  class SmartPointer { 

    ObjContainer& oc; 

    unsigned int index; 

  public: 

    SmartPointer(ObjContainer& objc) : oc(objc) { 

      index = 0; 

    } 

    // Return value indicates end of list: 

    bool operator++() { // Prefix 

      if(index >= oc.a.size()) return false; 

      if(oc.a[++index] == 0) return false; 

      return true; 

    } 

    bool operator++(int) { // Postfix 

      return operator++(); // Use prefix version 

    } 

    Obj* operator->() const { 

      require(oc.a[index] != 0, "Zero value " 

        "returned by SmartPointer::operator->()"); 

      return oc.a[index]; 

    } 

  }; 

  // Function to produce a smart pointer that  

  // points to the beginning of the ObjContainer: 

  SmartPointer begin() {  

    return SmartPointer(*this); 

  } 

}; 

 

int main() { 

  const int sz = 10; 

  Obj o[sz]; 

  ObjContainer oc; 

  for(int i = 0; i < sz; i++) 



514 Thinking in C++ www.BruceEckel.com 

    oc.add(&o[i]); // Fill it up 

  ObjContainer::SmartPointer sp = oc.begin(); 

  do { 

    sp->f(); // Pointer dereference operator call 

    sp->g(); 

  } while(++sp); 

} ///:~ 
 

Besides the actual nesting of the class, there are only two 
differences here. The first is in the declaration of the class so that it 
can be a friend: 

class SmartPointer; 

friend SmartPointer; 
 

The compiler must first know that the class exists before it can be 
told that it’s a friend. 

The second difference is in the ObjContainer member function 
begin( ), which produces a SmartPointer that points to the 
beginning of the ObjContainer sequence. Although it’s really only 
a convenience, it’s valuable because it follows part of the form used 
in the Standard  C++ Library. 

Operator->* 
The operator–>* is a binary operator that behaves like all the 
other binary operators. It is provided for those situations when you 
want to mimic the behavior provided by the built-in pointer-to-
member syntax, described in the previous chapter. 

Just like operator->, the pointer-to-member dereference operator 
is generally used with some kind of object that represents a “smart 
pointer,” although the example shown here will be simpler so it’s 
understandable. The trick when defining operator->* is that it 
must return an object for which the operator( ) can be called with 
the arguments for the member function you’re calling. 

The function call operator( )  must be a member function, and it 
is unique in that it allows any number of arguments. It makes your 
object look like it’s actually a function. Although you could define 
several overloaded operator( ) functions with different 
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arguments, it’s often used for types that only have a single 
operation, or at least an especially prominent one. You’ll see in 
Volume 2 that the Standard C++ Library uses the function call 
operator in order to create “function objects.”  

To create an operator->* you must first create a class with an 
operator( ) that is the type of object that operator->* will return. 
This class must somehow capture the necessary information so that 
when the operator( ) is called (which happens automatically), the 
pointer-to-member will be dereferenced for the object. In the 
following example,  the FunctionObject constructor captures and 
stores both the pointer to the object and the pointer to the member 
function, and then the operator( ) uses those to make the actual 
pointer-to-member call: 

//: C12:PointerToMemberOperator.cpp 

#include <iostream> 

using namespace std; 

 

class Dog { 

public: 

  int run(int i) const {  

    cout << "run\n";   

    return i;  

  } 

  int eat(int i) const {  

     cout << "eat\n";   

     return i;  

  } 

  int sleep(int i) const {  

    cout << "ZZZ\n";  

    return i;  

  } 

  typedef int (Dog::*PMF)(int) const; 

  // operator->* must return an object  

  // that has an operator(): 

  class FunctionObject { 

    Dog* ptr; 

    PMF pmem; 

  public: 

    // Save the object pointer and member pointer 

    FunctionObject(Dog* wp, PMF pmf)  

      : ptr(wp), pmem(pmf) {  
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      cout << "FunctionObject constructor\n"; 

    } 

    // Make the call using the object pointer 

    // and member pointer 

    int operator()(int i) const { 

      cout << "FunctionObject::operator()\n"; 

      return (ptr->*pmem)(i); // Make the call 

    } 

  }; 

  FunctionObject operator->*(PMF pmf) {  

    cout << "operator->*" << endl; 

    return FunctionObject(this, pmf); 

  } 

}; 

  

int main() { 

  Dog w; 

  Dog::PMF pmf = &Dog::run; 

  cout << (w->*pmf)(1) << endl; 

  pmf = &Dog::sleep; 

  cout << (w->*pmf)(2) << endl; 

  pmf = &Dog::eat; 

  cout << (w->*pmf)(3) << endl; 

} ///:~ 
 

Dog has three member functions, all of which take an int argument 
and return an int. PMF is a typedef to simplify defining a pointer-
to-member to Dog’s member functions. 

A FunctionObject is created and returned by operator->*. 
Notice that operator->* knows both the object that the pointer-to-
member is being called for (this) and the pointer-to-member, and 
it passes those to the FunctionObject constructor that stores the 
values. When operator->* is called, the compiler immediately 
turns around and calls operator( ) for the return value of 
operator->*, passing in the arguments that were given to 
operator->*. The FunctionObject::operator( ) takes the 
arguments and then dereferences the “real” pointer-to-member 
using its stored object pointer and pointer-to-member. 

Notice that what you are doing here, just as with operator->, is 
inserting yourself in the middle of the call to operator->*. This 
allows you to perform some extra operations if you need to. 

12: Operator Overloading 517 

The operator->* mechanism implemented here only works for 
member functions that take an int argument and return an int. 
This is limiting, but if you try to create overloaded mechanisms for 
each different possibility, it seems like a prohibitive task. 
Fortunately, C++’s template mechanism (described in the last 
chapter of this book, and in Volume 2) is designed to handle just 
such a problem. 

Operators you can’t overload 
There are certain operators in the available set that cannot be 
overloaded. The general reason for the restriction is safety. If these 
operators were overloadable, it would somehow jeopardize or break 
safety mechanisms, make things harder, or confuse existing 
practice. 

�� The member selection operator.. Currently, the dot has a 
meaning for any member in a class, but if you allow it to be 
overloaded, then you couldn’t access members in the normal 
way; instead you’d have to use a pointer and the arrow 
operator->. 

�� The pointer to member dereference operator.*, for the same 
reason as operator.. 

�� There’s no exponentiation operator. The most popular choice for 
this was operator** from Fortran, but this raised difficult 
parsing questions. Also, C has no exponentiation operator, so 
C++ didn’t seem to need one either because you can always 
perform a function call. An exponentiation operator would add a 
convenient notation, but no new language functionality to 
account for the added complexity of the compiler. 

�� There are no user-defined operators. That is, you can’t make up 
new operators that aren’t currently in the set. Part of the 
problem is how to determine precedence, and part of the 
problem is an insufficient need to account for the necessary 
trouble. 
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�� You can’t change the precedence rules. They’re hard enough to 
remember as it is without letting people play with them. 

Non-member operators 
In some of the previous examples, the operators may be members 
or non-members, and it doesn’t seem to make much difference. 
This usually raises the question, “Which should I choose?” In 
general, if it doesn’t make any difference, they should be members, 
to emphasize the association between the operator and its class. 
When the left-hand operand is always an object of the current class, 
this works fine.  

However, sometimes you want the left-hand operand to be an 
object of some other class. A common place you’ll see this is when 
the operators << and >> are overloaded for iostreams. Since 
iostreams is a fundamental C++ library, you’ll probably want to 
overload these operators for most of your classes, so the process is 
worth memorizing: 

//: C12:IostreamOperatorOverloading.cpp 

// Example of non-member overloaded operators 

#include "../require.h" 

#include <iostream> 

#include <sstream> // "String streams" 

#include <cstring> 

using namespace std; 

 

class IntArray { 

  enum { sz = 5 }; 

  int i[sz]; 

public: 

  IntArray() { memset(i, 0, sz* sizeof(*i)); } 

  int& operator[](int x) { 

    require(x >= 0 && x < sz, 

      "IntArray::operator[] out of range"); 

    return i[x]; 

  } 

  friend ostream& 

    operator<<(ostream& os, const IntArray& ia); 

  friend istream& 
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    operator>>(istream& is, IntArray& ia); 

}; 

 

ostream&  

operator<<(ostream& os, const IntArray& ia) { 

  for(int j = 0; j < ia.sz; j++) { 

    os << ia.i[j]; 

    if(j != ia.sz -1) 

      os << ", "; 

  } 

  os << endl; 

  return os; 

} 

 

istream& operator>>(istream& is, IntArray& ia){ 

  for(int j = 0; j < ia.sz; j++) 

    is >> ia.i[j]; 

  return is; 

} 

 

int main() { 

  stringstream input("47 34 56 92 103"); 

  IntArray I; 

  input >> I; 

  I[4] = -1; // Use overloaded operator[] 

  cout << I; 

} ///:~ 
 

This class also contains an overloaded operator [ ], which returns 
a reference to a legitimate value in the array. Because a reference is 
returned, the expression 

I[4] = -1; 
 

not only looks much more civilized than if pointers were used, it 
also accomplishes the desired effect. 

It’s important that the overloaded shift operators pass and return 
by reference, so the actions will affect the external objects. In the 
function definitions, expressions like 

os << ia.i[j]; 
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cause the existing overloaded operator functions to be called (that 
is, those defined in <iostream>). In this case, the function called 
is ostream& operator<<(ostream&, int) because ia.i[j] 
resolves to an int. 

Once all the actions are performed on the istream or ostream, it 
is returned so it can be used in a more complicated expression. 

In main( ), a new type of iostream is used: the stringstream 
(declared in <sstream>). This is a class that takes a string (which 
it can create from a char array, as shown here) and turns it into an 
iostream. In the example above, this means that the shift 
operators can be tested without opening a file or typing data in on 
the command line. 

The form shown in this example for the inserter and extractor is 
standard. If you want to create these operators for your own class, 
copy the function signatures and return types above and follow the 
form of the body. 

Basic guidelines 
Murray1 suggests these guidelines for choosing between members 
and non-members: 

Operator Recommended use 

All unary operators member 

= ( ) [ ] –> –>* 
must be member 

+=   –=   /=   *=   ^=    
&=   |=   %=   >>=   
<<= 

member 

All other binary 
operators 

non-member 

                                                   
1 Rob Murray,  C++ Strategies & Tactics, Addison-Wesley, 1993, page 47. 
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Overloading assignment 
A common source of confusion with new C++ programmers is 
assignment. This is no doubt because the = sign is such a 
fundamental operation in programming, right down to copying a 
register at the machine level. In addition, the copy-constructor 
(described in Chapter 11) is also sometimes invoked when the = 
sign is used: 

MyType b; 

MyType a = b; 

a = b; 
 

In the second line, the object a is being defined. A new object is 
being created where one didn’t exist before. Because you know by 
now how defensive the C++ compiler is about object initialization, 
you know that a constructor must always be called at the point 
where an object is defined. But which constructor? a is being 
created from an existing MyType object (b, on the right side of the 
equal sign), so there’s only one choice: the copy-constructor. Even 
though an equal sign is involved, the copy-constructor is called. 

In the third line, things are different. On the left side of the equal 
sign, there’s a previously initialized object. Clearly, you don’t call a 
constructor for an object that’s already been created. In this case 
MyType::operator= is called for a, taking as an argument 
whatever appears on the right-hand side. (You can have multiple 
operator= functions to take different types of right-hand 
arguments.) 

This behavior is not restricted to the copy-constructor. Any time 
you’re initializing an object using an = instead of the ordinary 
function-call form of the constructor, the compiler will look for a 
constructor that accepts whatever is on the right-hand side: 

//: C12:CopyingVsInitialization.cpp 

class Fi { 

public: 

  Fi() {} 

}; 
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class Fee { 

public: 

  Fee(int) {} 

  Fee(const Fi&) {} 

}; 

 

int main() { 

  Fee fee = 1; // Fee(int) 

  Fi fi; 

  Fee fum = fi; // Fee(Fi) 

} ///:~ 
 

When dealing with the = sign, it’s important to keep this distinction 
in mind: If the object hasn’t been created yet, initialization is 
required; otherwise the assignment operator= is used. 

It’s even better to avoid writing code that uses the = for 
initialization; instead, always use the explicit constructor form. The 
two constructions with the equal sign then become: 

Fee fee(1); 

Fee fum(fi); 
 

This way, you’ll avoid confusing your readers. 

Behavior of operator= 
In Integer.h and Byte.h, you saw that operator= can be only a 
member function. It is intimately connected to the object on the left 
side of the ‘=’. If it was possible to define operator= globally, then 
you might attempt to redefine the built-in ‘=’ sign: 

int operator=(int, MyType); // Global = not allowed! 
 

The compiler skirts this whole issue by forcing you to make 
operator= a member function. 

When you create an operator=, you must copy all of the necessary 
information from the right-hand object into the current object (that 
is, the object that operator= is being called for) to perform 
whatever you consider “assignment” for your class. For simple 
objects, this is obvious: 
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//: C12:SimpleAssignment.cpp 

// Simple operator=() 

#include <iostream> 

using namespace std; 

 

class Value { 

  int a, b; 

  float c; 

public: 

  Value(int aa = 0, int bb = 0, float cc = 0.0) 

    : a(aa), b(bb), c(cc) {} 

  Value& operator=(const Value& rv) { 

    a = rv.a; 

    b = rv.b; 

    c = rv.c; 

    return *this; 

  } 

  friend ostream& 

  operator<<(ostream& os, const Value& rv) { 

    return os << "a = " << rv.a << ", b = " 

      << rv.b << ", c = " << rv.c; 

  } 

}; 

 

int main() { 

  Value a, b(1, 2, 3.3); 

  cout << "a: " << a << endl; 

  cout << "b: " << b << endl; 

  a = b; 

  cout << "a after assignment: " << a << endl; 

} ///:~ 
 

Here, the object on the left side of the = copies all the elements of 
the object on the right, then returns a reference to itself, which 
allows a more complex expression to be created. 

This example includes a common mistake. When you’re assigning 
two objects of the same type, you should always check first for self-
assignment: is the object being assigned to itself? In some cases, 
such as this one, it’s harmless if you perform the assignment 
operations anyway, but if changes are made to the implementation 
of the class, it can make a difference, and if you don’t do it as a 
matter of habit, you may forget and cause hard-to-find bugs. 
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Pointers in classes 
What happens if the object is not so simple? For example, what if 
the object contains pointers to other objects? Simply copying a 
pointer means that you’ll end up with two objects pointing to the 
same storage location. In situations like these, you need to do 
bookkeeping of your own. 

There are two common approaches to this problem. The simplest 
technique is to copy whatever the pointer refers to when you do an 
assignment or a copy-construction. This is straightforward: 

//: C12:CopyingWithPointers.cpp 

// Solving the pointer aliasing problem by 

// duplicating what is pointed to during  

// assignment and copy-construction. 

#include "../require.h" 

#include <string> 

#include <iostream> 

using namespace std; 

 

class Dog { 

  string nm; 

public: 

  Dog(const string& name) : nm(name) { 

    cout << "Creating Dog: " << *this << endl; 

  } 

  // Synthesized copy-constructor & operator=  

  // are correct. 

  // Create a Dog from a Dog pointer: 

  Dog(const Dog* dp, const string& msg)  

    : nm(dp->nm + msg) { 

    cout << "Copied dog " << *this << " from " 

         << *dp << endl; 

  } 

  ~Dog() {  

    cout << "Deleting Dog: " << *this << endl; 

  } 

  void rename(const string& newName) { 

    nm = newName; 

    cout << "Dog renamed to: " << *this << endl; 

  } 

  friend ostream& 

  operator<<(ostream& os, const Dog& d) { 
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    return os << "[" << d.nm << "]"; 

  } 

}; 

 

class DogHouse { 

  Dog* p; 

  string houseName; 

public: 

  DogHouse(Dog* dog, const string& house) 

   : p(dog), houseName(house) {} 

  DogHouse(const DogHouse& dh) 

    : p(new Dog(dh.p, " copy-constructed")), 

      houseName(dh.houseName  

        + " copy-constructed") {} 

  DogHouse& operator=(const DogHouse& dh) { 

    // Check for self-assignment: 

    if(&dh != this) { 

      p = new Dog(dh.p, " assigned"); 

      houseName = dh.houseName + " assigned"; 

    } 

    return *this; 

  } 

  void renameHouse(const string& newName) { 

    houseName = newName; 

  } 

  Dog* getDog() const { return p; } 

  ~DogHouse() { delete p; } 

  friend ostream& 

  operator<<(ostream& os, const DogHouse& dh) { 

    return os << "[" << dh.houseName  

      << "] contains " << *dh.p; 

  } 

};  

 

int main() { 

  DogHouse fidos(new Dog("Fido"), "FidoHouse"); 

  cout << fidos << endl; 

  DogHouse fidos2 = fidos; // Copy construction 

  cout << fidos2 << endl; 

  fidos2.getDog()->rename("Spot"); 

  fidos2.renameHouse("SpotHouse"); 

  cout << fidos2 << endl; 

  fidos = fidos2; // Assignment 

  cout << fidos << endl; 

  fidos.getDog()->rename("Max"); 
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  fidos2.renameHouse("MaxHouse"); 

} ///:~ 
 

Dog is a simple class that contains only a string that holds the 
name of the dog. However, you’ll generally know when something 
happens to a Dog because the constructors and destructors print 
information when they are called. Notice that the second 
constructor is a bit like a copy-constructor except that it takes a 
pointer to a Dog instead of a reference, and it has a second 
argument that is a message that’s concatenated to the argument 
Dog’s name. This is used to help trace the behavior of the program. 

You can see that whenever a member function prints information, it 
doesn’t access that information directly but instead sends *this to 
cout. This in turn calls the ostream operator<<. It’s valuable to 
do it this way because if you want to reformat the way that Dog 
information is displayed (as I did by adding the ‘[’ and ‘]’) you only 
need to do it in one place. 

A DogHouse contains a Dog* and demonstrates the four 
functions you will always need to define when your class contains 
pointers: all necessary ordinary constructors, the copy-constructor, 
operator= (either define it or disallow it), and a destructor. The 
operator= checks for self-assignment as a matter of course, even 
though it’s not strictly necessary here. This virtually eliminates the 
possibility that you’ll forget to check for self-assignment if you do 
change the code so that it matters. 

Reference Counting 
In the example above, the copy-constructor and operator= make a 
new copy of what the pointer points to, and the destructor deletes 
it. However, if your object requires a lot of memory or a high 
initialization overhead, you may want to avoid this copying. A 
common approach to this problem is called reference counting. You 
give intelligence to the object that’s being pointed to so it knows 
how many objects are pointing to it. Then copy-construction or 
assignment means attaching another pointer to an existing object 
and incrementing the reference count. Destruction means reducing 
the reference count and destroying the object if the reference count 
goes to zero. 
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But what if you want to write to the object (the Dog in the example 
above)? More than one object may be using this Dog, so you’d be 
modifying someone else’s Dog as well as yours, which doesn’t seem 
very neighborly. To solve this  “aliasing” problem, an additional 
technique called copy-on-write is used. Before writing to a block of 
memory, you make sure no one else is using it. If the reference 
count is greater than one, you must make yourself a personal copy 
of that block before writing it, so you don’t disturb someone else’s 
turf. Here’s a simple example of reference counting and copy-on-
write: 

//: C12:ReferenceCounting.cpp 

// Reference count, copy-on-write 

#include "../require.h" 

#include <string> 

#include <iostream> 

using namespace std; 

 

class Dog { 

  string nm; 

  int refcount; 

  Dog(const string& name)  

    : nm(name), refcount(1) { 

    cout << "Creating Dog: " << *this << endl; 

  } 

  // Prevent assignment: 

  Dog& operator=(const Dog& rv); 

public: 

  // Dogs can only be created on the heap: 

  static Dog* make(const string& name) { 

    return new Dog(name); 

  } 

  Dog(const Dog& d)  

    : nm(d.nm + " copy"), refcount(1) { 

    cout << "Dog copy-constructor: "  

         << *this << endl; 

  } 

  ~Dog() {  

    cout << "Deleting Dog: " << *this << endl; 

  } 

  void attach() {  

    ++refcount; 

    cout << "Attached Dog: " << *this << endl; 
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  } 

  void detach() { 

    require(refcount != 0); 

    cout << "Detaching Dog: " << *this << endl; 

    // Destroy object if no one is using it: 

    if(--refcount == 0) delete this; 

  } 

  // Conditionally copy this Dog. 

  // Call before modifying the Dog, assign 

  // resulting pointer to your Dog*. 

  Dog* unalias() { 

    cout << "Unaliasing Dog: " << *this << endl; 

    // Don't duplicate if not aliased: 

    if(refcount == 1) return this; 

    --refcount; 

    // Use copy-constructor to duplicate: 

    return new Dog(*this); 

  } 

  void rename(const string& newName) { 

    nm = newName; 

    cout << "Dog renamed to: " << *this << endl; 

  } 

  friend ostream& 

  operator<<(ostream& os, const Dog& d) { 

    return os << "[" << d.nm << "], rc = "  

      << d.refcount; 

  } 

}; 

 

class DogHouse { 

  Dog* p; 

  string houseName; 

public: 

  DogHouse(Dog* dog, const string& house) 

   : p(dog), houseName(house) { 

    cout << "Created DogHouse: "<< *this << endl; 

  } 

  DogHouse(const DogHouse& dh) 

    : p(dh.p), 

      houseName("copy-constructed " +  

        dh.houseName) { 

    p->attach(); 

    cout << "DogHouse copy-constructor: " 

         << *this << endl; 

  } 
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  DogHouse& operator=(const DogHouse& dh) { 

    // Check for self-assignment: 

    if(&dh != this) { 

      houseName = dh.houseName + " assigned"; 

      // Clean up what you're using first: 

      p->detach(); 

      p = dh.p; // Like copy-constructor 

      p->attach(); 

    } 

    cout << "DogHouse operator= : " 

         << *this << endl; 

    return *this; 

  } 

  // Decrement refcount, conditionally destroy 

  ~DogHouse() { 

    cout << "DogHouse destructor: "  

         << *this << endl; 

    p->detach();  

  } 

  void renameHouse(const string& newName) { 

    houseName = newName; 

  } 

  void unalias() { p = p->unalias(); } 

  // Copy-on-write. Anytime you modify the  

  // contents of the pointer you must  

  // first unalias it: 

  void renameDog(const string& newName) { 

    unalias(); 

    p->rename(newName); 

  } 

  // ... or when you allow someone else access: 

  Dog* getDog() { 

    unalias(); 

    return p;  

  } 

  friend ostream& 

  operator<<(ostream& os, const DogHouse& dh) { 

    return os << "[" << dh.houseName  

      << "] contains " << *dh.p; 

  } 

};  

 

int main() { 

  DogHouse  

    fidos(Dog::make("Fido"), "FidoHouse"), 
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    spots(Dog::make("Spot"), "SpotHouse"); 

  cout << "Entering copy-construction" << endl; 

  DogHouse bobs(fidos); 

  cout << "After copy-constructing bobs" << endl; 

  cout << "fidos:" << fidos << endl; 

  cout << "spots:" << spots << endl; 

  cout << "bobs:" << bobs << endl; 

  cout << "Entering spots = fidos" << endl; 

  spots = fidos; 

  cout << "After spots = fidos" << endl; 

  cout << "spots:" << spots << endl; 

  cout << "Entering self-assignment" << endl; 

  bobs = bobs; 

  cout << "After self-assignment" << endl; 

  cout << "bobs:" << bobs << endl; 

  // Comment out the following lines: 

  cout << "Entering rename(\"Bob\")" << endl; 

  bobs.getDog()->rename("Bob"); 

  cout << "After rename(\"Bob\")" << endl; 

} ///:~ 
 

The class Dog is the object pointed to by a DogHouse. It contains 
a reference count and functions to control and read the reference 
count. There’s a copy-constructor so you can make a new Dog from 
an existing one. 

The attach( ) function increments the reference count of a Dog to 
indicate there’s another object using it. detach( ) decrements the 
reference count. If the reference count goes to zero, then no one is 
using it anymore, so the member function destroys its own object 
by saying delete this. 

Before you make any modifications (such as renaming a Dog), you 
should ensure that you aren’t changing a Dog that some other 
object is using. You do this by calling DogHouse::unalias( ), 
which in turn calls Dog::unalias( ). The latter function will return 
the existing Dog pointer if the reference count is one (meaning no 
one else is pointing to that Dog), but will duplicate the Dog if the 
reference count is more than one. 

The copy-constructor, instead of creating its own memory, assigns 
Dog to the Dog of the source object. Then, because there’s now an 
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additional object using that block of memory, it increments the 
reference count by calling Dog::attach( ). 

The operator= deals with an object that has already been created 
on the left side of the =, so it must first clean that up by calling 
detach( ) for that Dog, which will destroy the old Dog if no one 
else is using it. Then operator= repeats the behavior of the copy-
constructor. Notice that it first checks to detect whether you’re 
assigning the same object to itself. 

The destructor calls detach( ) to conditionally destroy the Dog. 

To implement copy-on-write, you must control all the actions that 
write to your block of memory. For example, the renameDog( ) 
member function allows you to change the values in the block of 
memory. But first, it uses unalias( ) to prevent the modification of 
an aliased Dog (a Dog with more than one DogHouse object 
pointing to it). And if you need to produce a pointer to a Dog from 
within a DogHouse, you unalias( ) that pointer first. 

main( ) tests the various functions that must work correctly to 
implement reference counting: the constructor, copy-constructor, 
operator=, and destructor. It also tests the copy-on-write by 
calling renameDog( ).  

Here’s the output (after a little reformatting): 

Creating Dog: [Fido], rc = 1 

Created DogHouse: [FidoHouse]  

  contains [Fido], rc = 1 

Creating Dog: [Spot], rc = 1 

Created DogHouse: [SpotHouse]  

  contains [Spot], rc = 1 

Entering copy-construction 

Attached Dog: [Fido], rc = 2 

DogHouse copy-constructor:  

  [copy-constructed FidoHouse]  

    contains [Fido], rc = 2 

After copy-constructing bobs 

fidos:[FidoHouse] contains [Fido], rc = 2 

spots:[SpotHouse] contains [Spot], rc = 1 

bobs:[copy-constructed FidoHouse]  
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  contains [Fido], rc = 2 

Entering spots = fidos 

Detaching Dog: [Spot], rc = 1 

Deleting Dog: [Spot], rc = 0 

Attached Dog: [Fido], rc = 3 

DogHouse operator= : [FidoHouse assigned] 

  contains [Fido], rc = 3 

After spots = fidos 

spots:[FidoHouse assigned] contains [Fido],rc = 3 

Entering self-assignment 

DogHouse operator= : [copy-constructed FidoHouse] 

  contains [Fido], rc = 3 

After self-assignment 

bobs:[copy-constructed FidoHouse]  

  contains [Fido], rc = 3 

Entering rename("Bob") 

After rename("Bob") 

DogHouse destructor: [copy-constructed FidoHouse] 

  contains [Fido], rc = 3 

Detaching Dog: [Fido], rc = 3 

DogHouse destructor: [FidoHouse assigned]  

  contains [Fido], rc = 2 

Detaching Dog: [Fido], rc = 2 

DogHouse destructor: [FidoHouse]  

  contains [Fido], rc = 1 

Detaching Dog: [Fido], rc = 1 

Deleting Dog: [Fido], rc = 0 
 

By studying the output, tracing through the source code, and 
experimenting with the program, you’ll deepen your understanding 
of these techniques. 

Automatic operator= creation 
Because assigning an object to another object of the same type is an 
activity most people expect to be possible, the compiler will 
automatically create a type::operator=(type) if you don’t make 
one. The behavior of this operator mimics that of the automatically 
created copy-constructor; if the class contains objects (or is 
inherited from another class), the operator= for those objects is 
called recursively. This is called memberwise assignment. For 
example, 

//: C12:AutomaticOperatorEquals.cpp 
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#include <iostream> 

using namespace std; 

 

class Cargo { 

public: 

  Cargo& operator=(const Cargo&) { 

    cout << "inside Cargo::operator=()" << endl; 

    return *this; 

  } 

}; 

 

class Truck { 

  Cargo b; 

}; 

 

int main() { 

  Truck a, b; 

  a = b; // Prints: "inside Cargo::operator=()" 

} ///:~ 
 

The automatically generated operator= for Truck calls 
Cargo::operator=. 

In general, you don’t want to let the compiler do this for you. With 
classes of any sophistication (especially if they contain pointers!) 
you want to explicitly create an operator=. If you really don’t want 
people to perform assignment, declare operator= as a private 
function. (You don’t need to define it unless you’re using it inside 
the class.) 

Automatic type conversion 
In C and C++, if the compiler sees an expression or function call 
using a type that isn’t quite the one it needs, it can often perform an 
automatic type conversion from the type it has to the type it wants. 
In C++, you can achieve this same effect for user-defined types by 
defining automatic type conversion functions. These functions 
come in two flavors: a particular type of constructor and an 
overloaded operator. 
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Constructor conversion 
If you define a constructor that takes as its single argument an 
object (or reference) of another type, that constructor allows the 
compiler to perform an automatic type conversion. For example, 

//: C12:AutomaticTypeConversion.cpp 

// Type conversion constructor 

class One { 

public: 

  One() {} 

}; 

 

class Two { 

public: 

  Two(const One&) {} 

}; 

 

void f(Two) {} 

 

int main() { 

  One one; 

  f(one); // Wants a Two, has a One 

} ///:~ 
 

When the compiler sees f( ) called with a One object, it looks at the 
declaration for f( ) and notices it wants a Two. Then it looks to see 
if there’s any way to get a Two from a One, and it finds the 
constructor Two::Two(One), which it quietly calls. The resulting 
Two object is handed to f( ). 

In this case, automatic type conversion has saved you from the 
trouble of defining two overloaded versions of f( ). However, the 
cost is the hidden constructor call to Two, which may matter if 
you’re concerned about the efficiency of calls to f( ). 

Preventing constructor conversion 
There are times when automatic type conversion via the constructor 
can cause problems. To turn it off, you modify the constructor by 
prefacing with the keyword explicit (which only works with 
constructors). Used to modify the constructor of class Two in the 
example above: 
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//: C12:ExplicitKeyword.cpp 

// Using the "explicit" keyword 

class One { 

public: 

  One() {} 

}; 

 

class Two { 

public: 

  explicit Two(const One&) {} 

}; 

 

void f(Two) {} 

 

int main() { 

  One one; 

//!  f(one); // No auto conversion allowed 

  f(Two(one)); // OK -- user performs conversion 

} ///:~ 
 

By making Two’s constructor explicit, the compiler is told not to 
perform any automatic conversion using that particular constructor 
(other non-explicit constructors in that class can still perform 
automatic conversions). If the user wants to make the conversion 
happen, the code must be written out. In the code above, 
f(Two(one)) creates a temporary object of type Two from one, 
just like the compiler did in the previous version. 

Operator conversion 
The second way to produce automatic type conversion is through 
operator overloading. You can create a member function that takes 
the current type and converts it to the desired type using the 
operator keyword followed by the type you want to convert to. 
This form of operator overloading is unique because you don’t 
appear to specify a return type – the return type is the name of the 
operator you’re overloading. Here’s an example: 

//: C12:OperatorOverloadingConversion.cpp 

class Three { 

  int i; 

public: 

  Three(int ii = 0, int = 0) : i(ii) {} 
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}; 

 

class Four { 

  int x; 

public: 

  Four(int xx) : x(xx) {} 

  operator Three() const { return Three(x); } 

}; 

 

void g(Three) {} 

 

int main() { 

  Four four(1); 

  g(four); 

  g(1);  // Calls Three(1,0) 

} ///:~ 
 

With the constructor technique, the destination class is performing 
the conversion, but with operators, the source class performs the 
conversion. The value of the constructor technique is that you can 
add a new conversion path to an existing system as you’re creating a 
new class. However, creating a single-argument constructor always 
defines an automatic type conversion (even if it’s got more than one 
argument, if the rest of the arguments are defaulted), which may 
not be what you want (in which case you can turn it off using 
explicit). In addition, there’s no way to use a constructor 
conversion from a user-defined type to a built-in type; this is 
possible only with operator overloading. 

Reflexivity 
One of the most convenient reasons to use global overloaded 
operators instead of member operators is that in the global 
versions, automatic type conversion may be applied to either 
operand, whereas with member objects, the left-hand operand must 
already be the proper type. If you want both operands to be 
converted, the global versions can save a lot of coding. Here’s a 
small example: 

//: C12:ReflexivityInOverloading.cpp 

class Number { 

  int i; 

public: 
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  Number(int ii = 0) : i(ii) {} 

  const Number 

  operator+(const Number& n) const { 

    return Number(i + n.i); 

  } 

  friend const Number 

    operator-(const Number&, const Number&); 

}; 

 

const Number 

  operator-(const Number& n1, 

            const Number& n2) { 

    return Number(n1.i - n2.i); 

} 

 

int main() { 

  Number a(47), b(11); 

  a + b; // OK 

  a + 1; // 2nd arg converted to Number 

//! 1 + a; // Wrong! 1st arg not of type Number 

  a - b; // OK 

  a - 1; // 2nd arg converted to Number 

  1 - a; // 1st arg converted to Number 

} ///:~ 
 

Class Number has both a member operator+ and a friend 
operator–. Because there’s a constructor that takes a single int 
argument, an int can be automatically converted to a Number, but 
only under the right conditions. In main( ), you can see that 
adding a Number to another Number works fine because it’s an 
exact match to the overloaded operator. Also, when the compiler 
sees a Number followed by a + and an int, it can match to the 
member function Number::operator+ and convert the int 
argument to a Number using the constructor. But when it sees an 
int, a +, and a Number, it doesn’t know what to do because all it 
has is Number::operator+, which requires that the left operand 
already be a Number object. Thus, the compiler issues an error. 

With the friend operator–, things are different. The compiler 
needs to fill in both its arguments however it can; it isn’t restricted 
to having a Number as the left-hand argument. Thus, if it sees  

1 – a 
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it can convert the first argument to a Number using the 
constructor. 

Sometimes you want to be able to restrict the use of your operators 
by making them members. For example, when multiplying a matrix 
by a vector, the vector must go on the right. But if you want your 
operators to be able to convert either argument, make the operator 
a friend function. 

Fortunately, the compiler will not take 1 – 1 and convert both 
arguments to Number objects and then call operator–. That 
would mean that existing C code might suddenly start to work 
differently. The compiler matches the “simplest” possibility first, 
which is the built-in operator for the expression 1 – 1. 

Type conversion example 
An example in which automatic type conversion is extremely 
helpful occurs with any class that encapsulates character strings (in 
this case, we will just implement the class using the Standard C++ 
string class because it’s simple). Without automatic type 
conversion, if you want to use all the existing string functions from 
the Standard C library, you have to create a member function for 
each one, like this: 

//: C12:Strings1.cpp 

// No auto type conversion 

#include "../require.h" 

#include <cstring> 

#include <cstdlib> 

#include <string> 

using namespace std; 

 

class Stringc { 

  string s; 

public: 

  Stringc(const string& str = "") : s(str) {} 

  int strcmp(const Stringc& S) const { 

    return ::strcmp(s.c_str(), S.s.c_str()); 

  } 

  // ... etc., for every function in string.h 
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}; 

 

int main() { 

  Stringc s1("hello"), s2("there"); 

  s1.strcmp(s2); 

} ///:~ 
 

Here, only the strcmp( ) function is created, but you’d have to 
create a corresponding function for every one in <cstring> that 
might be needed. Fortunately, you can provide an automatic type 
conversion allowing access to all the functions in <cstring>: 

//: C12:Strings2.cpp 

// With auto type conversion 

#include "../require.h" 

#include <cstring> 

#include <cstdlib> 

#include <string> 

using namespace std; 

 

class Stringc { 

  string s; 

public: 

  Stringc(const string& str = "") : s(str) {} 

  operator const char*() const {  

    return s.c_str();  

  } 

}; 

 

int main() { 

  Stringc s1("hello"), s2("there"); 

  strcmp(s1, s2); // Standard C function 

  strspn(s1, s2); // Any string function! 

} ///:~ 
 

Now any function that takes a char* argument can also take a 
Stringc argument because the compiler knows how to make a 
char* from a Stringc. 

Pitfalls in automatic type conversion 
Because the compiler must choose how to quietly perform a type 
conversion, it can get into trouble if you don’t design your 
conversions correctly. A simple and obvious situation occurs with a 
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class X that can convert itself to an object of class Y with an 
operator Y( ). If class Y has a constructor that takes a single 
argument of type X, this represents the identical type conversion. 
The compiler now has two ways to go from X to Y, so it will 
generate an ambiguity error when that conversion occurs: 

//: C12:TypeConversionAmbiguity.cpp 

class Orange; // Class declaration 

 

class Apple { 

public: 

  operator Orange() const; // Convert Apple to Orange 

}; 

 

class Orange { 

public: 

  Orange(Apple); // Convert Apple to Orange 

}; 

 

void f(Orange) {} 

 

int main() { 

  Apple a; 

//! f(a); // Error: ambiguous conversion 

} ///:~ 
 

The obvious solution to this problem is not to do it. Just provide a 
single path for automatic conversion from one type to another. 

A more difficult problem to spot occurs when you provide 
automatic conversion to more than one type. This is sometimes 
called fan-out: 

//: C12:TypeConversionFanout.cpp 

class Orange {}; 

class Pear {}; 

 

class Apple { 

public: 

  operator Orange() const; 

  operator Pear() const; 

}; 
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// Overloaded eat(): 

void eat(Orange); 

void eat(Pear); 

 

int main() { 

  Apple c; 

//! eat(c); 

  // Error: Apple -> Orange or Apple -> Pear ??? 

} ///:~ 
 

Class Apple has automatic conversions to both Orange and Pear. 
The insidious thing about this is that there’s no problem until 
someone innocently comes along and creates two overloaded 
versions of eat( ). (With only one version, the code in main( ) 
works fine.) 

Again, the solution – and the general watchword with automatic 
type conversion – is to provide only a single automatic conversion 
from one type to another. You can have conversions to other types; 
they just shouldn’t be automatic. You can create explicit function 
calls with names like makeA( ) and makeB( ). 

Hidden activities 
Automatic type conversion can introduce more underlying activities 
than you may expect. As a little brain teaser, look at this 
modification of CopyingVsInitialization.cpp: 

//: C12:CopyingVsInitialization2.cpp 

class Fi {}; 

 

class Fee { 

public: 

  Fee(int) {} 

  Fee(const Fi&) {} 

}; 

 

class Fo { 

  int i; 

public: 

  Fo(int x = 0) : i(x) {} 

  operator Fee() const { return Fee(i); } 

}; 
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int main() { 

  Fo fo; 

  Fee fee = fo; 

} ///:~ 
 

There is no constructor to create the Fee fee from a Fo object. 
However, Fo has an automatic type conversion to a Fee. There’s no 
copy-constructor to create a Fee from a Fee, but this is one of the 
special functions the compiler can create for you. (The default 
constructor, copy-constructor, operator=, and destructor can be 
synthesized automatically by the compiler.) So for the relatively 
innocuous statement 

Fee fee = fo; 
 

the automatic type conversion operator is called, and a copy-
constructor is created. 

Use automatic type conversion carefully. As with all operator 
overloading, it’s excellent when it significantly reduces a coding 
task, but it’s usually not worth using gratuitously. 

Summary 
The whole reason for the existence of operator overloading is for 
those situations when it makes life easier. There’s nothing 
particularly magical about it; the overloaded operators are just 
functions with funny names, and the function calls happen to be 
made for you by the compiler when it spots the right pattern. But if 
operator overloading doesn’t provide a significant benefit to you 
(the creator of the class) or the user of the class, don’t confuse the 
issue by adding it. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  
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1.  Create a simple class with an overloaded operator++. 
Try calling this operator in both pre- and postfix form 
and see what kind of compiler warning you get. 

2.  Create a simple class containing an int and overload the 
operator+ as a member function. Also provide a 
print( ) member function that takes an ostream& as an 
argument and prints to that ostream&. Test your class 
to show that it works correctly. 

3.  Add a binary operator- to Exercise 2 as a member 
function. Demonstrate that you can use your objects in 
complex expressions like  
a + b – c. 

4.  Add an operator++ and operator-- to Exercise 2, both 
the prefix and the postfix versions, such that they return 
the incremented or decremented object. Make sure that 
the postfix versions return the correct value.  

5.  Modify the increment and decrement operators in 
Exercise 4 so that the prefix versions are non-const and 
the postfix versions are const. Show that they work 
correctly and explain why this would be done in practice. 

6.  Change the print( ) function in Exercise 2 so that it is 
the overloaded operator<< as in 
IostreamOperatorOverloading.cpp. 

7.  Modify Exercise 3 so that the operator+ and operator- 
are non-member functions. Demonstrate that they still 
work correctly. 

8.  Add the unary operator- to Exercise 2 and demonstrate 
that it works correctly. 

9.  Create a class that contains a single private char. 
Overload the iostream operators << and >> (as in 
IostreamOperatorOverloading.cpp) and test them. 
You can test them with fstreams, stringstreams, and 
cin and cout. 

10.  Determine the dummy constant value that your compiler 
passes for postfix operator++ and operator--.  

11.  Write a Number class that holds a double, and add 
overloaded operators for +, –, *, /, and assignment. 
Choose the return values for these functions so that 
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expressions can be chained together, and for efficiency. 
Write an automatic type conversion operator int( ). 

12.  Modify Exercise 11 so that the return value optimization 
is used, if you have not already done so. 

13.  Create a class that contains a pointer, and demonstrate 
that if you allow the compiler to synthesize the 
operator= the result of using that operator will be 
pointers that are aliased to the same storage. Now fix the 
problem by defining your own operator= and 
demonstrate that it corrects the aliasing. Make sure you 
check for self-assignment and handle that case properly. 

14.  Write a class called Bird that contains a string member 
and a static int. In the default constructor, use the int to 
automatically generate an identifier that you build in the 
string, along with the name of the class (Bird #1, Bird 
#2, etc.). Add an operator<< for ostreams to print out 
the Bird objects. Write an assignment operator= and a 
copy-constructor. In main( ), verify that everything 
works correctly. 

15.  Write a class called BirdHouse that contains an object, 
a pointer and a reference for class Bird from Exercise 14. 
The constructor should take the three Birds as 
arguments. Add an operator<< for ostreams for 
BirdHouse. Write an assignment operator= and a 
copy-constructor. In main( ), verify that everything 
works correctly. Make sure that you can chain 
assignments for BirdHouse objects and build 
expressions involving multiple operators. 

16.  Add an int data member to both Bird and BirdHouse 
in Exercise 15. Add member operators +, -, *, and / that 
use the int members to perform the operations on the 
respective members. Verify that these work. 

17.  Repeat Exercise 16 using non-member operators. 

18.  Add an operator-- to SmartPointer.cpp and 
NestedSmartPointer.cpp. 

19.  Modify CopyingVsInitialization.cpp so that all of the 
constructors print a message that tells you what’s going 
on. Now verify that the two forms of calls to the copy-
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constructor (the assignment form and the parenthesized 
form) are equivalent. 

20.  Attempt to create a non-member operator= for a class 
and see what kind of compiler message you get. 

21.  Create a class with a copy-constructor that has a second 
argument, a string that has a default value that says “CC 
call.” Create a function that takes an object of your class 
by value and show that your copy-constructor is called 
correctly. 

22.  In CopyingWithPointers.cpp, remove the operator= 
in DogHouse and show that the compiler-synthesized 
operator= correctly copies the string but simply aliases 
the Dog pointer. 

23.  In ReferenceCounting.cpp, add a static int and an 
ordinary int as data members to both Dog and 
DogHouse. In all constructors for both classes, 
increment the static int and assign the result to the 
ordinary int to keep track of the number of objects that 
have been created. Make the necessary modifications so 
that all the printing statements will say the int identifiers 
of the objects involved. 

24.  Create a class containing a string as a data member. 
Initialize the string in the constructor, but do not create 
a copy-constructor or operator=. Make a second class 
that has a member object of your first class; do not create 
a copy-constructor or operator= for this class either. 
Demonstrate that the copy-constructor and operator= 
are properly synthesized by the compiler. 

25.  Combine the classes in 
OverloadingUnaryOperators.cpp and Integer.cpp.  

26.  Modify PointerToMemberOperator.cpp by adding 
two new member functions to Dog that take no 
arguments and return void. Create and test an 
overloaded operator->* that works with your two new 
functions. 

27.  Add an operator->* to NestedSmartPointer.cpp. 

28.  Create two classes, Apple and Orange. In Apple, create 
a constructor that takes an Orange as an argument. 
Create a function that takes an Apple and call that 
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function with an Orange to show that it works. Now 
make the Apple constructor explicit to demonstrate 
that the automatic type conversion is thus prevented. 
Modify the call to your function so that the conversion is 
made explicitly and thus succeeds. 

29.  Add a global operator* to 
ReflexivityInOverloading.cpp and demonstrate that 
it is reflexive. 

30.  Create two classes and create an operator+ and the 
conversion functions such that addition is reflexive for 
the two classes. 

31.  Fix TypeConversionFanout.cpp by creating an 
explicit function to call to perform the type conversion, 
instead of one of the automatic conversion operators. 

32.  Write simple code that uses the +, -, *, and / operators 
for doubles. Figure out how your compiler generates 
assembly code and look at the assembly language that’s 
generated to discover and explain what’s going on under 
the hood. 
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13: Dynamic Object 

Creation 
Sometimes you know the exact quantity, type, and 

lifetime of the objects in your program. But not always. 
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How many planes will an air-traffic system need to handle? How 
many shapes will a CAD system use? How many nodes will there be 
in a network? 

To solve the general programming problem, it’s essential that you 
be able to create and destroy objects at runtime. Of course, C has 
always provided the dynamic memory allocation functions 
malloc( ) and free( ) (along with variants of malloc( )) that 
allocate storage from the heap (also called the free store) at 
runtime. 

However, this simply won’t work in C++. The constructor doesn’t 
allow you to hand it the address of the memory to initialize, and for 
good reason. If you could do that, you might: 

1. Forget. Then guaranteed initialization of objects in C++ 
wouldn’t be guaranteed. 

2. Accidentally do something to the object before you initialize 
it, expecting the right thing to happen. 

3. Hand it the wrong-sized object. 

And of course, even if you did everything correctly, anyone who 
modifies your program is prone to the same errors. Improper 
initialization is responsible for a large portion of programming 
problems, so it’s especially important to guarantee constructor calls 
for objects created on the heap. 

So how does C++ guarantee proper initialization and cleanup, but 
allow you to create objects dynamically on the heap? 

The answer is by bringing dynamic object creation into the core of 
the language. malloc( ) and free( ) are library functions, and thus 
outside the control of the compiler. However, if you have an 
operator to perform the combined act of dynamic storage allocation 
and initialization and another operator to perform the combined act 
of cleanup and releasing storage, the compiler can still guarantee 
that constructors and destructors will be called for all objects. 
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In this chapter, you’ll learn how C++’s new and delete elegantly 
solve this problem by safely creating objects on the heap. 

Object creation 
When a C++ object is created, two events occur: 

1. Storage is allocated for the object. 

2. The constructor is called to initialize that storage. 

By now you should believe that step two always happens. C++ 
enforces it because uninitialized objects are a major source of 
program bugs. It doesn’t matter where or how the object is created 
– the constructor is always called. 

Step one, however, can occur in several ways, or at alternate times: 

1. Storage can be allocated before the program begins, in the 
static storage area. This storage exists for the life of the 
program. 

2. Storage can be created on the stack whenever a particular 
execution point is reached (an opening brace). That storage is 
released automatically at the complementary execution point 
(the closing brace). These stack-allocation operations are 
built into the instruction set of the processor and are very 
efficient. However, you have to know exactly how many 
variables you need when you’re writing the program so the 
compiler can generate the right code. 

3. Storage can be allocated from a pool of memory called the 
heap (also known as the free store). This is called dynamic 
memory allocation. To allocate this memory, a function is 
called at runtime; this means you can decide at any time that 
you want some memory and how much you need. You are 
also responsible for determining when to release the memory, 
which means the lifetime of that memory can be as long as 
you choose – it isn’t determined by scope. 
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Often these three regions are placed in a single contiguous piece of 
physical memory: the static area, the stack, and the heap (in an 
order determined by the compiler writer). However, there are no 
rules. The stack may be in a special place, and the heap may be 
implemented by making calls for chunks of memory from the 
operating system. As a programmer, these things are normally 
shielded from you, so all you need to think about is that the 
memory is there when you call for it. 

C’s approach to the heap 
To allocate memory dynamically at runtime, C provides functions in 
its standard library: malloc( ) and its variants calloc( ) and 
realloc( ) to produce memory from the heap, and free( ) to 
release the memory back to the heap. These functions are pragmatic 
but primitive and require understanding and care on the part of the 
programmer. To create an instance of a class on the heap using C’s 
dynamic memory functions, you’d have to do something like this: 

//: C13:MallocClass.cpp 

// Malloc with class objects 

// What you'd have to do if not for "new" 

#include "../require.h" 

#include <cstdlib> // malloc() & free() 

#include <cstring> // memset() 

#include <iostream> 

using namespace std; 

 

class Obj { 

  int i, j, k; 

  enum { sz = 100 }; 

  char buf[sz]; 

public: 

  void initialize() { // Can't use constructor 

    cout << "initializing Obj" << endl; 

    i = j = k = 0; 

    memset(buf, 0, sz); 

  } 

  void destroy() const { // Can't use destructor 

    cout << "destroying Obj" << endl; 

  } 

}; 
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int main() { 

  Obj* obj = (Obj*)malloc(sizeof(Obj)); 

  require(obj != 0); 

  obj->initialize(); 

  // ... sometime later: 

  obj->destroy(); 

  free(obj); 

} ///:~ 
 

You can see the use of malloc( ) to create storage for the object in 
the line: 

Obj* obj = (Obj*)malloc(sizeof(Obj)); 
 

Here, the user must determine the size of the object (one place for 
an error). malloc( ) returns a void* because it just produces a 
patch of memory, not an object. C++ doesn’t allow a void* to be 
assigned to any other pointer, so it must be cast. 

Because malloc( ) may fail to find any memory (in which case it 
returns zero), you must check the returned pointer to make sure it 
was successful. 

But the worst problem is this line: 

Obj->initialize(); 
 

If users make it this far correctly, they must remember to initialize 
the object before it is used. Notice that a constructor was not used 
because the constructor cannot be called explicitly1 – it’s called for 
you by the compiler when an object is created. The problem here is 
that the user now has the option to forget to perform the 
initialization before the object is used, thus reintroducing a major 
source of bugs. 

It also turns out that many programmers seem to find C’s dynamic 
memory functions too confusing and complicated; it’s not 

                                                   
1 There is a special syntax called placement new that allows you to call a constructor 
for a pre-allocated piece of memory. This is introduced later in the chapter. 
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uncommon to find C programmers who use virtual memory 
machines allocating huge arrays of variables in the static storage 
area to avoid thinking about dynamic memory allocation. Because 
C++ is attempting to make library use safe and effortless for the 
casual programmer, C’s approach to dynamic memory is 
unacceptable. 

operator new 
The solution in C++ is to combine all the actions necessary to create 
an object into a single operator called new. When you create an 
object with new (using a new-expression), it allocates enough 
storage on the heap to hold the object and calls the constructor for 
that storage. Thus, if you say 

MyType *fp = new MyType(1,2); 
 

at runtime, the equivalent of malloc(sizeof(MyType)) is called 
(often, it is literally a call to malloc( )), and the constructor for 
MyType is called with the resulting address as the this pointer, 
using (1,2) as the argument list. By the time the pointer is assigned 
to fp, it’s a live, initialized object – you can’t even get your hands on 
it before then. It’s also automatically the proper MyType type so no 
cast is necessary. 

The default new checks to make sure the memory allocation was 
successful before passing the address to the constructor, so you 
don’t have to explicitly determine if the call was successful. Later in 
the chapter you’ll find out what happens if there’s no memory left. 

You can create a new-expression using any constructor available for 
the class. If the constructor has no arguments, you write the new-
expression without the constructor argument list: 

MyType *fp = new MyType; 
 

Notice how simple the process of creating objects on the heap 
becomes – a single expression, with all the sizing, conversions, and 
safety checks built in. It’s as easy to create an object on the heap as 
it is on the stack. 
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operator delete 
The complement to the new-expression is the delete-expression, 
which first calls the destructor and then releases the memory (often 
with a call to free( )). Just as a new-expression returns a pointer to 
the object, a delete-expression requires the address of an object. 

delete fp; 
 

This destructs and then releases the storage for the dynamically 
allocated MyType object created earlier. 

delete can be called only for an object created by new. If you 
malloc( ) (or calloc( ) or realloc( )) an object and then delete it, 
the behavior is undefined. Because most default implementations of 
new and delete use malloc( ) and free( ), you’d probably end up 
releasing the memory without calling the destructor. 

If the pointer you’re deleting is zero, nothing will happen. For this 
reason, people often recommend setting a pointer to zero 
immediately after you delete it, to prevent deleting it twice. Deleting 
an object more than once is definitely a bad thing to do, and will 
cause problems. 

A simple example 
This example shows that initialization takes place: 

//: C13:Tree.h 

#ifndef TREE_H 

#define TREE_H 

#include <iostream> 

 

class Tree { 

  int height; 

public: 

  Tree(int treeHeight) : height(treeHeight) {} 

  ~Tree() { std::cout << "*"; } 

  friend std::ostream& 

  operator<<(std::ostream& os, const Tree* t) { 

    return os << "Tree height is: " 

              << t->height << std::endl; 

  } 
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};  

#endif // TREE_H ///:~ 

//: C13:NewAndDelete.cpp 

// Simple demo of new & delete 

#include "Tree.h" 

using namespace std; 

 

int main() { 

  Tree* t = new Tree(40); 

  cout << t; 

  delete t; 

} ///:~ 
 

We can prove that the constructor is called by printing out the value 
of the Tree. Here, it’s done by overloading the operator<< to use 
with an ostream and a Tree*. Note, however, that even though 
the function is declared as a friend, it is defined as an inline! This 
is a mere convenience – defining a friend function as an inline to a 
class doesn’t change the friend status or the fact that it’s a global 
function and not a class member function. Also notice that the 
return value is the result of the entire output expression, which is 
an ostream& (which it must be, to satisfy the return value type of 
the function). 

Memory manager overhead 
When you create automatic objects on the stack, the size of the 
objects and their lifetime is built right into the generated code, 
because the compiler knows the exact type, quantity, and scope. 
Creating objects on the heap involves additional overhead, both in 
time and in space. Here’s a typical scenario. (You can replace 
malloc( ) with calloc( ) or realloc( ).) 

You call malloc( ), which requests a block of memory from the 
pool. (This code may actually be part of malloc( ).) 

The pool is searched for a block of memory large enough to satisfy 
the request. This is done by checking a map or directory of some 
sort that shows which blocks are currently in use and which are 
available. It’s a quick process, but it may take several tries so it 
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might not be deterministic – that is, you can’t necessarily count on 
malloc( ) always taking exactly the same amount of time. 

Before a pointer to that block is returned, the size and location of 
the block must be recorded so further calls to malloc( ) won’t use 
it, and so that when you call free( ), the system knows how much 
memory to release. 

The way all this is implemented can vary widely. For example, 
there’s nothing to prevent primitives for memory allocation being 
implemented in the processor. If you’re curious, you can write test 
programs to try to guess the way your malloc( ) is implemented. 
You can also read the library source code, if you have it (the GNU C 
sources are always available). 

Early examples redesigned 
Using new and delete, the Stash example introduced previously 
in this book can be rewritten using all the features discussed in the 
book so far. Examining the new code will also give you a useful 
review of the topics. 

At this point in the book, neither the Stash nor Stack classes will 
“own” the objects they point to; that is, when the Stash or Stack 
object goes out of scope, it will not call delete for all the objects it 
points to. The reason this is not possible is because, in an attempt to 
be generic, they hold void pointers. If you delete a void pointer, 
the only thing that happens is the memory gets released, because 
there’s no type information and no way for the compiler to know 
what destructor to call. 

delete void* is probably a bug 
It’s worth making a point that if you call delete for a void*, it’s 
almost certainly going to be a bug in your program unless the 
destination of that pointer is very simple; in particular, it should not 
have a destructor. Here’s an example to show you what happens: 

//: C13:BadVoidPointerDeletion.cpp 

// Deleting void pointers can cause memory leaks 
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#include <iostream> 

using namespace std; 

 

class Object { 

  void* data; // Some storage 

  const int size; 

  const char id; 

public: 

  Object(int sz, char c) : size(sz), id(c) { 

    data = new char[size]; 

    cout << "Constructing object " << id  

         << ", size = " << size << endl; 

  } 

  ~Object() {  

    cout << "Destructing object " << id << endl; 

    delete []data; // OK, just releases storage, 

    // no destructor calls are necessary 

  } 

}; 

 

int main() { 

  Object* a = new Object(40, 'a'); 

  delete a; 

  void* b = new Object(40, 'b'); 

  delete b; 

} ///:~ 
 

The class Object contains a void* that is initialized to “raw” data 
(it doesn’t point to objects that have destructors). In the Object 
destructor, delete is called for this void* with no ill effects, since 
the only thing we need to happen is for the storage to be released. 

However, in main( ) you can see that it’s very necessary that 
delete know what type of object it’s working with. Here’s the 
output: 

Constructing object a, size = 40 

Destructing object a 

Constructing object b, size = 40 
 

Because delete a knows that a points to an Object, the destructor 
is called and thus the storage allocated for data is released. 
However, if you manipulate an object through a void* as in the 
case of delete b, the only thing that happens is that the storage for 
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the Object is released – but the destructor is not called so there is 
no release of the memory that data points to. When this program 
compiles, you probably won’t see any warning messages; the 
compiler assumes you know what you’re doing. So you get a very 
quiet memory leak. 

If you have a memory leak in your program, search through all the 
delete statements and check the type of pointer being deleted. If 
it’s a void* then you’ve probably found one source of your memory 
leak (C++ provides ample other opportunities for memory leaks, 
however). 

Cleanup responsibility with pointers 
To make the Stash and Stack containers flexible (able to hold any 
type of object), they will hold void pointers. This means that when 
a pointer is returned from the Stash or Stack object, you must cast 
it to the proper type before using it; as seen above, you must also 
cast it to the proper type before deleting it or you’ll get a memory 
leak. 

The other memory leak issue has to do with making sure that 
delete is actually called for each object pointer held in the 
container. The container cannot “own” the pointer because it holds 
it as a void* and thus cannot perform the proper cleanup. The user 
must be responsible for cleaning up the objects. This produces a 
serious problem if you add pointers to objects created on the stack 
and objects created on the heap to the same container because a 
delete-expression is unsafe for a pointer that hasn’t been allocated 
on the heap. (And when you fetch a pointer back from the 
container, how will you know where its object has been allocated?) 
Thus, you must be sure that objects stored in the following versions 
of Stash and Stack are made only on the heap, either through 
careful programming or by creating classes that can only be built on 
the heap. 

It’s also important to make sure that the client programmer takes 
responsibility for cleaning up all the pointers in the container. 
You’ve seen in previous examples how the Stack class checks in its 



558 Thinking in C++ www.BruceEckel.com 

destructor that all the Link objects have been popped. For a Stash 
of pointers, however, another approach is needed. 

Stash for pointers 
This new version of the Stash class, called PStash, holds pointers 
to objects that exist by themselves on the heap, whereas the old 
Stash in earlier chapters copied the objects by value into the Stash 
container. Using new and delete, it’s easy and safe to hold 
pointers to objects that have been created on the heap. 

Here’s the header file for the “pointer Stash”: 

//: C13:PStash.h 

// Holds pointers instead of objects 

#ifndef PSTASH_H 

#define PSTASH_H 

 

class PStash { 

  int quantity; // Number of storage spaces 

  int next; // Next empty space 

   // Pointer storage: 

  void** storage; 

  void inflate(int increase); 

public: 

  PStash() : quantity(0), storage(0), next(0) {} 

  ~PStash(); 

  int add(void* element); 

  void* operator[](int index) const; // Fetch 

  // Remove the reference from this PStash: 

  void* remove(int index); 

  // Number of elements in Stash: 

  int count() const { return next; } 

}; 

#endif // PSTASH_H ///:~ 
 

The underlying data elements are fairly similar, but now storage is 
an array of void pointers, and the allocation of storage for that 
array is performed with new instead of malloc( ). In the 
expression 

void** st = new void*[quantity + increase]; 
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the type of object allocated is a void*, so the expression allocates an 
array of void pointers. 

The destructor deletes the storage where the void pointers are held 
rather than attempting to delete what they point at (which, as 
previously noted, will release their storage and not call the 
destructors because a void pointer has no type information). 

The other change is the replacement of the fetch( ) function with 
operator[ ], which makes more sense syntactically. Again, 
however, a void* is returned, so the user must remember what 
types are stored in the container and cast the pointers when 
fetching them out (a problem that will be repaired in future 
chapters). 

Here are the member function definitions: 

//: C13:PStash.cpp {O} 

// Pointer Stash definitions 

#include "PStash.h" 

#include "../require.h" 

#include <iostream> 

#include <cstring> // 'mem' functions 

using namespace std; 

 

int PStash::add(void* element) { 

  const int inflateSize = 10; 

  if(next >= quantity) 

    inflate(inflateSize); 

  storage[next++] = element; 

  return(next - 1); // Index number 

} 

 

// No ownership: 

PStash::~PStash() { 

  for(int i = 0; i < next; i++) 

    require(storage[i] == 0,  

      "PStash not cleaned up"); 

  delete []storage;  

} 

 

// Operator overloading replacement for fetch 

void* PStash::operator[](int index) const { 
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  require(index >= 0, 

    "PStash::operator[] index negative"); 

  if(index >= next) 

    return 0; // To indicate the end 

  // Produce pointer to desired element: 

  return storage[index]; 

} 

 

void* PStash::remove(int index) { 

  void* v = operator[](index); 

  // "Remove" the pointer: 

  if(v != 0) storage[index] = 0; 

  return v; 

} 

 

void PStash::inflate(int increase) { 

  const int psz = sizeof(void*); 

  void** st = new void*[quantity + increase]; 

  memset(st, 0, (quantity + increase) * psz); 

  memcpy(st, storage, quantity * psz); 

  quantity += increase; 

  delete []storage; // Old storage 

  storage = st; // Point to new memory 

} ///:~ 
 

The add( ) function is effectively the same as before, except that a 
pointer is stored instead of a copy of the whole object. 

The inflate( ) code is modified to handle the allocation of an array 
of void* instead of the previous design, which was only working 
with raw bytes. Here, instead of using the prior approach of copying 
by array indexing, the Standard C library function memset( ) is 
first used to set all the new memory to zero (this is not strictly 
necessary, since the PStash is presumably managing all the 
memory correctly – but it usually doesn’t hurt to throw in a bit of 
extra care). Then memcpy( ) moves the existing data from the old 
location to the new. Often, functions like memset( ) and 
memcpy( ) have been optimized over time, so they may be faster 
than the loops shown previously. But with a function like inflate( ) 
that will probably not be used that often you may not see a 
performance difference. However, the fact that the function calls 
are more concise than the loops may help prevent coding errors. 
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To put the responsibility of object cleanup squarely on the 
shoulders of the client programmer, there are two ways to access 
the pointers in the PStash: the operator[], which simply returns 
the pointer but leaves it as a member of the container, and a second 
member function remove( ), which returns the pointer but also 
removes it from the container by assigning that position to zero. 
When the destructor for PStash is called, it checks to make sure 
that all object pointers have been removed; if not, you’re notified so 
you can prevent a memory leak (more elegant solutions will be 
forthcoming in later chapters). 

A test 
Here’s the old test program for Stash rewritten for the PStash: 

//: C13:PStashTest.cpp 

//{L} PStash 

// Test of pointer Stash 

#include "PStash.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  PStash intStash; 

  // 'new' works with built-in types, too. Note 

  // the "pseudo-constructor" syntax: 

  for(int i = 0; i < 25; i++) 

    intStash.add(new int(i)); 

  for(int j = 0; j < intStash.count(); j++) 

    cout << "intStash[" << j << "] = " 

         << *(int*)intStash[j] << endl; 

  // Clean up: 

  for(int k = 0; k < intStash.count(); k++) 

    delete intStash.remove(k); 

  ifstream in ("PStashTest.cpp"); 

  assure(in, "PStashTest.cpp"); 

  PStash stringStash; 

  string line; 

  while(getline(in, line)) 

    stringStash.add(new string(line)); 

  // Print out the strings: 
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  for(int u = 0; stringStash[u]; u++) 

    cout << "stringStash[" << u << "] = " 

         << *(string*)stringStash[u] << endl; 

  // Clean up: 

  for(int v = 0; v < stringStash.count(); v++) 

    delete (string*)stringStash.remove(v); 

} ///:~ 
 

As before, Stashes are created and filled with information, but this 
time the information is the pointers resulting from new-
expressions. In the first case, note the line: 

intStash.add(new int(i)); 
 

The expression new int(i) uses the pseudo-constructor form, so 
storage for a new int object is created on the heap, and the int is 
initialized to the value i. 

During printing, the value returned by PStash::operator[ ] must 
be cast to the proper type; this is repeated for the rest of the 
PStash objects in the program. It’s an undesirable effect of using 
void pointers as the underlying representation and will be fixed in 
later chapters. 

The second test opens the source code file and reads it one line at a 
time into another PStash. Each line is read into a string using 
getline( ), then a new string is created from line to make an 
independent copy of that line. If we just passed in the address of 
line each time, we’d get a whole bunch of pointers pointing to line, 
which would only contain the last line that was read from the file. 

When fetching the pointers, you see the expression: 

*(string*)stringStash[v] 
 

The pointer returned from operator[ ] must be cast to a string* 
to give it the proper type. Then the string* is dereferenced so the 
expression evaluates to an object, at which point the compiler sees a 
string object to send to cout. 

The objects created on the heap must be destroyed through the use 
of the remove( ) statement or else you’ll get a message at runtime 
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telling you that you haven’t completely cleaned up the objects in the 
PStash. Notice that in the case of the int pointers, no cast is 
necessary because there’s no destructor for an int and all we need is 
memory release: 

delete intStash.remove(k); 
 

However, for the string pointers, if you forget to do the cast you’ll 
have another (quiet) memory leak, so the cast is essential: 

delete (string*)stringStash.remove(k); 
 

Some of these issues (but not all) can be removed using templates 
(which you’ll learn about in Chapter 16). 

new & delete for arrays 
In C++, you can create arrays of objects on the stack or on the heap 
with equal ease, and (of course) the constructor is called for each 
object in the array. There’s one constraint, however: There must be 
a default constructor, except for aggregate initialization on the stack 
(see Chapter 6), because a constructor with no arguments must be 
called for every object. 

When creating arrays of objects on the heap using new, there’s 
something else you must do. An example of such an array is 

MyType* fp = new MyType[100]; 
 

This allocates enough storage on the heap for 100 MyType objects 
and calls the constructor for each one. Now, however, you simply 
have a MyType*, which is exactly the same as you’d get if you said 

MyType* fp2 = new MyType; 
 

to create a single object. Because you wrote the code, you know that 
fp is actually the starting address of an array, so it makes sense to 
select array elements using an expression like fp[3]. But what 
happens when you destroy the array? The statements 

delete fp2; // OK 
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delete fp;  // Not the desired effect 
 

look exactly the same, and their effect will be the same. The 
destructor will be called for the MyType object pointed to by the 
given address, and then the storage will be released. For fp2 this is 
fine, but for fp this means that the other 99 destructor calls won’t 
be made. The proper amount of storage will still be released, 
however, because it is allocated in one big chunk, and the size of the 
whole chunk is stashed somewhere by the allocation routine. 

The solution requires you to give the compiler the information that 
this is actually the starting address of an array. This is accomplished 
with the following syntax: 

delete []fp; 
 

The empty brackets tell the compiler to generate code that fetches 
the number of objects in the array, stored somewhere when the 
array is created, and calls the destructor for that many array 
objects. This is actually an improved syntax from the earlier form, 
which you may still occasionally see in old code: 

delete [100]fp; 
 

which forced the programmer to include the number of objects in 
the array and introduced the possibility that the programmer would 
get it wrong. The additional overhead of letting the compiler handle 
it was very low, and it was considered better to specify the number 
of objects in one place instead of two. 

Making a pointer more like an array 
As an aside, the fp defined above can be changed to point to 
anything, which doesn’t make sense for the starting address of an 
array. It makes more sense to define it as a constant, so any attempt 
to modify the pointer will be flagged as an error. To get this effect, 
you might try 

int const* q = new int[10]; 
 

or 
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const int* q = new int[10]; 
 

but in both cases the const will bind to the int, that is, what is 
being pointed to, rather than the quality of the pointer itself. 
Instead, you must say 

int* const q = new int[10]; 
 

Now the array elements in q can be modified, but any change to q 
(like q++) is illegal, as it is with an ordinary array identifier. 

Running out of storage 
What happens when the operator new cannot find a contiguous 
block of storage large enough to hold the desired object? A special 
function called the new-handler is called. Or rather, a pointer to a 
function is checked, and if the pointer is nonzero, then the function 
it points to is called.  

The default behavior for the new-handler is to throw an exception, 
a subject covered in Volume 2. However, if you’re using heap 
allocation in your program, it’s wise to at least replace the new-
handler with a message that says you’ve run out of memory and 
then aborts the program. That way, during debugging, you’ll have a 
clue about what happened. For the final program you’ll want to use 
more robust recovery. 

You replace the new-handler by including new.h and then calling 
set_new_handler( ) with the address of the function you want 
installed: 

//: C13:NewHandler.cpp 

// Changing the new-handler 

#include <iostream> 

#include <cstdlib> 

#include <new> 

using namespace std; 

 

int count = 0; 

 

void out_of_memory() { 
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  cerr << "memory exhausted after " << count  

    << " allocations!" << endl; 

  exit(1); 

} 

 

int main() { 

  set_new_handler(out_of_memory); 

  while(1) { 

    count++; 

    new int[1000]; // Exhausts memory 

  } 

} ///:~ 
 

The new-handler function must take no arguments and have a void 
return value. The while loop will keep allocating int objects (and 
throwing away their return addresses) until the free store is 
exhausted. At the very next call to new, no storage can be allocated, 
so the new-handler will be called. 

The behavior of the new-handler is tied to operator new, so if you 
overload operator new (covered in the next section) the new-
handler will not be called by default. If you still want the new-
handler to be called you’ll have to write the code to do so inside 
your overloaded operator new. 

Of course, you can write more sophisticated new-handlers, even one 
to try to reclaim memory (commonly known as a garbage 
collector). This is not a job for the novice programmer. 

Overloading new & delete 
When you create a new-expression, two things occur. First, storage 
is allocated using the operator new, then the constructor is called. 
In a delete-expression, the destructor is called, then storage is 
deallocated using the operator delete. The constructor and 
destructor calls are never under your control (otherwise you might 
accidentally subvert them), but you can change the storage 
allocation functions operator new and operator delete. 

The memory allocation system used by new and delete is designed 
for general-purpose use. In special situations, however, it doesn’t 

13: Dynamic Object Creation 567 

serve your needs. The most common reason to change the allocator 
is efficiency: You might be creating and destroying so many objects 
of a particular class that it has become a speed bottleneck. C++ 
allows you to overload new and delete to implement your own 
storage allocation scheme, so you can handle problems like this. 

Another issue is heap fragmentation. By allocating objects of 
different sizes it’s possible to break up the heap so that you 
effectively run out of storage. That is, the storage might be 
available, but because of fragmentation no piece is big enough to 
satisfy your needs. By creating your own allocator for a particular 
class, you can ensure this never happens. 

In embedded and real-time systems, a program may have to run for 
a very long time with restricted resources. Such a system may also 
require that memory allocation always take the same amount of 
time, and there’s no allowance for heap exhaustion or 
fragmentation. A custom memory allocator is the solution; 
otherwise, programmers will avoid using new and delete 
altogether in such cases and miss out on a valuable C++ asset. 

When you overload operator new and operator delete, it’s 
important to remember that you’re changing only the way raw 
storage is allocated. The compiler will simply call your new instead 
of the default version to allocate storage, then call the constructor 
for that storage. So, although the compiler allocates storage and 
calls the constructor when it sees new, all you can change when you 
overload new is the storage allocation portion. (delete has a 
similar limitation.) 

When you overload operator new, you also replace the behavior 
when it runs out of memory, so you must decide what to do in your 
operator new: return zero, write a loop to call the new-handler 
and retry allocation, or (typically) throw a bad_alloc exception 
(discussed in Volume 2, available at www.BruceEckel.com). 

Overloading new and delete is like overloading any other 
operator. However, you have a choice of overloading the global 
allocator or using a different allocator for a particular class. 
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Overloading global new & delete 
This is the drastic approach, when the global versions of new and 
delete are unsatisfactory for the whole system. If you overload the 
global versions, you make the defaults completely inaccessible – 
you can’t even call them from inside your redefinitions. 

The overloaded new must take an argument of size_t (the 
Standard C standard type for sizes). This argument is generated and 
passed to you by the compiler and is the size of the object you’re 
responsible for allocating. You must return a pointer either to an 
object of that size (or bigger, if you have some reason to do so), or to 
zero if you can’t find the memory (in which case the constructor is 
not called!). However, if you can’t find the memory, you should 
probably do something more informative than just returning zero, 
like calling the new-handler or throwing an exception, to signal that 
there’s a problem. 

The return value of operator new is a void*, not a pointer to any 
particular type. All you’ve done is produce memory, not a finished 
object – that doesn’t happen until the constructor is called, an act 
the compiler guarantees and which is out of your control. 

The operator delete takes a void* to memory that was allocated 
by operator new. It’s a void* because operator delete only gets 
the pointer after the destructor is called, which removes the object-
ness from the piece of storage. The return type is void. 

Here’s a simple example showing how to overload the global new 
and delete: 

//: C13:GlobalOperatorNew.cpp 

// Overload global new/delete 

#include <cstdio> 

#include <cstdlib> 

using namespace std; 

 

void* operator new(size_t sz) { 

  printf("operator new: %d Bytes\n", sz); 

  void* m = malloc(sz); 

  if(!m) puts("out of memory"); 

  return m; 
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} 

 

void operator delete(void* m) { 

  puts("operator delete"); 

  free(m); 

} 

 

class S { 

  int i[100]; 

public: 

  S() { puts("S::S()"); } 

  ~S() { puts("S::~S()"); } 

}; 

 

int main() { 

  puts("creating & destroying an int"); 

  int* p = new int(47); 

  delete p; 

  puts("creating & destroying an s"); 

  S* s = new S; 

  delete s; 

  puts("creating & destroying S[3]"); 

  S* sa = new S[3]; 

  delete []sa; 

} ///:~ 
 

Here you can see the general form for overloading new and delete. 
These use the Standard C library functions malloc( ) and free( ) 
for the allocators (which is probably what the default new and 
delete use as well!). However, they also print messages about what 
they are doing. Notice that printf( ) and puts( ) are used rather 
than iostreams. This is because when an iostream object is 
created (like the global cin, cout, and cerr), it calls new to 
allocate memory. With printf( ), you don’t get into a deadlock 
because it doesn’t call new to initialize itself. 

In main( ), objects of built-in types are created to prove that the 
overloaded new and delete are also called in that case. Then a 
single object of type S is created, followed by an array of S. For the 
array, you’ll see from the number of bytes requested that extra 
memory is allocated to store information (inside the array) about 
the number of objects it holds. In all cases, the global overloaded 
versions of new and delete are used. 
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Overloading new & delete for a class 
Although you don’t have to explicitly say static, when you overload 
new and delete for a class, you’re creating static member 
functions. As before, the syntax is the same as overloading any 
other operator. When the compiler sees you use new to create an 
object of your class, it chooses the member operator new over the 
global version. However, the global versions of new and delete are 
used for all other types of objects (unless they have their own new 
and delete). 

In the following example, a primitive storage allocation system is 
created for the class Framis. A chunk of memory is set aside in the 
static data area at program start-up, and that memory is used to 
allocate space for objects of type Framis. To determine which 
blocks have been allocated, a simple array of bytes is used, one byte 
for each block: 

//: C13:Framis.cpp 

// Local overloaded new & delete 

#include <cstddef> // Size_t 

#include <fstream> 

#include <iostream> 

#include <new> 

using namespace std; 

ofstream out("Framis.out"); 

 

class Framis { 

  enum { sz = 10 }; 

  char c[sz]; // To take up space, not used 

  static unsigned char pool[]; 

  static bool alloc_map[]; 

public: 

  enum { psize = 100 };  // frami allowed 

  Framis() { out << "Framis()\n"; } 

  ~Framis() { out << "~Framis() ... "; } 

  void* operator new(size_t) throw(bad_alloc); 

  void operator delete(void*); 

}; 

unsigned char Framis::pool[psize * sizeof(Framis)]; 

bool Framis::alloc_map[psize] = {false}; 

 

// Size is ignored -- assume a Framis object 
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void*  

Framis::operator new(size_t) throw(bad_alloc) { 

  for(int i = 0; i < psize; i++) 

    if(!alloc_map[i]) { 

      out << "using block " << i << " ... "; 

      alloc_map[i] = true; // Mark it used 

      return pool + (i * sizeof(Framis)); 

    } 

  out << "out of memory" << endl; 

  throw bad_alloc(); 

} 

 

void Framis::operator delete(void* m) { 

  if(!m) return; // Check for null pointer 

  // Assume it was created in the pool 

  // Calculate which block number it is: 

  unsigned long block = (unsigned long)m 

    - (unsigned long)pool; 

  block /= sizeof(Framis); 

  out << "freeing block " << block << endl; 

  // Mark it free: 

  alloc_map[block] = false; 

} 

 

int main() { 

  Framis* f[Framis::psize]; 

  try { 

    for(int i = 0; i < Framis::psize; i++) 

      f[i] = new Framis; 

    new Framis; // Out of memory 

  } catch(bad_alloc) { 

    cerr << "Out of memory!" << endl; 

  } 

  delete f[10]; 

  f[10] = 0; 

  // Use released memory: 

  Framis* x = new Framis; 

  delete x; 

  for(int j = 0; j < Framis::psize; j++) 

    delete f[j]; // Delete f[10] OK 

} ///:~ 
 

The pool of memory for the Framis heap is created by allocating an 
array of bytes large enough to hold psize Framis objects. The 
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allocation map is psize elements long, so there’s one bool for every 
block. All the values in the allocation map are initialized to false 
using the aggregate initialization trick of setting the first element so 
the compiler automatically initializes all the rest to their normal 
default value (which is false, in the case of bool). 

The local operator new has the same syntax as the global one. All 
it does is search through the allocation map looking for a false 
value, then sets that location to true to indicate it’s been allocated 
and returns the address of the corresponding memory block. If it 
can’t find any memory, it issues a message to the trace file and 
throws a bad_alloc exception. 

This is the first example of exceptions that you’ve seen in this book. 
Since detailed discussion of exceptions is delayed until Volume 2, 
this is a very simple use of them. In operator new there are two 
artifacts of exception handling. First, the function argument list is 
followed by throw(bad_alloc), which tells the compiler and the 
reader that this function may throw an exception of type 
bad_alloc. Second, if there’s no more memory the function 
actually does throw the exception in the statement throw 
bad_alloc. When an exception is thrown, the function stops 
executing and control is passed to an exception handler, which is 
expressed as a catch clause. 

In main( ), you see the other part of the picture, which is the try-
catch clause. The try block is surrounded by braces and contains all 
the code that may throw exceptions – in this case, any call to new 
that involves Framis objects. Immediately following the try block 
is one or more catch clauses, each one specifying the type of 
exception that they catch. In this case, catch(bad_alloc) says that 
that bad_alloc exceptions will be caught here. This particular 
catch clause is only executed when a bad_alloc exception is 
thrown, and execution continues after the end of the last catch 
clause in the group (there’s only one here, but there could be more). 

In this example, it’s OK to use iostreams because the global 
operator new and delete are untouched. 
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The operator delete assumes the Framis address was created in 
the pool. This is a fair assumption, because the local operator 
new will be called whenever you create a single Framis object on 
the heap – but not an array of them: global new is used for arrays. 
So the user might accidentally have called operator delete 
without using the empty bracket syntax to indicate array 
destruction. This would cause a problem. Also, the user might be 
deleting a pointer to an object created on the stack. If you think 
these things could occur, you might want to add a line to make sure 
the address is within the pool and on a correct boundary (you may 
also begin to see the potential of overloaded new and delete for 
finding memory leaks). 

operator delete calculates the block in the pool that this pointer 
represents, and then sets the allocation map’s flag for that block to 
false to indicate the block has been released. 

In main( ), enough Framis objects are dynamically allocated to 
run out of memory; this checks the out-of-memory behavior. Then 
one of the objects is freed, and another one is created to show that 
the released memory is reused. 

Because this allocation scheme is specific to Framis objects, it’s 
probably much faster than the general-purpose memory allocation 
scheme used for the default new and delete. However, you should 
note that it doesn’t automatically work if inheritance is used 
(inheritance is covered in Chapter 14). 

Overloading new & delete for arrays 
If you overload operator new and delete for a class, those 
operators are called whenever you create an object of that class. 
However, if you create an array of those class objects, the global 
operator new is called to allocate enough storage for the array all 
at once, and the global operator delete is called to release that 
storage. You can control the allocation of arrays of objects by 
overloading the special array versions of operator new[ ] and 
operator delete[ ] for the class. Here’s an example that shows 
when the two different versions are called: 
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//: C13:ArrayOperatorNew.cpp 

// Operator new for arrays 

#include <new> // Size_t definition 

#include <fstream> 

using namespace std; 

ofstream trace("ArrayOperatorNew.out"); 

 

class Widget { 

  enum { sz = 10 }; 

  int i[sz]; 

public: 

  Widget() { trace << "*"; } 

  ~Widget() { trace << "~"; } 

  void* operator new(size_t sz) { 

    trace << "Widget::new: " 

         << sz << " bytes" << endl; 

    return ::new char[sz]; 

  } 

  void operator delete(void* p) { 

    trace << "Widget::delete" << endl; 

    ::delete []p; 

  } 

  void* operator new[](size_t sz) { 

    trace << "Widget::new[]: " 

         << sz << " bytes" << endl; 

    return ::new char[sz]; 

  } 

  void operator delete[](void* p) { 

    trace << "Widget::delete[]" << endl; 

    ::delete []p; 

  } 

}; 

 

int main() { 

  trace << "new Widget" << endl; 

  Widget* w = new Widget; 

  trace << "\ndelete Widget" << endl; 

  delete w; 

  trace << "\nnew Widget[25]" << endl; 

  Widget* wa = new Widget[25]; 

  trace << "\ndelete []Widget" << endl; 

  delete []wa; 

} ///:~ 
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Here, the global versions of new and delete are called so the effect 
is the same as having no overloaded versions of new and delete 
except that trace information is added. Of course, you can use any 
memory allocation scheme you want in the overloaded new and 
delete. 

You can see that the syntax of array new and delete is the same as 
for the individual object versions except for the addition of the 
brackets. In both cases you’re handed the size of the memory you 
must allocate. The size handed to the array version will be the size 
of the entire array. It’s worth keeping in mind that the only thing 
the overloaded operator new is required to do is hand back a 
pointer to a large enough memory block. Although you may 
perform initialization on that memory, normally that’s the job of 
the constructor that will automatically be called for your memory by 
the compiler. 

The constructor and destructor simply print out characters so you 
can see when they’ve been called. Here’s what the trace file looks 
like for one compiler: 

new Widget 

Widget::new: 40 bytes 

* 

delete Widget 

~Widget::delete 

 

new Widget[25] 

Widget::new[]: 1004 bytes 

************************* 

delete []Widget 

~~~~~~~~~~~~~~~~~~~~~~~~~Widget::delete[] 
 

Creating an individual object requires 40 bytes, as you might 
expect. (This machine uses four bytes for an int.) The operator 
new is called, then the constructor (indicated by the *). In a 
complementary fashion, calling delete causes the destructor to be 
called, then the operator delete. 

When an array of Widget objects is created, the array version of 
operator new is used, as promised. But notice that the size 
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requested is four more bytes than expected. This extra four bytes is 
where the system keeps information about the array, in particular, 
the number of objects in the array. That way, when you say 

delete []Widget; 
 

the brackets tell the compiler it’s an array of objects, so the 
compiler generates code to look for the number of objects in the 
array and to call the destructor that many times. You can see that, 
even though the array operator new and operator delete are 
only called once for the entire array chunk, the default constructor 
and destructor are called for each object in the array. 

Constructor calls 
Considering that 

MyType* f = new MyType; 
 

calls new to allocate a MyType-sized piece of storage, then invokes 
the MyType constructor on that storage, what happens if the 
storage allocation in new fails? The constructor is not called in that 
case, so although you still have an unsuccessfully created object, at 
least you haven’t invoked the constructor and handed it a zero this 
pointer. Here’s an example to prove it: 

//: C13:NoMemory.cpp 

// Constructor isn't called if new fails 

#include <iostream> 

#include <new> // bad_alloc definition 

using namespace std; 

 

class NoMemory { 

public: 

  NoMemory() { 

    cout << "NoMemory::NoMemory()" << endl; 

  } 

  void* operator new(size_t sz) throw(bad_alloc){ 

    cout << "NoMemory::operator new" << endl; 

    throw bad_alloc(); // "Out of memory" 

  } 

}; 
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int main() { 

  NoMemory* nm = 0; 

  try { 

    nm = new NoMemory; 

  } catch(bad_alloc) { 

    cerr << "Out of memory exception" << endl; 

  } 

  cout << "nm = " << nm << endl; 

} ///:~ 
 

When the program runs, it does not print the constructor message, 
only the message from operator new and the message in the 
exception handler. Because new never returns, the constructor is 
never called so its message is not printed. 

It’s important that nm be initialized to zero because the new 
expression never completes, and the pointer should be zero to make 
sure you don’t misuse it. However, you should actually do more in 
the exception handler than just print out a message and continue on 
as if the object had been successfully created. Ideally, you will do 
something that will cause the program to recover from the problem, 
or at the least exit after logging an error. 

In earlier versions of C++ it was standard practice to return zero 
from new if storage allocation failed. That would prevent 
construction from occurring. However, if you try to return zero 
from new with a Standard-conforming compiler, it should tell you 
that you ought to throw bad_alloc instead. 

placement new & delete 
There are two other, less common, uses for overloading operator 
new. 

1. You may want to place an object in a specific location in 
memory. This is especially important with hardware-oriented 
embedded systems where an object may be synonymous with 
a particular piece of hardware. 

2. You may want to be able to choose from different allocators 
when calling new. 
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Both of these situations are solved with the same mechanism: The 
overloaded operator new can take more than one argument. As 
you’ve seen before, the first argument is always the size of the 
object, which is secretly calculated and passed by the compiler. But 
the other arguments can be anything you want – the address you 
want the object placed at, a reference to a memory allocation 
function or object, or anything else that is convenient for you. 

The way that you pass the extra arguments to operator new 
during a call may seem slightly curious at first. You put the 
argument list (without the size_t argument, which is handled by 
the compiler) after the keyword new and before the class name of 
the object you’re creating. For example, 

X* xp = new(a) X; 
 

will pass a as the second argument to operator new. Of course, 
this can work only if such an operator new has been declared. 

Here’s an example showing how you can place an object at a 
particular location: 

//: C13:PlacementOperatorNew.cpp 

// Placement with operator new 

#include <cstddef> // Size_t 

#include <iostream> 

using namespace std; 

 

class X { 

  int i; 

public: 

  X(int ii = 0) : i(ii) { 

    cout << "this = " << this << endl; 

  } 

  ~X() { 

    cout << "X::~X(): " << this << endl; 

  } 

  void* operator new(size_t, void* loc) { 

    return loc; 

  } 

}; 

 

int main() { 
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  int l[10]; 

  cout << "l = " << l << endl; 

  X* xp = new(l) X(47); // X at location l 

  xp->X::~X(); // Explicit destructor call 

  // ONLY use with placement! 

} ///:~ 
 

Notice that operator new only returns the pointer that’s passed to 
it. Thus, the caller decides where the object is going to sit, and the 
constructor is called for that memory as part of the new-expression. 

Although this example shows only one additional argument, there’s 
nothing to prevent you from adding more if you need them for 
other purposes. 

A dilemma occurs when you want to destroy the object. There’s only 
one version of operator delete, so there’s no way to say, “Use my 
special deallocator for this object.” You want to call the destructor, 
but you don’t want the memory to be released by the dynamic 
memory mechanism because it wasn’t allocated on the heap. 

The answer is a very special syntax. You can explicitly call the 
destructor, as in 

xp->X::~X(); // Explicit destructor call 
 

A stern warning is in order here. Some people see this as a way to 
destroy objects at some time before the end of the scope, rather 
than either adjusting the scope or (more correctly) using dynamic 
object creation if they want the object’s lifetime to be determined at 
runtime. You will have serious problems if you call the destructor 
this way for an ordinary object created on the stack because the 
destructor will be called again at the end of the scope. If you call the 
destructor this way for an object that was created on the heap, the 
destructor will execute, but the memory won’t be released, which 
probably isn’t what you want. The only reason that the destructor 
can be called explicitly this way is to support the placement syntax 
for operator new. 

There’s also a placement operator delete that is only called if a 
constructor for a placement new expression throws an exception 
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(so that the memory is automatically cleaned up during the 
exception). The placement operator delete has an argument list 
that corresponds to the placement operator new that is called 
before the constructor throws the exception. This topic will be 
explored in the exception handling chapter in Volume 2. 

Summary 
It’s convenient and optimally efficient to create automatic objects 
on the stack, but to solve the general programming problem you 
must be able to create and destroy objects at any time during a 
program’s execution, particularly to respond to information from 
outside the program. Although C’s dynamic memory allocation will 
get storage from the heap, it doesn’t provide the ease of use and 
guaranteed construction necessary in C++. By bringing dynamic 
object creation into the core of the language with new and delete, 
you can create objects on the heap as easily as making them on the 
stack. In addition, you get a great deal of flexibility. You can change 
the behavior of new and delete if they don’t suit your needs, 
particularly if they aren’t efficient enough. Also, you can modify 
what happens when the heap runs out of storage. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Create a class Counted that contains an int id and a 
static int count. The default constructor should begin: 
Counted( ) : id(count++) {. It should also print its id 
and that it’s being created. The destructor should print 
that it’s being destroyed and its id. Test your class. 

2.  Prove to yourself that new and delete always call the 
constructors and destructors by creating an object of 
class Counted (from Exercise 1) with new and 
destroying it with delete. Also create and destroy an 
array of these objects on the heap. 
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3.  Create a PStash object and fill it with new objects from 
Exercise 1. Observe what happens when this PStash 
object goes out of scope and its destructor is called. 

4.  Create a vector< Counted*> and fill it with pointers to 
new Counted objects (from Exercise 1). Move through 
the vector and print the Counted objects, then move 
through again and delete each one. 

5.  Repeat Exercise 4, but add a member function f( ) to 
Counted that prints a message. Move through the 
vector and call f( ) for each object. 

6.  Repeat Exercise 5 using a PStash. 

7.  Repeat Exercise 5 using Stack4.h from Chapter 9. 

8.  Dynamically create an array of objects of class Counted 
(from Exercise 1). Call delete for the resulting pointer, 
without the square brackets. Explain the results. 

9.  Create an object of class Counted (from Exercise 1) 
using new, cast the resulting pointer to a void*, and 
delete that. Explain the results. 

10.  Execute NewHandler.cpp on your machine to see the 
resulting count. Calculate the amount of free store 
available for your program. 

11.  Create a class with an overloaded operator new and 
delete, both the single-object versions and the array 
versions. Demonstrate that both versions work. 

12.  Devise a test for Framis.cpp to show yourself 
approximately how much faster the custom new and 
delete run than the global new and delete. 

13.  Modify NoMemory.cpp so that it contains an array of 
int and so that it actually allocates memory instead of 
throwing bad_alloc. In main( ), set up a while loop 
like the one in NewHandler.cpp to run out of memory 
and see what happens if your operator new does not 
test to see if the memory is successfully allocated. Then 
add the check to your operator new and throw 
bad_alloc. 

14.  Create a class with a placement new with a second 
argument of type string. The class should contain a 
static vector<string> where the second new 
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argument is stored. The placement new should allocate 
storage as normal. In main( ), make calls to your 
placement new with string arguments that describe the 
calls (you may want to use the preprocessor’s __FILE__ 
and __LINE__ macros). 

15.  Modify ArrayOperatorNew.cpp by adding a static 
vector<Widget*> that adds each Widget address that 
is allocated in operator new and removes it when it is 
released via operator delete. (You may need to look up 
information about vector in your Standard C++ Library 
documentation or in the 2nd volume of this book, 
available at the Web site.) Create a second class called 
MemoryChecker that has a destructor that prints out 
the number of Widget pointers in your vector. Create a 
program with a single global instance of 
MemoryChecker and in main( ), dynamically allocate 
and destroy several objects and arrays of Widget. Show 
that MemoryChecker reveals memory leaks. 
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14: Inheritance & 

Composition 
One of the most compelling features about C++ is  

code reuse. But to be revolutionary, you need to be  

able to do a lot more than copy code and change it. 
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That’s the C approach, and it hasn’t worked very well. As with most 
everything in C++, the solution revolves around the class. You reuse 
code by creating new classes, but instead of creating them from 
scratch, you use existing classes that someone else has built and 
debugged. 

The trick is to use the classes without soiling the existing code. In 
this chapter you’ll see two ways to accomplish this. The first is quite 
straightforward: You simply create objects of your existing class 
inside the new class. This is called composition because the new 
class is composed of objects of existing classes. 

The second approach is subtler. You create a new class as a type of 
an existing class. You literally take the form of the existing class and 
add code to it, without modifying the existing class. This magical act 
is called inheritance, and most of the work is done by the compiler. 
Inheritance is one of the cornerstones of object-oriented 
programming and has additional implications that will be explored 
in Chapter 15. 

It turns out that much of the syntax and behavior are similar for 
both composition and inheritance (which makes sense; they are 
both ways of making new types from existing types). In this chapter, 
you’ll learn about these code reuse mechanisms. 

Composition syntax 
Actually, you’ve been using composition all along to create classes. 
You’ve just been composing classes primarily with built-in types 
(and sometimes strings). It turns out to be almost as easy to use 
composition with user-defined types. 

Consider a class that is valuable for some reason: 

//: C14:Useful.h 

// A class to reuse 

#ifndef USEFUL_H 

#define USEFUL_H 

 

class X { 
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  int i; 

public: 

  X() { i = 0; } 

  void set(int ii) { i = ii; } 

  int read() const { return i; } 

  int permute() { return i = i * 47; } 

}; 

#endif // USEFUL_H ///:~ 
 

The data members are private in this class, so it’s completely safe 
to embed an object of type X as a public object in a new class, 
which makes the interface straightforward: 

//: C14:Composition.cpp 

// Reuse code with composition 

#include "Useful.h" 

 

class Y { 

  int i; 

public: 

  X x; // Embedded object 

  Y() { i = 0; } 

  void f(int ii) { i = ii; } 

  int g() const { return i; } 

}; 

 

int main() { 

  Y y; 

  y.f(47); 

  y.x.set(37); // Access the embedded object 

} ///:~ 
 

Accessing the member functions of the embedded object (referred 
to as a subobject) simply requires another member selection. 

It’s more common to make the embedded objects private, so they 
become part of the underlying implementation (which means you 
can change the implementation if you want). The public interface 
functions for your new class then involve the use of the embedded 
object, but they don’t necessarily mimic the object’s interface: 

//: C14:Composition2.cpp 

// Private embedded objects 

#include "Useful.h" 
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class Y { 

  int i; 

  X x; // Embedded object 

public: 

  Y() { i = 0; } 

  void f(int ii) { i = ii; x.set(ii); } 

  int g() const { return i * x.read(); } 

  void permute() { x.permute(); } 

}; 

 

int main() { 

  Y y; 

  y.f(47); 

  y.permute(); 

} ///:~ 
 

Here, the permute( ) function is carried through to the new class 
interface, but the other member functions of X are used within the 
members of Y. 

Inheritance syntax 
The syntax for composition is obvious, but to perform inheritance 
there’s a new and different form. 

When you inherit, you are saying, “This new class is like that old 
class.” You state this in code by giving the name of the class as 
usual, but before the opening brace of the class body, you put a 
colon and the name of the base class (or base classes, separated by 
commas, for multiple inheritance). When you do this, you 
automatically get all the data members and member functions in 
the base class. Here’s an example: 

//: C14:Inheritance.cpp 

// Simple inheritance 

#include "Useful.h" 

#include <iostream> 

using namespace std; 

 

class Y : public X { 

  int i; // Different from X's i 
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public: 

  Y() { i = 0; } 

  int change() { 

    i = permute(); // Different name call 

    return i; 

  } 

  void set(int ii) { 

    i = ii; 

    X::set(ii); // Same-name function call 

  } 

}; 

 

int main() { 

  cout << "sizeof(X) = " << sizeof(X) << endl; 

  cout << "sizeof(Y) = " 

       << sizeof(Y) << endl; 

  Y D; 

  D.change(); 

  // X function interface comes through: 

  D.read(); 

  D.permute(); 

  // Redefined functions hide base versions: 

  D.set(12); 

} ///:~ 
 

You can see Y being inherited from X, which means that Y will 
contain all the data elements in X and all the member functions in 
X. In fact, Y contains a subobject of X just as if you had created a 
member object of X inside Y instead of inheriting from X. Both 
member objects and base class storage are referred to as subobjects. 

All the private elements of X are still private in Y; that is, just 
because Y inherits from X doesn’t mean Y can break the protection 
mechanism. The private elements of X are still there, they take up 
space – you just can’t access them directly. 

In main( ) you can see that Y’s data elements are combined with 
X’s because the sizeof(Y) is twice as big as sizeof(X). 

You’ll notice that the base class is preceded by public. During 
inheritance, everything defaults to private. If the base class were 
not preceded by public, it would mean that all of the public 
members of the base class would be private in the derived class. 
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This is almost never what you want1; the desired result is to keep all 
the public members of the base class public in the derived class. 
You do this by using the public keyword during inheritance. 

In change( ), the base-class permute( ) function is called. The 
derived class has direct access to all the public base-class 
functions. 

The set( ) function in the derived class redefines the set( ) 
function in the base class. That is, if you call the functions read( ) 
and permute( ) for an object of type Y, you’ll get the base-class 
versions of those functions (you can see this happen inside 
main( )). But if you call set( ) for a Y object, you get the redefined 
version. This means that if you don’t like the version of a function 
you get during inheritance, you can change what it does. (You can 
also add completely new functions like change( ).) 

However, when you’re redefining a function, you may still want to 
call the base-class version. If, inside set( ), you simply call set( ) 
you’ll get the local version of the function – a recursive function 
call. To call the base-class version, you must explicitly name the 
base class using the scope resolution operator. 

The constructor initializer list 
You’ve seen how important it is in C++ to guarantee proper 
initialization, and it’s no different during composition and 
inheritance. When an object is created, the compiler guarantees 
that constructors for all of its subobjects are called. In the examples 
so far, all of the subobjects have default constructors, and that’s 
what the compiler automatically calls. But what happens if your 
subobjects don’t have default constructors, or if you want to change 
a default argument in a constructor? This is a problem because the 
new class constructor doesn’t have permission to access the 

                                                   
1 In Java, the compiler won’t let you decrease the access of a member during 
inheritance. 
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private data elements of the subobject, so it can’t initialize them 
directly. 

The solution is simple: Call the constructor for the subobject. C++ 
provides a special syntax for this, the constructor initializer list. 
The form of the constructor initializer list echoes the act of 
inheritance. With inheritance, you put the base classes after a colon 
and before the opening brace of the class body. In the constructor 
initializer list, you put the calls to subobject constructors after the 
constructor argument list and a colon, but before the opening brace 
of the function body. For a class MyType, inherited from Bar, this 
might look like this: 

MyType::MyType(int i) : Bar(i) { // ... 
 

if Bar has a constructor that takes a single int argument. 

Member object initialization 
It turns out that you use this very same syntax for member object 
initialization when using composition. For composition, you give 
the names of the objects instead of the class names. If you have 
more than one constructor call in the initializer list, you separate 
the calls with commas: 

MyType2::MyType2(int i) : Bar(i), m(i+1) { // ... 
 

This is the beginning of a constructor for class MyType2, which is 
inherited from Bar and contains a member object called m. Note 
that while you can see the type of the base class in the constructor 
initializer list, you only see the member object identifier. 

Built-in types in the initializer list 
The constructor initializer list allows you to explicitly call the 
constructors for member objects. In fact, there’s no other way to 
call those constructors. The idea is that the constructors are all 
called before you get into the body of the new class’s constructor. 
That way, any calls you make to member functions of subobjects 
will always go to initialized objects. There’s no way to get to the 
opening brace of the constructor without some constructor being 



590 Thinking in C++ www.BruceEckel.com 

called for all the member objects and base-class objects, even if the 
compiler must make a hidden call to a default constructor. This is a 
further enforcement of the C++ guarantee that no object (or part of 
an object) can get out of the starting gate without its constructor 
being called. 

This idea that all of the member objects are initialized by the time 
the opening brace of the constructor is reached is a convenient 
programming aid as well. Once you hit the opening brace, you can 
assume all subobjects are properly initialized and focus on specific 
tasks you want to accomplish in the constructor. However, there’s a 
hitch: What about member objects of built-in types, which don’t 
have constructors? 

To make the syntax consistent, you are allowed to treat built-in 
types as if they have a single constructor, which takes a single 
argument: a variable of the same type as the variable you’re 
initializing. Thus, you can say 

//: C14:PseudoConstructor.cpp 

class X { 

  int i; 

  float f; 

  char c; 

  char* s; 

public: 

  X() : i(7), f(1.4), c('x'), s("howdy") {} 

}; 

 

int main() { 

  X x; 

  int i(100);  // Applied to ordinary definition 

  int* ip = new int(47); 

} ///:~ 
 

The action of these “pseudo-constructor calls” is to perform a 
simple assignment. It’s a convenient technique and a good coding 
style, so you’ll see it used often. 

It’s even possible to use the pseudo-constructor syntax when 
creating a variable of a built-in type outside of a class: 
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int i(100); 

int* ip = new int(47); 
 

This makes built-in types act a little bit more like objects. 
Remember, though, that these are not real constructors. In 
particular, if you don’t explicitly make a pseudo-constructor call, no 
initialization is performed. 

Combining composition & inheritance 
Of course, you can use composition & inheritance together. The 
following example shows the creation of a more complex class using 
both of them. 

//: C14:Combined.cpp 

// Inheritance & composition 

 

class A { 

  int i; 

public: 

  A(int ii) : i(ii) {} 

  ~A() {} 

  void f() const {} 

}; 

 

class B { 

  int i; 

public: 

  B(int ii) : i(ii) {} 

  ~B() {} 

  void f() const {} 

}; 

 

class C : public B { 

  A a; 

public: 

  C(int ii) : B(ii), a(ii) {} 

  ~C() {} // Calls ~A() and ~B() 

  void f() const {  // Redefinition 

    a.f(); 

    B::f(); 

  } 

}; 
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int main() { 

  C c(47); 

} ///:~ 
 

C inherits from B and has a member object (“is composed of”) of 
type A. You can see the constructor initializer list contains calls to 
both the base-class constructor and the member-object constructor. 

The function C::f( ) redefines B::f( ), which it inherits, and also 
calls the base-class version. In addition, it calls a.f( ). Notice that 
the only time you can talk about redefinition of functions is during 
inheritance; with a member object you can only manipulate the 
public interface of the object, not redefine it. In addition, calling f( ) 
for an object of class C would not call a.f( ) if C::f( ) had not been 
defined, whereas it would call B::f( ). 

Automatic destructor calls 
Although you are often required to make explicit constructor calls 
in the initializer list, you never need to make explicit destructor 
calls because there’s only one destructor for any class, and it doesn’t 
take any arguments. However, the compiler still ensures that all 
destructors are called, and that means all of the destructors in the 
entire hierarchy, starting with the most-derived destructor and 
working back to the root. 

It’s worth emphasizing that constructors and destructors are quite 
unusual in that every one in the hierarchy is called, whereas with a 
normal member function only that function is called, but not any of 
the base-class versions. If you also want to call the base-class 
version of a normal member function that you’re overriding, you 
must do it explicitly. 

Order of constructor & destructor calls 
It’s interesting to know the order of constructor and destructor calls 
when an object has many subobjects. The following example shows 
exactly how it works: 

//: C14:Order.cpp 

// Constructor/destructor order 
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#include <fstream> 

using namespace std; 

ofstream out("order.out"); 

 

#define CLASS(ID) class ID { \ 

public: \ 

  ID(int) { out << #ID " constructor\n"; } \ 

  ~ID() { out << #ID " destructor\n"; } \ 

}; 

 

CLASS(Base1); 

CLASS(Member1); 

CLASS(Member2); 

CLASS(Member3); 

CLASS(Member4); 

 

class Derived1 : public Base1 { 

  Member1 m1; 

  Member2 m2; 

public: 

  Derived1(int) : m2(1), m1(2), Base1(3) { 

    out << "Derived1 constructor\n"; 

  } 

  ~Derived1() { 

    out << "Derived1 destructor\n"; 

  } 

}; 

 

class Derived2 : public Derived1 { 

  Member3 m3; 

  Member4 m4; 

public: 

  Derived2() : m3(1), Derived1(2), m4(3) { 

    out << "Derived2 constructor\n"; 

  } 

  ~Derived2() { 

    out << "Derived2 destructor\n"; 

  } 

}; 

 

int main() { 

  Derived2 d2; 

} ///:~ 
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First, an ofstream object is created to send all the output to a file. 
Then, to save some typing and demonstrate a macro technique that 
will be replaced by a much improved technique in Chapter 16, a 
macro is created to build some of the classes, which are then used in 
inheritance and composition. Each of the constructors and 
destructors report themselves to the trace file. Note that the 
constructors are not default constructors; they each have an int 
argument. The argument itself has no identifier; its only reason for 
existence is to force you to explicitly call the constructors in the 
initializer list. (Eliminating the identifier prevents compiler 
warning messages.) 

The output of this program is 

Base1 constructor 

Member1 constructor 

Member2 constructor 

Derived1 constructor 

Member3 constructor 

Member4 constructor 

Derived2 constructor 

Derived2 destructor 

Member4 destructor 

Member3 destructor 

Derived1 destructor 

Member2 destructor 

Member1 destructor 

Base1 destructor 
 

You can see that construction starts at the very root of the class 
hierarchy, and that at each level the base class constructor is called 
first, followed by the member object constructors. The destructors 
are called in exactly the reverse order of the constructors – this is 
important because of potential dependencies (in the derived-class 
constructor or destructor, you must be able to assume that the base-
class subobject is still available for use, and has already been 
constructed – or not destroyed yet). 

It’s also interesting that the order of constructor calls for member 
objects is completely unaffected by the order of the calls in the 
constructor initializer list. The order is determined by the order that 
the member objects are declared in the class. If you could change 
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the order of constructor calls via the constructor initializer list, you 
could have two different call sequences in two different 
constructors, but the poor destructor wouldn’t know how to 
properly reverse the order of the calls for destruction, and you could 
end up with a dependency problem. 

Name hiding 
If you inherit a class and provide a new definition for one of its 
member functions, there are two possibilities. The first is that you 
provide the exact signature and return type in the derived class 
definition as in the base class definition. This is called redefining 
for ordinary member functions and overriding when the base class 
member function is a virtual function (virtual functions are the 
normal case, and will be covered in detail in Chapter 15). But what 
happens if you change the member function argument list or return 
type in the derived class? Here’s an example: 

//: C14:NameHiding.cpp 

// Hiding overloaded names during inheritance 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Base { 

public: 

  int f() const {  

    cout << "Base::f()\n";  

    return 1;  

  } 

  int f(string) const { return 1; } 

  void g() {} 

}; 

 

class Derived1 : public Base { 

public: 

  void g() const {} 

}; 

 

class Derived2 : public Base { 

public: 

  // Redefinition: 
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  int f() const {  

    cout << "Derived2::f()\n";  

    return 2; 

  } 

}; 

 

class Derived3 : public Base { 

public: 

  // Change return type: 

  void f() const { cout << "Derived3::f()\n"; } 

}; 

 

class Derived4 : public Base { 

public: 

  // Change argument list: 

  int f(int) const {  

    cout << "Derived4::f()\n";  

    return 4;  

  } 

}; 

 

int main() { 

  string s("hello"); 

  Derived1 d1; 

  int x = d1.f(); 

  d1.f(s); 

  Derived2 d2; 

  x = d2.f(); 

//!  d2.f(s); // string version hidden 

  Derived3 d3; 

//!  x = d3.f(); // return int version hidden 

  Derived4 d4; 

//!  x = d4.f(); // f() version hidden 

  x = d4.f(1); 

} ///:~ 
 

In Base you see an overloaded function f( ), and Derived1 doesn’t 
make any changes to f( ) but it does redefine g( ). In main( ), you 
can see that both overloaded versions of f( ) are available in 
Derived1. However, Derived2 redefines one overloaded version 
of f( ) but not the other, and the result is that the second 
overloaded form is unavailable. In Derived3, changing the return 
type hides both the base class versions, and Derived4 shows that 
changing the argument list also hides both the base class versions. 
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In general, we can say that anytime you redefine an overloaded 
function name from the base class, all the other versions are 
automatically hidden in the new class. In Chapter 15, you’ll see that 
the addition of the virtual keyword affects function overloading a 
bit more. 

If you change the interface of the base class by modifying the 
signature and/or return type of a member function from the base 
class, then you’re using the class in a different way than inheritance 
is normally intended to support. It doesn’t necessarily mean you’re 
doing it wrong, it’s just that the ultimate goal of inheritance is to 
support polymorphism, and if you change the function signature or 
return type then you are actually changing the interface of the base 
class. If this is what you have intended to do then you are using 
inheritance primarily to reuse code, and not to maintain the 
common interface of the base class (which is an essential aspect of 
polymorphism). In general, when you use inheritance this way it 
means you’re taking a general-purpose class and specializing it for a 
particular need – which is usually, but not always, considered the 
realm of composition. 

For example, consider the Stack class from Chapter 9. One of the 
problems with that class is that you had to perform a cast every 
time you fetched a pointer from the container. This is not only 
tedious, it’s unsafe – you could cast the pointer to anything you 
want. 

An approach that seems better at first glance is to specialize the 
general Stack class using inheritance. Here’s an example that uses 
the class from Chapter 9:  

//: C14:InheritStack.cpp 

// Specializing the Stack class 

#include "../C09/Stack4.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class StringStack : public Stack { 
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public: 

  void push(string* str) { 

    Stack::push(str); 

  } 

  string* peek() const { 

    return (string*)Stack::peek(); 

  } 

  string* pop() { 

    return (string*)Stack::pop(); 

  } 

  ~StringStack() { 

    string* top = pop(); 

    while(top) { 

      delete top; 

      top = pop(); 

    } 

  } 

}; 

 

int main() { 

  ifstream in("InheritStack.cpp"); 

  assure(in, "InheritStack.cpp"); 

  string line; 

  StringStack textlines; 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  string* s; 

  while((s = textlines.pop()) != 0) { // No cast! 

    cout << *s << endl; 

    delete s; 

  } 

} ///:~ 
 

Since all of the member functions in Stack4.h are inlines, nothing 
needs to be linked. 

StringStack specializes Stack so that push( ) will accept only 
String pointers. Before, Stack would accept void pointers, so the 
user had no type checking to make sure the proper pointers were 
inserted. In addition, peek( ) and pop( ) now return String 
pointers instead of void pointers, so no cast is necessary to use the 
pointer. 
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Amazingly enough, this extra type-checking safety is free in 
push( ), peek( ), and pop( )! The compiler is being given extra 
type information that it uses at compile-time, but the functions are 
inlined and no extra code is generated. 

Name hiding comes into play here because, in particular, the 
push( ) function has a different signature: the argument list is 
different. If you had two versions of push( ) in the same class, that 
would be overloading, but in this case overloading is not what we 
want because that would still allow you to pass any kind of pointer 
into push( ) as a void*. Fortunately, C++ hides the push(void*) 
version in the base class in favor of the new version that’s defined in 
the derived class, and therefore it only allows us to push( ) string 
pointers onto the StringStack.  

Because we can now guarantee that we know exactly what kind of 
objects are in the container, the destructor works correctly and the 
ownership problem is solved – or at least, one approach to the 
ownership problem. Here, if you push( ) a string pointer onto the 
StringStack, then (according to the semantics of the 
StringStack) you’re also passing ownership of that pointer to the 
StringStack. If you pop( ) the pointer, you not only get the 
pointer, but you also get ownership of that pointer. Any pointers 
that are left on the StringStack when its destructor is called are 
then deleted by that destructor. And since these are always string 
pointers and the delete statement is working on string pointers 
instead of void pointers, the proper destruction happens and 
everything works correctly. 

There is a drawback: this class works only for string pointers. If 
you want a Stack that works with some other kind of object, you 
must write a new version of the class so that it works only with your 
new kind of object. This rapidly becomes tedious, and is finally 
solved using templates, as you will see in Chapter 16. 

We can make an additional observation about this example: it 
changes the interface of the Stack in the process of inheritance. If 
the interface is different, then a StringStack really isn’t a Stack, 
and you will never be able to correctly use a StringStack as a 
Stack. This makes the use of inheritance questionable here; if 
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you’re not creating a StringStack that is-a type of Stack, then 
why are you inheriting? A more appropriate version of 
StringStack will be shown later in this chapter. 

Functions that don’t automatically 

inherit 
Not all functions are automatically inherited from the base class 
into the derived class. Constructors and destructors deal with the 
creation and destruction of an object, and they can know what to do 
with the aspects of the object only for their particular class, so all 
the constructors and destructors in the hierarchy below them must 
be called. Thus, constructors and destructors don’t inherit and must 
be created specially for each derived class. 

In addition, the operator= doesn’t inherit because it performs a 
constructor-like activity. That is, just because you know how to 
assign all the members of an object on the left-hand side of the = 
from an object on the right-hand side doesn’t mean that assignment 
will still have the same meaning after inheritance. 

In lieu of inheritance, these functions are synthesized by the 
compiler if you don’t create them yourself. (With constructors, you 
can’t create any constructors in order for the compiler to synthesize 
the default constructor and the copy-constructor.) This was briefly 
described in Chapter 6. The synthesized constructors use 
memberwise initialization and the synthesized operator= uses 
memberwise assignment. Here’s an example of the functions that 
are synthesized by the compiler: 

//: C14:SynthesizedFunctions.cpp 

// Functions that are synthesized by the compiler 

#include <iostream> 

using namespace std; 

 

class GameBoard { 

public: 

  GameBoard() { cout << "GameBoard()\n"; } 

  GameBoard(const GameBoard&) {  

    cout << "GameBoard(const GameBoard&)\n";  
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  } 

  GameBoard& operator=(const GameBoard&) { 

    cout << "GameBoard::operator=()\n"; 

    return *this; 

  } 

  ~GameBoard() { cout << "~GameBoard()\n"; } 

}; 

 

class Game { 

  GameBoard gb; // Composition 

public: 

  // Default GameBoard constructor called: 

  Game() { cout << "Game()\n"; } 

  // You must explicitly call the GameBoard 

  // copy-constructor or the default constructor 

  // is automatically called instead: 

  Game(const Game& g) : gb(g.gb) {  

    cout << "Game(const Game&)\n";  

  } 

  Game(int) { cout << "Game(int)\n"; } 

  Game& operator=(const Game& g) { 

    // You must explicitly call the GameBoard 

    // assignment operator or no assignment at  

    // all happens for gb! 

    gb = g.gb; 

    cout << "Game::operator=()\n"; 

    return *this; 

  } 

  class Other {}; // Nested class 

  // Automatic type conversion: 

  operator Other() const { 

    cout << "Game::operator Other()\n"; 

    return Other(); 

  } 

  ~Game() { cout << "~Game()\n"; } 

}; 

 

class Chess : public Game {}; 

 

void f(Game::Other) {} 

 

class Checkers : public Game { 

public: 

  // Default base-class constructor called: 

  Checkers() { cout << "Checkers()\n"; } 
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  // You must explicitly call the base-class 

  // copy constructor or the default constructor 

  // will be automatically called instead: 

  Checkers(const Checkers& c) : Game(c) { 

    cout << "Checkers(const Checkers& c)\n"; 

  } 

  Checkers& operator=(const Checkers& c) { 

    // You must explicitly call the base-class 

    // version of operator=() or no base-class 

    // assignment will happen: 

    Game::operator=(c); 

    cout << "Checkers::operator=()\n"; 

    return *this; 

  } 

}; 

 

int main() { 

  Chess d1;  // Default constructor 

  Chess d2(d1); // Copy-constructor 

//! Chess d3(1); // Error: no int constructor 

  d1 = d2; // Operator= synthesized 

  f(d1); // Type-conversion IS inherited 

  Game::Other go; 

//!  d1 = go; // Operator= not synthesized  

           // for differing types 

  Checkers c1, c2(c1); 

  c1 = c2; 

} ///:~ 
 

The constructors and the operator= for GameBoard and Game 
announce themselves so you can see when they’re used by the 
compiler. In addition, the operator Other( ) performs automatic 
type conversion from a Game object to an object of the nested class 
Other. The class Chess simply inherits from Game and creates no 
functions (to see how the compiler responds). The function f( ) 
takes an Other object to test the automatic type conversion 
function. 

In main( ), the synthesized default constructor and copy-
constructor for the derived class Chess are called. The Game 
versions of these constructors are called as part of the constructor-
call hierarchy. Even though it looks like inheritance, new 
constructors are actually synthesized by the compiler. As you might 
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expect, no constructors with arguments are automatically created 
because that’s too much for the compiler to intuit. 

The operator= is also synthesized as a new function in Chess 
using memberwise assignment (thus, the base-class version is 
called) because that function was not explicitly written in the new 
class. And of course the destructor was automatically synthesized 
by the compiler. 

Because of all these rules about rewriting functions that handle 
object creation, it may seem a little strange at first that the 
automatic type conversion operator is inherited. But it’s not too 
unreasonable – if there are enough pieces in Game to make an 
Other object, those pieces are still there in anything derived from 
Game and the type conversion operator is still valid (even though 
you may in fact want to redefine it). 

operator= is synthesized only for assigning objects of the same 
type. If you want to assign one type to another you must always 
write that operator= yourself. 

If you look more closely at Game, you’ll see that the copy-
constructor and assignment operators have explicit calls to the 
member object copy-constructor and assignment operator. You will 
normally want to do this because otherwise, in the case of the copy-
constructor, the default member object constructor will be used 
instead, and in the case of the assignment operator, no assignment 
at all will be done for the member objects! 

Lastly, look at Checkers, which explicitly writes out the default 
constructor, copy-constructor, and assignment operators. In the 
case of the default constructor, the default base-class constructor is 
automatically called, and that’s typically what you want. But, and 
this is an important point, as soon as you decide to write your own 
copy-constructor and assignment operator, the compiler assumes 
that you know what you’re doing and does not automatically call the 
base-class versions, as it does in the synthesized functions. If you 
want the base class versions called (and you typically do) then you 
must explicitly call them yourself. In the Checkers copy-
constructor, this call appears in the constructor initializer list: 
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Checkers(const Checkers& c) : Game(c) { 
 

In the Checkers assignment operator, the base class call is the first 
line in the function body: 

Game::operator=(c); 
 

These calls should be part of the canonical form that you use 
whenever you inherit a class. 

Inheritance and static member functions 
static member functions act the same as non-static member 
functions: 

1. They inherit into the derived class. 

2. If you redefine a static member, all the other overloaded 
functions in the base class are hidden. 

3. If you change the signature of a function in the base class, all 
the base class versions with that function name are hidden 
(this is really a variation of the previous point). 

However, static member functions cannot be virtual (a topic 
covered thoroughly in Chapter 15). 

Choosing composition vs. inheritance 
Both composition and inheritance place subobjects inside your new 
class. Both use the constructor initializer list to construct these 
subobjects. You may now be wondering what the difference is 
between the two, and when to choose one over the other. 

Composition is generally used when you want the features of an 
existing class inside your new class, but not its interface. That is, 
you embed an object to implement features of your new class, but 
the user of your new class sees the interface you’ve defined rather 
than the interface from the original class. To do this, you follow the 
typical path of embedding private objects of existing classes inside 
your new class. 
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Occasionally, however, it makes sense to allow the class user to 
directly access the composition of your new class, that is, to make 
the member objects public. The member objects use access control 
themselves, so this is a safe thing to do and when the user knows 
you’re assembling a bunch of parts, it makes the interface easier to 
understand. A Car class is a good example: 

//: C14:Car.cpp 

// Public composition 

 

class Engine { 

public: 

  void start() const {} 

  void rev() const {} 

  void stop() const {} 

}; 

 

class Wheel { 

public: 

  void inflate(int psi) const {} 

}; 

 

class Window { 

public: 

  void rollup() const {} 

  void rolldown() const {} 

}; 

 

class Door { 

public: 

  Window window; 

  void open() const {} 

  void close() const {} 

}; 

 

class Car { 

public: 

  Engine engine; 

  Wheel wheel[4]; 

  Door left, right; // 2-door 

}; 

 

int main() { 

  Car car; 
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  car.left.window.rollup(); 

  car.wheel[0].inflate(72); 

} ///:~ 
 

Because the composition of a Car is part of the analysis of the 
problem (and not simply part of the underlying design), making the 
members public assists the client programmer’s understanding of 
how to use the class and requires less code complexity for the 
creator of the class. 

With a little thought, you’ll also see that it would make no sense to 
compose a Car using a “vehicle” object – a car doesn’t contain a 
vehicle, it is a vehicle. The is-a relationship is expressed with 
inheritance, and the has-a relationship is expressed with 
composition. 

Subtyping 
Now suppose you want to create a type of ifstream object that not 
only opens a file but also keeps track of the name of the file. You can 
use composition and embed both an ifstream and a string into 
the new class: 

//: C14:FName1.cpp 

// An fstream with a file name 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class FName1 { 

  ifstream file; 

  string fileName; 

  bool named; 

public: 

  FName1() : named(false) {} 

  FName1(const string& fname)  

    : fileName(fname), file(fname.c_str()) { 

    assure(file, fileName); 

    named = true; 

  } 

  string name() const { return fileName; } 
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  void name(const string& newName) { 

    if(named) return; // Don't overwrite 

    fileName = newName; 

    named = true; 

  } 

  operator ifstream&() { return file; } 

}; 

 

int main() { 

  FName1 file("FName1.cpp"); 

  cout << file.name() << endl; 

  // Error: close() not a member: 

//!  file.close(); 

} ///:~ 
 

There’s a problem here, however. An attempt is made to allow the 
use of the FName1 object anywhere an ifstream object is used by 
including an automatic type conversion operator from FName1 to 
an ifstream&. But in main, the line 

file.close(); 
 

will not compile because automatic type conversion happens only in 
function calls, not during member selection. So this approach won’t 
work. 

A second approach is to add the definition of close( ) to FName1: 

void close() { file.close(); } 
 

This will work if there are only a few functions you want to bring 
through from the ifstream class. In that case you’re only using part 
of the class, and composition is appropriate. 

But what if you want everything in the class to come through? This 
is called subtyping because you’re making a new type from an 
existing type, and you want your new type to have exactly the same 
interface as the existing type (plus any other member functions you 
want to add), so you can use it everywhere you’d use the existing 
type. This is where inheritance is essential. You can see that 
subtyping solves the problem in the preceding example perfectly: 

//: C14:FName2.cpp 
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// Subtyping solves the problem 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class FName2 : public ifstream { 

  string fileName; 

  bool named; 

public: 

  FName2() : named(false) {} 

  FName2(const string& fname) 

    : ifstream(fname.c_str()), fileName(fname) { 

    assure(*this, fileName); 

    named = true; 

  } 

  string name() const { return fileName; } 

  void name(const string& newName) { 

    if(named) return; // Don't overwrite 

    fileName = newName; 

    named = true; 

  } 

}; 

 

int main() { 

  FName2 file("FName2.cpp"); 

  assure(file, "FName2.cpp"); 

  cout << "name: " << file.name() << endl; 

  string s; 

  getline(file, s); // These work too! 

  file.seekg(-200, ios::end); 

  file.close(); 

} ///:~ 
 

Now any member function available for an ifstream object is 
available for an FName2 object. You can also see that non-member 
functions like getline( ) that expect an ifstream can also work 
with an FName2. That’s because an FName2 is a type of 
ifstream; it doesn’t simply contain one. This is a very important 
issue that will be explored at the end of this chapter and in the next 
one. 
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private inheritance 
You can inherit a base class privately by leaving off the public in 
the base-class list, or by explicitly saying private (probably a better 
policy because it is clear to the user that you mean it). When you 
inherit privately, you’re “implementing in terms of;” that is, you’re 
creating a new class that has all of the data and functionality of the 
base class, but that functionality is hidden, so it’s only part of the 
underlying implementation. The class user has no access to the 
underlying functionality, and an object cannot be treated as a 
instance of the base class (as it was in FName2.cpp). 

You may wonder what the purpose of private inheritance is, 
because the alternative of using composition to create a private 
object in the new class seems more appropriate. private 
inheritance is included in the language for completeness, but if for 
no other reason than to reduce confusion, you’ll usually want to use 
composition rather than private inheritance. However, there may 
occasionally be situations where you want to produce part of the 
same interface as the base class and disallow the treatment of the 
object as if it were a base-class object. private inheritance provides 
this ability. 

Publicizing privately inherited members 
When you inherit privately, all the public members of the base 
class become private. If you want any of them to be visible, just say 
their names (no arguments or return values) in the public section 
of the derived class: 

//: C14:PrivateInheritance.cpp 

class Pet { 

public: 

  char eat() const { return 'a'; } 

  int speak() const { return 2; } 

  float sleep() const { return 3.0; } 

  float sleep(int) const { return 4.0; } 

}; 

 

class Goldfish : Pet { // Private inheritance 

public: 

  Pet::eat; // Name publicizes member 

  Pet::sleep; // Both overloaded members exposed 
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}; 

 

int main() { 

  Goldfish bob; 

  bob.eat(); 

  bob.sleep(); 

  bob.sleep(1); 

//! bob.speak();// Error: private member function 

} ///:~ 
 

Thus, private inheritance is useful if you want to hide part of the 
functionality of the base class. 

Notice that giving the name of an overloaded function exposes all 
the versions of the overloaded function in the base class. 

You should think carefully before using private inheritance instead 
of composition; private inheritance has particular complications 
when combined with runtime type identification (this is the topic of 
a chapter in Volume 2 of this book, downloadable from 
www.BruceEckel.com). 

protected 
Now that you’ve been introduced to inheritance, the keyword 
protected finally has meaning. In an ideal world, private 
members would always be hard-and-fast private, but in real 
projects there are times when you want to make something hidden 
from the world at large and yet allow access for members of derived 
classes. The protected keyword is a nod to pragmatism; it says, 
“This is private as far as the class user is concerned, but available 
to anyone who inherits from this class.” 

The best approach is to leave the data members private – you 
should always preserve your right to change the underlying 
implementation. You can then allow controlled access to inheritors 
of your class through protected member functions: 

//: C14:Protected.cpp 

// The protected keyword 

#include <fstream> 
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using namespace std; 

 

class Base { 

  int i; 

protected: 

  int read() const { return i; } 

  void set(int ii) { i = ii; } 

public: 

  Base(int ii = 0) : i(ii) {} 

  int value(int m) const { return m*i; } 

}; 

 

class Derived : public Base { 

  int j; 

public: 

  Derived(int jj = 0) : j(jj) {} 

  void change(int x) { set(x); } 

};  

 

int main() { 

  Derived d; 

  d.change(10); 

} ///:~ 
 

You will find examples of the need for protected in examples later 
in this book, and in Volume 2. 

protected inheritance 
When you’re inheriting, the base class defaults to private, which 
means that all of the public member functions are private to the 
user of the new class. Normally, you’ll make the inheritance public 
so the interface of the base class is also the interface of the derived 
class. However, you can also use the protected keyword during 
inheritance. 

Protected derivation means “implemented-in-terms-of” to other 
classes but “is-a” for derived classes and friends. It’s something you 
don’t use very often, but it’s in the language for completeness. 
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Operator overloading & inheritance 
Except for the assignment operator, operators are automatically 
inherited into a derived class. This can be demonstrated by 
inheriting from C12:Byte.h: 

//: C14:OperatorInheritance.cpp 

// Inheriting overloaded operators 

#include "../C12/Byte.h" 

#include <fstream> 

using namespace std; 

ofstream out("ByteTest.out"); 

 

class Byte2 : public Byte { 

public: 

  // Constructors don't inherit: 

  Byte2(unsigned char bb = 0) : Byte(bb) {}   

  // operator= does not inherit, but  

  // is synthesized for memberwise assignment. 

  // However, only the SameType = SameType 

  // operator= is synthesized, so you have to 

  // make the others explicitly: 

  Byte2& operator=(const Byte& right) { 

    Byte::operator=(right); 

    return *this; 

  } 

  Byte2& operator=(int i) {  

    Byte::operator=(i); 

    return *this; 

  } 

}; 

 

// Similar test function as in C12:ByteTest.cpp: 

void k(Byte2& b1, Byte2& b2) { 

  b1 = b1 * b2 + b2 % b1; 

 

  #define TRY2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    (b1 OP b2).print(out); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 
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  TRY2(+) TRY2(-) TRY2(*) TRY2(/) 

  TRY2(%) TRY2(^) TRY2(&) TRY2(|) 

  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=) 

  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=) 

  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=) 

  TRY2(=) // Assignment operator 

 

  // Conditionals: 

  #define TRYC2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    out << (b1 OP b2); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 

  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=) 

  TRYC2(>=) TRYC2(&&) TRYC2(||) 

 

  // Chained assignment: 

  Byte2 b3 = 92; 

  b1 = b2 = b3; 

} 

 

int main() { 

  out << "member functions:" << endl; 

  Byte2 b1(47), b2(9); 

  k(b1, b2); 

} ///:~ 
 

The test code is identical to that in C12:ByteTest.cpp except that 
Byte2 is used instead of Byte. This way all the operators are 
verified to work with Byte2 via inheritance. 

When you examine the class Byte2, you’ll see that the constructor 
must be explicitly defined, and that only the operator= that 
assigns a Byte2 to a Byte2 is synthesized; any other assignment 
operators that you need you’ll have to synthesize on your own. 

Multiple inheritance 
You can inherit from one class, so it would seem to make sense to 
inherit from more than one class at a time. Indeed you can, but 
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whether it makes sense as part of a design is a subject of continuing 
debate. One thing is generally agreed upon: You shouldn’t try this 
until you’ve been programming quite a while and understand the 
language thoroughly. By that time, you’ll probably realize that no 
matter how much you think you absolutely must use multiple 
inheritance, you can almost always get away with single inheritance.  

Initially, multiple inheritance seems simple enough: You add more 
classes in the base-class list during inheritance, separated by 
commas. However, multiple inheritance introduces a number of 
possibilities for ambiguity, which is why a chapter in Volume 2 is 
devoted to the subject. 

Incremental development 
One of the advantages of inheritance and composition is that these 
support incremental development by allowing you to introduce new 
code without causing bugs in existing code. If bugs do appear, they 
are isolated within the new code. By inheriting from (or composing 
with) an existing, functional class and adding data members and 
member functions (and redefining existing member functions 
during inheritance) you leave the existing code – that someone else 
may still be using – untouched and unbugged. If a bug happens, 
you know it’s in your new code, which is much shorter and easier to 
read than if you had modified the body of existing code. 

It’s rather amazing how cleanly the classes are separated. You don’t 
even need the source code for the member functions in order to 
reuse the code, just the header file describing the class and the 
object file or library file with the compiled member functions. (This 
is true for both inheritance and composition.) 

It’s important to realize that program development is an 
incremental process, just like human learning. You can do as much 
analysis as you want, but you still won’t know all the answers when 
you set out on a project. You’ll have much more success – and more 
immediate feedback – if you start out to “grow” your project as an 
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organic, evolutionary creature, rather than constructing it all at 
once like a glass-box skyscraper2. 

Although inheritance for experimentation is a useful technique, at 
some point after things stabilize you need to take a new look at your 
class hierarchy with an eye to collapsing it into a sensible structure3. 
Remember that underneath it all, inheritance is meant to express a 
relationship that says, “This new class is a type of that old class.” 
Your program should not be concerned with pushing bits around, 
but instead with creating and manipulating objects of various types 
to express a model in the terms given you from the problem space. 

Upcasting 
Earlier in the chapter, you saw how an object of a class derived from 
ifstream has all the characteristics and behaviors of an ifstream 
object. In FName2.cpp, any ifstream member function could be 
called for an FName2 object. 

The most important aspect of inheritance is not that it provides 
member functions for the new class, however. It’s the relationship 
expressed between the new class and the base class. This 
relationship can be summarized by saying, “The new class is a type 
of the existing class.”  

This description is not just a fanciful way of explaining inheritance 
– it’s supported directly by the compiler. As an example, consider a 
base class called Instrument that represents musical instruments 
and a derived class called Wind. Because inheritance means that 
all the functions in the base class are also available in the derived 
class, any message you can send to the base class can also be sent to 
the derived class. So if the Instrument class has a play( ) member 
function, so will Wind instruments. This means we can accurately 

                                                   
2 To learn more about this idea, see Extreme Programming Explained, by Kent Beck 
(Addison-Wesley 2000). 
3 See Refactoring: Improving the Design of Existing Code by Martin Fowler 
(Addison-Wesley 1999). 
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say that a Wind object is also a type of Instrument. The following 
example shows how the compiler supports this notion: 

//: C14:Instrument.cpp 

// Inheritance & upcasting 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  void play(note) const {} 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument {}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

What’s interesting in this example is the tune( ) function, which 
accepts an Instrument reference. However, in main( ) the 
tune( ) function is called by handing it a reference to a Wind 
object. Given that C++ is very particular about type checking, it 
seems strange that a function that accepts one type will readily 
accept another type, until you realize that a Wind object is also an 
Instrument object, and there’s no function that tune( ) could call 
for an Instrument that isn’t also in Wind (this is what 
inheritance guarantees). Inside tune( ), the code works for 
Instrument and anything derived from Instrument, and the act 
of converting a Wind reference or pointer into an Instrument 
reference or pointer is called upcasting. 
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Why “upcasting?” 
The reason for the term is historical and is based on the way class 
inheritance diagrams have traditionally been drawn: with the root 
at the top of the page, growing downward. (Of course, you can draw 
your diagrams any way you find helpful.) The inheritance diagram 
for Instrument.cpp is then: 

Instrument

Wind

 
Casting from derived to base moves up on the inheritance diagram, 
so it’s commonly referred to as upcasting. Upcasting is always safe 
because you’re going from a more specific type to a more general 
type – the only thing that can occur to the class interface is that it 
can lose member functions, not gain them. This is why the compiler 
allows upcasting without any explicit casts or other special notation. 

Upcasting and the copy-constructor 
If you allow the compiler to synthesize a copy-constructor for a 
derived class, it will automatically call the base-class copy-
constructor, and then the copy-constructors for all the member 
objects (or perform a bitcopy on built-in types) so you’ll get the 
right behavior: 

//: C14:CopyConstructor.cpp 

// Correctly creating the copy-constructor 

#include <iostream> 

using namespace std; 

 

class Parent { 

  int i; 

public: 

  Parent(int ii) : i(ii) { 

    cout << "Parent(int ii)\n"; 

  } 

  Parent(const Parent& b) : i(b.i) { 

    cout << "Parent(const Parent&)\n"; 
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  } 

  Parent() : i(0) { cout << "Parent()\n"; } 

  friend ostream& 

    operator<<(ostream& os, const Parent& b) { 

    return os << "Parent: " << b.i << endl; 

  } 

}; 

 

class Member { 

  int i; 

public: 

  Member(int ii) : i(ii) { 

    cout << "Member(int ii)\n"; 

  } 

  Member(const Member& m) : i(m.i) { 

    cout << "Member(const Member&)\n"; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Member& m) { 

    return os << "Member: " << m.i << endl; 

  } 

}; 

 

class Child : public Parent { 

  int i; 

  Member m; 

public: 

  Child(int ii) : Parent(ii), i(ii), m(ii) { 

    cout << "Child(int ii)\n"; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Child& c){ 

    return os << (Parent&)c << c.m 

              << "Child: " << c.i << endl; 

  } 

}; 

 

int main() { 

  Child c(2); 

  cout << "calling copy-constructor: " << endl; 

  Child c2 = c; // Calls copy-constructor 

  cout << "values in c2:\n" << c2; 

} ///:~ 
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The operator<< for Child is interesting because of the way that it 
calls the operator<< for the Parent part within it: by casting the 
Child object to a Parent& (if you cast to a base-class object 
instead of a reference you will usually get undesirable results): 

return os << (Parent&)c << c.m 
 

Since the compiler then sees it as a Parent, it calls the Parent 
version of operator<<. 

You can see that Child has no explicitly-defined copy-constructor. 
The compiler then synthesizes the copy-constructor (since that is 
one of the four functions it will synthesize, along with the default 
constructor – if you don’t create any constructors – the operator= 
and the destructor) by calling the Parent copy-constructor and the 
Member copy-constructor. This is shown in the output  

Parent(int ii) 

Member(int ii) 

Child(int ii) 

calling copy-constructor: 

Parent(const Parent&) 

Member(const Member&) 

values in c2: 

Parent: 2 

Member: 2 

Child: 2 
 

However, if you try to write your own copy-constructor for Child 
and you make an innocent mistake and do it badly: 

Child(const Child& c) : i(c.i), m(c.m) {} 
 

then the default constructor will automatically be called for the 
base-class part of Child, since that’s what the compiler falls back 
on when it has no other choice of constructor to call (remember that 
some constructor must always be called for every object, regardless 
of whether it’s a subobject of another class). The output will then 
be: 

Parent(int ii) 

Member(int ii) 

Child(int ii) 
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calling copy-constructor: 

Parent() 

Member(const Member&) 

values in c2: 

Parent: 0 

Member: 2 

Child: 2 
 

This is probably not what you expect, since generally you’ll want the 
base-class portion to be copied from the existing object to the new 
object as part of copy-construction. 

To repair the problem you must remember to properly call the base-
class copy-constructor (as the compiler does) whenever you write 
your own copy-constructor. This can seem a little strange-looking at 
first but it’s another example of upcasting: 

  Child(const Child& c) 

    : Parent(c), i(c.i), m(c.m) { 

    cout << "Child(Child&)\n"; 

  } 
 

The strange part is where the Parent copy-constructor is called: 
Parent(c). What does it mean to pass a Child object to a Parent 
constructor? But Child is inherited from Parent, so a Child 
reference is a Parent reference. The base-class copy-constructor 
call upcasts a reference to Child to a reference to Parent and uses 
it to perform the copy-construction. When you write your own copy 
constructors you’ll almost always want to do the same thing. 

Composition vs. inheritance (revisited) 
One of the clearest ways to determine whether you should be using 
composition or inheritance is by asking whether you’ll ever need to 
upcast from your new class. Earlier in this chapter, the Stack class 
was specialized using inheritance. However, chances are the 
StringStack objects will be used only as string containers and 
never upcast, so a more appropriate alternative is composition: 

//: C14:InheritStack2.cpp 

// Composition vs. inheritance 

#include "../C09/Stack4.h" 
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#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class StringStack { 

  Stack stack; // Embed instead of inherit 

public: 

  void push(string* str) { 

    stack.push(str); 

  } 

  string* peek() const { 

    return (string*)stack.peek(); 

  } 

  string* pop() { 

    return (string*)stack.pop(); 

  } 

}; 

 

int main() { 

  ifstream in("InheritStack2.cpp"); 

  assure(in, "InheritStack2.cpp"); 

  string line; 

  StringStack textlines; 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  string* s; 

  while((s = textlines.pop()) != 0) // No cast! 

    cout << *s << endl; 

} ///:~ 
 

The file is identical to InheritStack.cpp, except that a Stack 
object is embedded in StringStack, and member functions are 
called for the embedded object. There’s still no time or space 
overhead because the subobject takes up the same amount of space, 
and all the additional type checking happens at compile time. 

Although it tends to be more confusing, you could also use private 
inheritance to express “implemented in terms of.” This would also 
solve the problem adequately. One place it becomes important, 
however, is when multiple inheritance might be warranted. In that 
case, if you see a design in which composition can be used instead 
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of inheritance, you may be able to eliminate the need for multiple 
inheritance. 

Pointer & reference upcasting 
In Instrument.cpp, the upcasting occurs during the function call 
– a Wind object outside the function has its reference taken and 
becomes an Instrument reference inside the function. Upcasting 
can also occur during a simple assignment to a pointer or reference: 

Wind w; 

Instrument* ip = &w; // Upcast 

Instrument& ir = w; // Upcast 
 

Like the function call, neither of these cases requires an explicit 
cast. 

A crisis 
Of course, any upcast loses type information about an object. If you 
say 

Wind w; 

Instrument* ip = &w; 
 

the compiler can deal with ip only as an Instrument pointer and 
nothing else. That is, it cannot know that ip actually happens to 
point to a Wind object. So when you call the play( ) member 
function by saying  

ip->play(middleC); 
 

the compiler can know only that it’s calling play( ) for an 
Instrument pointer, and call the base-class version of 
Instrument::play( ) instead of what it should do, which is call 
Wind::play( ). Thus, you won’t get the correct behavior. 

This is a significant problem; it is solved in Chapter 15 by 
introducing the third cornerstone of object-oriented programming: 
polymorphism (implemented in C++ with virtual functions). 
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Summary 
Both inheritance and composition allow you to create a new type 
from existing types, and both embed subobjects of the existing 
types inside the new type. Typically, however, you use composition 
to reuse existing types as part of the underlying implementation of 
the new type and inheritance when you want to force the new type 
to be the same type as the base class (type equivalence guarantees 
interface equivalence). Since the derived class has the base-class 
interface, it can be upcast to the base, which is critical for 
polymorphism as you’ll see in Chapter 15. 

Although code reuse through composition and inheritance is very 
helpful for rapid project development, you’ll generally want to 
redesign your class hierarchy before allowing other programmers to 
become dependent on it. Your goal is a hierarchy in which each 
class has a specific use and is neither too big (encompassing so 
much functionality that it’s unwieldy to reuse) nor annoyingly small 
(you can’t use it by itself or without adding functionality). 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Modify Car.cpp so that it also inherits from a class called 
Vehicle, placing appropriate member functions in 
Vehicle (that is, make up some member functions). Add 
a nondefault constructor to Vehicle, which you must call 
inside Car’s constructor. 

2.  Create two classes, A and B, with default constructors 
that announce themselves. Inherit a new class called C 
from A, and create a member object of B in C, but do not 
create a constructor for C. Create an object of class C and 
observe the results. 

3.  Create a three-level hierarchy of classes with default 
constructors, along with destructors, both of which 
announce themselves to cout. Verify that for an object of 
the most derived type, all three constructors and 
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destructors are automatically called. Explain the order in 
which the calls are made. 

4.  Modify Combined.cpp to add another level of 
inheritance and a new member object. Add code to show 
when the constructors and destructors are being called. 

5.  In Combined.cpp, create a class D that inherits from B 
and has a member object of class C. Add code to show 
when the constructors and destructors are being called. 

6.  Modify Order.cpp to add another level of inheritance 
Derived3 with member objects of class Member4 and 
Member5. Trace the output of the program. 

7.  In NameHiding.cpp, verify that in Derived2, 
Derived3, and Derived4, none of the base-class 
versions of f( ) are available. 

8.  Modify NameHiding.cpp by adding three overloaded 
functions named h( ) to Base, and show that redefining 
one of them in a derived class hides the others. 

9.  Inherit a class StringVector from vector<void*> and 
redefine the push_back( ) and operator[] member 
functions to accept and produce string*. What happens 
if you try to push_back( ) a void*? 

10.  Write a class containing a long and use the psuedo-
constructor call syntax in the constructor to initialize the 
long. 

11.  Create a class called Asteroid. Use inheritance to 
specialize the PStash class in Chapter 13 (PStash.h & 
PStash.cpp) so that it accepts and returns Asteroid 
pointers. Also modify PStashTest.cpp to test your 
classes. Change the class so PStash is a member object. 

12.  Repeat Exercise 11 with a vector instead of a PStash. 

13.  In SynthesizedFunctions.cpp, modify Chess to give 
it a default constructor, copy-constructor, and 
assignment operator. Demonstrate that you’ve written 
these correctly. 

14.  Create two classes called Traveler and Pager without 
default constructors, but with constructors that take an 
argument of type string, which they simply copy to an 
internal string variable. For each class, write the correct 
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copy-constructor and assignment operator. Now inherit a 
class BusinessTraveler from Traveler and give it a 
member object of type Pager. Write the correct default 
constructor, a constructor that takes a string argument, 
a copy-constructor, and an assignment operator. 

15.  Create a class with two static member functions. Inherit 
from this class and redefine one of the member functions. 
Show that the other is hidden in the derived class. 

16.  Look up more of the member functions for ifstream. In 
FName2.cpp, try them out on the file object. 

17.  Use private and protected inheritance to create two 
new classes from a base class. Then attempt to upcast 
objects of the derived class to the base class. Explain what 
happens. 

18.  In Protected.cpp, add a member function in Derived 
that calls the protected Base member read( ). 

19.  Change Protected.cpp so that Derived is using 
protected inheritance. See if you can call value( ) for a 
Derived object. 

20.  Create a class called SpaceShip with a fly( ) method. 
Inherit Shuttle from SpaceShip and add a land( ) 
method. Create a new Shuttle, upcast by pointer or 
reference to a SpaceShip, and try to call the land( ) 
method. Explain the results. 

21.  Modify Instrument.cpp to add a prepare( ) method 
to Instrument. Call prepare( ) inside tune( ). 

22.  Modify Instrument.cpp so that play( ) prints a 
message to cout, and Wind redefines play( ) to print a 
different message to cout. Run the program and explain 
why you probably wouldn’t want this behavior. Now put 
the virtual keyword (which you will learn about in 
Chapter 15) in front of the play( ) declaration in 
Instrument and observe the change in the behavior. 

23.  In CopyConstructor.cpp, inherit a new class from 
Child and give it a Member m. Write a proper 
constructor, copy-constructor, operator=, and 
operator<< for ostreams, and test the class in main( ). 
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24.  Take the example CopyConstructor.cpp and modify it 
by adding your own copy-constructor to Child without 
calling the base-class copy-constructor and see what 
happens. Fix the problem by making a proper explicit call 
to the base-class copy constructor in the constructor-
initializer list of the Child copy-constructor. 

25.  Modify InheritStack2.cpp to use a vector<string> 
instead of a Stack. 

26.  Create a class Rock with a default constructor, a copy-
constructor, an assignment operator, and a destructor, all 
of which announce to cout that they’ve been called. In 
main( ), create a vector<Rock> (that is, hold Rock 
objects by value) and add some Rocks. Run the program 
and explain the output you get. Note whether the 
destructors are called for the Rock objects in the vector. 
Now repeat the exercise with a vector<Rock*>. Is it 
possible to create a vector<Rock&>? 

27.  This exercise creates the design pattern called proxy. 
Start with a base class Subject and give it three 
functions: f( ), g( ), and h( ). Now inherit a class Proxy 
and two classes Implementation1 and 
Implementation2 from Subject. Proxy should 
contain a pointer to a Subject, and all the member 
functions for Proxy should just turn around and make 
the same calls through the Subject pointer. The Proxy 
constructor takes a pointer to a Subject that is installed 
in the Proxy (usually by the constructor). In main( ), 
create two different Proxy objects that use the two 
different implementations. Now modify Proxy so that 
you can dynamically change implementations. 

28.  Modify ArrayOperatorNew.cpp from Chapter 13 to 
show that, if you inherit from Widget, the allocation still 
works correctly. Explain why inheritance in Framis.cpp 
from Chapter 13 would not work correctly. 

29.  Modify Framis.cpp from Chapter 13 by inheriting from 
Framis and creating new versions of new and delete 
for your derived class. Demonstrate that they work 
correctly. 
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15: Polymorphism &  

Virtual Functions 
Polymorphism (implemented in C++ with virtual 

functions) is the third essential feature of an object-

oriented programming language, after data abstraction 

and inheritance.  
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It provides another dimension of separation of interface from 
implementation, to decouple what from how. Polymorphism allows 
improved code organization and readability as well as the creation 
of extensible programs that can be “grown” not only during the 
original creation of the project, but also when new features are 
desired. 

Encapsulation creates new data types by combining characteristics 
and behaviors. Access control separates the interface from the 
implementation by making the details private. This kind of 
mechanical organization makes ready sense to someone with a 
procedural programming background. But virtual functions deal 
with decoupling in terms of types. In Chapter 14, you saw how 
inheritance allows the treatment of an object as its own type or its 
base type. This ability is critical because it allows many types 
(derived from the same base type) to be treated as if they were one 
type, and a single piece of code to work on all those different types 
equally. The virtual function allows one type to express its 
distinction from another, similar type, as long as they’re both 
derived from the same base type. This distinction is expressed 
through differences in behavior of the functions that you can call 
through the base class. 

In this chapter, you’ll learn about virtual functions, starting from 
the basics with simple examples that strip away everything but the 
“virtualness” of the program. 

Evolution of C++ programmers 
C programmers seem to acquire C++ in three steps. First, as simply 
a “better C,” because C++ forces you to declare all functions before 
using them and is much pickier about how variables are used. You 
can often find the errors in a C program simply by compiling it with 
a C++ compiler. 

The second step is “object-based” C++. This means that you easily 
see the code organization benefits of grouping a data structure 
together with the functions that act upon it, the value of 
constructors and destructors, and perhaps some simple inheritance. 
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Most programmers who have been working with C for a while 
quickly see the usefulness of this because, whenever they create a 
library, this is exactly what they try to do. With C++, you have the 
aid of the compiler. 

You can get stuck at the object-based level because you can quickly 
get there and you get a lot of benefit without much mental effort. 
It’s also easy to feel like you’re creating data types – you make 
classes and objects, you send messages to those objects, and 
everything is nice and neat. 

But don’t be fooled. If you stop here, you’re missing out on the 
greatest part of the language, which is the jump to true object-
oriented programming. You can do this only with virtual functions. 

Virtual functions enhance the concept of type instead of just 
encapsulating code inside structures and behind walls, so they are 
without a doubt the most difficult concept for the new C++ 
programmer to fathom. However, they’re also the turning point in 
the understanding of object-oriented programming. If you don’t use 
virtual functions, you don’t understand OOP yet. 

Because the virtual function is intimately bound with the concept of 
type, and type is at the core of object-oriented programming, there 
is no analog to the virtual function in a traditional procedural 
language. As a procedural programmer, you have no referent with 
which to think about virtual functions, as you do with almost every 
other feature in the language. Features in a procedural language can 
be understood on an algorithmic level, but virtual functions can be 
understood only from a design viewpoint. 

Upcasting 
In Chapter 14 you saw how an object can be used as its own type or 
as an object of its base type. In addition, it can be manipulated 
through an address of the base type. Taking the address of an object 
(either a pointer or a reference) and treating it as the address of the 
base type is called upcasting because of the way inheritance trees 
are drawn with the base class at the top. 
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You also saw a problem arise, which is embodied in the following 
code: 

//: C15:Instrument2.cpp 

// Inheritance & upcasting 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Eflat }; // Etc. 

 

class Instrument { 

public: 

  void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument { 

public: 

  // Redefine interface function: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

The function tune( ) accepts (by reference) an Instrument, but 
also without complaint anything derived from Instrument. In 
main( ), you can see this happening as a Wind object is passed to 
tune( ), with no cast necessary. This is acceptable; the interface in 
Instrument must exist in Wind, because Wind is publicly 
inherited from Instrument. Upcasting from Wind to 
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Instrument may “narrow” that interface, but never less than the 
full interface to Instrument. 

The same arguments are true when dealing with pointers; the only 
difference is that the user must explicitly take the addresses of 
objects as they are passed into the function. 

The problem 
The problem with Instrument2.cpp can be seen by running the 
program. The output is Instrument::play. This is clearly not the 
desired output, because you happen to know that the object is 
actually a Wind and not just an Instrument. The call should 
produce Wind::play. For that matter, any object of a class derived 
from Instrument should have its version of play( ) used, 
regardless of the situation. 

The behavior of Instrument2.cpp is not surprising, given C’s 
approach to functions. To understand the issues, you need to be 
aware of the concept of binding. 

Function call binding 
Connecting a function call to a function body is called binding. 
When binding is performed before the program is run (by the 
compiler and linker), it’s called early binding. You may not have 
heard the term before because it’s never been an option with 
procedural languages: C compilers have only one kind of function 
call, and that’s early binding. 

The problem in the program above is caused by early binding 
because the compiler cannot know the correct function to call when 
it has only an Instrument address. 

The solution is called late binding, which means the binding occurs 
at runtime, based on the type of the object. Late binding is also 
called dynamic binding or runtime binding. When a language 
implements late binding, there must be some mechanism to 
determine the type of the object at runtime and call the appropriate 
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member function. In the case of a compiled language, the compiler 
still doesn’t know the actual object type, but it inserts code that 
finds out and calls the correct function body. The late-binding 
mechanism varies from language to language, but you can imagine 
that some sort of type information must be installed in the objects. 
You’ll see how this works later. 

virtual functions 
To cause late binding to occur for a particular function, C++ 
requires that you use the virtual keyword when declaring the 
function in the base class. Late binding occurs only with virtual 
functions, and only when you’re using an address of the base class 
where those virtual functions exist, although they may also be 
defined in an earlier base class. 

To create a member function as virtual, you simply precede the 
declaration of the function with the keyword virtual. Only the 
declaration needs the virtual keyword, not the definition. If a 
function is declared as virtual in the base class, it is virtual in all 
the derived classes. The redefinition of a virtual function in a 
derived class is usually called overriding. 

Notice that you are only required to declare a function virtual in 
the base class. All derived-class functions that match the signature 
of the base-class declaration will be called using the virtual 
mechanism. You can use the virtual keyword in the derived-class 
declarations (it does no harm to do so), but it is redundant and can 
be confusing.  

To get the desired behavior from Instrument2.cpp, simply add 
the virtual keyword in the base class before play( ): 

//: C15:Instrument3.cpp 

// Late binding with the virtual keyword 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 
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public: 

  virtual void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument { 

public: 

  // Override interface function: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

This file is identical to Instrument2.cpp except for the addition of 
the virtual keyword, and yet the behavior is significantly different: 
Now the output is Wind::play. 

Extensibility 
With play( ) defined as virtual in the base class, you can add as 
many new types as you want without changing the tune( ) 
function. In a well-designed OOP program, most or all of your 
functions will follow the model of tune( ) and communicate only 
with the base-class interface. Such a program is extensible because 
you can add new functionality by inheriting new data types from the 
common base class. The functions that manipulate the base-class 
interface will not need to be changed at all to accommodate the new 
classes. 
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Here’s the instrument example with more virtual functions and a 
number of new classes, all of which work correctly with the old, 
unchanged tune( ) function: 

//: C15:Instrument4.cpp 

// Extensibility in OOP 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  virtual void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

  virtual char* what() const { 

    return "Instrument"; 

  } 

  // Assume this will modify the object: 

  virtual void adjust(int) {} 

}; 

 

class Wind : public Instrument { 

public: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

  char* what() const { return "Wind"; } 

  void adjust(int) {} 

}; 

 

class Percussion : public Instrument { 

public: 

  void play(note) const { 

    cout << "Percussion::play" << endl; 

  } 

  char* what() const { return "Percussion"; } 

  void adjust(int) {} 

}; 

 

class Stringed : public Instrument { 

public: 

  void play(note) const { 

    cout << "Stringed::play" << endl; 
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  } 

  char* what() const { return "Stringed"; } 

  void adjust(int) {} 

}; 

 

class Brass : public Wind { 

public: 

  void play(note) const { 

    cout << "Brass::play" << endl; 

  } 

  char* what() const { return "Brass"; } 

}; 

 

class Woodwind : public Wind { 

public: 

  void play(note) const { 

    cout << "Woodwind::play" << endl; 

  } 

  char* what() const { return "Woodwind"; } 

}; 

 

// Identical function from before: 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

// New function: 

void f(Instrument& i) { i.adjust(1); } 

 

// Upcasting during array initialization: 

Instrument* A[] = { 

  new Wind, 

  new Percussion, 

  new Stringed, 

  new Brass, 

}; 

 

int main() { 

  Wind flute; 

  Percussion drum; 

  Stringed violin; 

  Brass flugelhorn; 

  Woodwind recorder; 

  tune(flute); 
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  tune(drum); 

  tune(violin); 

  tune(flugelhorn); 

  tune(recorder); 

  f(flugelhorn); 

} ///:~ 
 

You can see that another inheritance level has been added beneath 
Wind, but the virtual mechanism works correctly no matter how 
many levels there are. The adjust( ) function is not overridden for 
Brass and Woodwind. When this happens, the “closest” 
definition in the inheritance hierarchy is automatically used – the 
compiler guarantees there’s always some definition for a virtual 
function, so you’ll never end up with a call that doesn’t bind to a 
function body. (That would be disastrous.) 

The array A[ ] contains pointers to the base class Instrument, so 
upcasting occurs during the process of array initialization. This 
array and the function f( ) will be used in later discussions. 

In the call to tune( ), upcasting is performed on each different type 
of object, yet the desired behavior always takes place. This can be 
described as “sending a message to an object and letting the object 
worry about what to do with it.” The virtual function is the lens to 
use when you’re trying to analyze a project: Where should the base 
classes occur, and how might you want to extend the program? 
However, even if you don’t discover the proper base class interfaces 
and virtual functions at the initial creation of the program, you’ll 
often discover them later, even much later, when you set out to 
extend or otherwise maintain the program. This is not an analysis 
or design error; it simply means you didn’t or couldn’t know all the 
information the first time. Because of the tight class modularization 
in C++, it isn’t a large problem when this occurs because changes 
you make in one part of a system tend not to propagate to other 
parts of the system as they do in C. 

How C++ implements late binding 
How can late binding happen? All the work goes on behind the 
scenes by the compiler, which installs the necessary late-binding 

15: Polymorphism & Virtual Functions 637 

mechanism when you ask it to (you ask by creating virtual 
functions). Because programmers often benefit from understanding 
the mechanism of virtual functions in C++, this section will 
elaborate on the way the compiler implements this mechanism. 

The keyword virtual tells the compiler it should not perform early 
binding. Instead, it should automatically install all the mechanisms 
necessary to perform late binding. This means that if you call 
play( ) for a Brass object through an address for the base-class 
Instrument, you’ll get the proper function. 

To accomplish this, the typical compiler1 creates a single table 
(called the VTABLE) for each class that contains virtual functions. 
The compiler places the addresses of the virtual functions for that 
particular class in the VTABLE. In each class with virtual functions, 
it secretly places a pointer, called the vpointer (abbreviated as 
VPTR), which points to the VTABLE for that object. When you 
make a virtual function call through a base-class pointer (that is, 
when you make a polymorphic call), the compiler quietly inserts 
code to fetch the VPTR and look up the function address in the 
VTABLE, thus calling the correct function and causing late binding 
to take place. 

All of this – setting up the VTABLE for each class, initializing the 
VPTR, inserting the code for the virtual function call – happens 
automatically, so you don’t have to worry about it. With virtual 
functions, the proper function gets called for an object, even if the 
compiler cannot know the specific type of the object. 

The following sections go into this process in more detail. 

Storing type information 
You can see that there is no explicit type information stored in any 
of the classes. But the previous examples, and simple logic, tell you 
that there must be some sort of type information stored in the 

                                                   
1 Compilers may implement virtual behavior any way they want, but the way it’s 
described here is an almost universal approach. 



638 Thinking in C++ www.BruceEckel.com 

objects; otherwise the type could not be established at runtime. This 
is true, but the type information is hidden. To see it, here’s an 
example to examine the sizes of classes that use virtual functions 
compared with those that don’t: 

//: C15:Sizes.cpp 

// Object sizes with/without virtual functions 

#include <iostream> 

using namespace std; 

 

class NoVirtual { 

  int a; 

public: 

  void x() const {} 

  int i() const { return 1; } 

}; 

 

class OneVirtual { 

  int a; 

public: 

  virtual void x() const {} 

  int i() const { return 1; } 

}; 

 

class TwoVirtuals { 

  int a; 

public: 

  virtual void x() const {} 

  virtual int i() const { return 1; } 

}; 

 

int main() { 

  cout << "int: " << sizeof(int) << endl; 

  cout << "NoVirtual: " 

       << sizeof(NoVirtual) << endl; 

  cout << "void* : " << sizeof(void*) << endl; 

  cout << "OneVirtual: " 

       << sizeof(OneVirtual) << endl; 

  cout << "TwoVirtuals: " 

       << sizeof(TwoVirtuals) << endl; 

} ///:~ 
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With no virtual functions, the size of the object is exactly what you’d 
expect: the size of a single2 int. With a single virtual function in 
OneVirtual, the size of the object is the size of NoVirtual plus the 
size of a void pointer. It turns out that the compiler inserts a single 
pointer (the VPTR) into the structure if you have one or more 
virtual functions. There is no size difference between OneVirtual 
and TwoVirtuals. That’s because the VPTR points to a table of 
function addresses. You need only one table because all the virtual 
function addresses are contained in that single table. 

This example required at least one data member. If there had been 
no data members, the C++ compiler would have forced the objects 
to be a nonzero size because each object must have a distinct 
address. If you imagine indexing into an array of zero-sized objects, 
you’ll understand. A “dummy” member is inserted into objects that 
would otherwise be zero-sized. When the type information is 
inserted because of the virtual keyword, this takes the place of the 
“dummy” member. Try commenting out the int a in all the classes 
in the example above to see this. 

Picturing virtual functions 
To understand exactly what’s going on when you use a virtual 
function, it’s helpful to visualize the activities going on behind the 
curtain. Here’s a drawing of the array of pointers A[ ] in 
Instrument4.cpp: 

                                                   
2 Some compilers might have size issues here but it will be rare. 
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Wind object

vptr

Percussion object

vptr

Stringed object

vptr

Brass object

vptr

&Wind::play

&Wind::what

&Wind::adjust

&Percussion::play

&Percussion::what

&Percussion::adjust

&Stringed::play

&Stringed::what

&Stringed::adjust

&Brass::play

&Brass::what

&Wind::adjust

Array of

Instrument

pointers A[ ]

Objects:
VTABLEs:

 

The array of Instrument pointers has no specific type 
information; they each point to an object of type Instrument. 
Wind, Percussion, Stringed, and Brass all fit into this category 
because they are derived from Instrument (and thus have the 
same interface as Instrument, and can respond to the same 
messages), so their addresses can also be placed into the array. 
However, the compiler doesn’t know that they are anything more 
than Instrument objects, so left to its own devices it would 
normally call the base-class versions of all the functions. But in this 
case, all those functions have been declared with the virtual 
keyword, so something different happens. 

Each time you create a class that contains virtual functions, or you 
derive from a class that contains virtual functions, the compiler 
creates a unique VTABLE for that class, seen on the right of the 
diagram. In that table it places the addresses of all the functions 
that are declared virtual in this class or in the base class. If you 
don’t override a function that was declared virtual in the base class, 
the compiler uses the address of the base-class version in the 
derived class. (You can see this in the adjust entry in the Brass 
VTABLE.) Then it places the VPTR (discovered in Sizes.cpp) into 
the class. There is only one VPTR for each object when using simple 
inheritance like this. The VPTR must be initialized to point to the 
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starting address of the appropriate VTABLE. (This happens in the 
constructor, which you’ll see later in more detail.) 

Once the VPTR is initialized to the proper VTABLE, the object in 
effect “knows” what type it is. But this self-knowledge is worthless 
unless it is used at the point a virtual function is called. 

When you call a virtual function through a base class address (the 
situation when the compiler doesn’t have all the information 
necessary to perform early binding), something special happens. 
Instead of performing a typical function call, which is simply an 
assembly-language CALL to a particular address, the compiler 
generates different code to perform the function call. Here’s what a 
call to adjust( ) for a Brass object looks like, if made through an 
Instrument pointer (An Instrument reference produces the 
same result): 

Brass object

vptr

&Brass::play

&Brass::what

&Wind::adjust

Instrument

pointer

Brass VTABLE:

[0]

[1]

[2]  

The compiler begins with the Instrument pointer, which points to 
the starting address of the object. All Instrument objects or 
objects derived from Instrument have their VPTR in the same 
place (often at the beginning of the object), so the compiler can pick 
the VPTR out of the object. The VPTR points to the starting address 
of the VTABLE. All the VTABLE function addresses are laid out in 
the same order, regardless of the specific type of the object. play( ) 
is first, what( ) is second, and adjust( ) is third. The compiler 
knows that regardless of the specific object type, the adjust( ) 
function is at the location VPTR+2. Thus, instead of saying, “Call 
the function at the absolute location Instrument::adjust” (early 
binding; the wrong action), it generates code that says, in effect, 
“Call the function at VPTR+2.” Because the fetching of the VPTR 
and the determination of the actual function address occur at 
runtime, you get the desired late binding. You send a message to the 
object, and the object figures out what to do with it. 
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Under the hood 
It can be helpful to see the assembly-language code generated by a 
virtual function call, so you can see that late-binding is indeed 
taking place. Here’s the output from one compiler for the call  

i.adjust(1); 
 

inside the function f(Instrument& i): 

push  1 

push  si 

mov   bx, word ptr [si] 

call  word ptr [bx+4] 

add   sp, 4 
 

The arguments of a C++ function call, like a C function call, are 
pushed on the stack from right to left (this order is required to 
support C’s variable argument lists), so the argument 1 is pushed on 
the stack first. At this point in the function, the register si (part of 
the Intel X86 processor architecture) contains the address of i. This 
is also pushed on the stack because it is the starting address of the 
object of interest. Remember that the starting address corresponds 
to the value of this, and this is quietly pushed on the stack as an 
argument before every member function call, so the member 
function knows which particular object it is working on. So you’ll 
always see one more than the number of arguments pushed on the 
stack before a member function call (except for static member 
functions, which have no this). 

Now the actual virtual function call must be performed. First, the 
VPTR must be produced, so the VTABLE can be found. For this 
compiler the VPTR is inserted at the beginning of the object, so the 
contents of this correspond to the VPTR. The line 

mov bx, word ptr [si] 
 

fetches the word that si (that is, this) points to, which is the VPTR. 
It places the VPTR into the register bx. 

The VPTR contained in bx points to the starting address of the 
VTABLE, but the function pointer to call isn’t at location zero of the 
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VTABLE, but instead at location two (because it’s the third function 
in the list). For this memory model each function pointer is two 
bytes long, so the compiler adds four to the VPTR to calculate where 
the address of the proper function is. Note that this is a constant 
value, established at compile time, so the only thing that matters is 
that the function pointer at location number two is the one for 
adjust( ). Fortunately, the compiler takes care of all the 
bookkeeping for you and ensures that all the function pointers in all 
the VTABLEs of a particular class hierarchy occur in the same 
order, regardless of the order that you may override them in derived 
classes. 

Once the address of the proper function pointer in the VTABLE is 
calculated, that function is called. So the address is fetched and 
called all at once in the statement 

call word ptr [bx+4] 
 

Finally, the stack pointer is moved back up to clean off the 
arguments that were pushed before the call. In C and C++ assembly 
code you’ll often see the caller clean off the arguments but this may 
vary depending on processors and compiler implementations. 

Installing the vpointer 
Because the VPTR determines the virtual function behavior of the 
object, you can see how it’s critical that the VPTR always be 
pointing to the proper VTABLE. You don’t ever want to be able to 
make a call to a virtual function before the VPTR is properly 
initialized. Of course, the place where initialization can be 
guaranteed is in the constructor, but none of the Instrument 
examples has a constructor. 

This is where creation of the default constructor is essential. In the 
Instrument examples, the compiler creates a default constructor 
that does nothing except initialize the VPTR. This constructor, of 
course, is automatically called for all Instrument objects before 
you can do anything with them, so you know that it’s always safe to 
call virtual functions. 
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The implications of the automatic initialization of the VPTR inside 
the constructor are discussed in a later section. 

Objects are different 
It’s important to realize that upcasting deals only with addresses. If 
the compiler has an object, it knows the exact type and therefore (in 
C++) will not use late binding for any function calls – or at least, the 
compiler doesn’t need to use late binding. For efficiency’s sake, 
most compilers will perform early binding when they are making a 
call to a virtual function for an object because they know the exact 
type. Here’s an example: 

//: C15:Early.cpp 

// Early binding & virtual functions 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Pet { 

public: 

  virtual string speak() const { return ""; } 

}; 

 

class Dog : public Pet { 

public: 

  string speak() const { return "Bark!"; } 

}; 

 

int main() { 

  Dog ralph; 

  Pet* p1 = &ralph; 

  Pet& p2 = ralph; 

  Pet p3; 

  // Late binding for both: 

  cout << "p1->speak() = " << p1->speak() <<endl; 

  cout << "p2.speak() = " << p2.speak() << endl; 

  // Early binding (probably): 

  cout << "p3.speak() = " << p3.speak() << endl; 

} ///:~ 
 

In p1–>speak( ) and p2.speak( ), addresses are used, which 
means the information is incomplete: p1 and p2 can represent the 
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address of a Pet or something derived from Pet, so the virtual 
mechanism must be used. When calling p3.speak( ) there’s no 
ambiguity. The compiler knows the exact type and that it’s an 
object, so it can’t possibly be an object derived from Pet – it’s 
exactly a Pet. Thus, early binding is probably used. However, if the 
compiler doesn’t want to work so hard, it can still use late binding 
and the same behavior will occur. 

Why virtual functions? 
At this point you may have a question: “If this technique is so 
important, and if it makes the ‘right’ function call all the time, why 
is it an option? Why do I even need to know about it?” 

This is a good question, and the answer is part of the fundamental 
philosophy of C++: “Because it’s not quite as efficient.” You can see 
from the previous assembly-language output that instead of one 
simple CALL to an absolute address, there are two – more 
sophisticated – assembly instructions required to set up the virtual 
function call. This requires both code space and execution time. 

Some object-oriented languages have taken the approach that late 
binding is so intrinsic to object-oriented programming that it 
should always take place, that it should not be an option, and the 
user shouldn’t have to know about it. This is a design decision when 
creating a language, and that particular path is appropriate for 
many languages.3 However, C++ comes from the C heritage, where 
efficiency is critical. After all, C was created to replace assembly 
language for the implementation of an operating system (thereby 
rendering that operating system – Unix – far more portable than its 
predecessors). One of the main reasons for the invention of C++ 
was to make C programmers more efficient.4 And the first question 
asked when C programmers encounter C++ is, “What kind of size 
and speed impact will I get?” If the answer were, “Everything’s great 

                                                   
3 Smalltalk, Java, and Python, for instance, use this approach with great success. 
4 At Bell Labs, where C++ was invented, there are a lot of C programmers. Making 
them all more efficient, even just a bit, saves the company many millions. 
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except for function calls when you’ll always have a little extra 
overhead,” many people would stick with C rather than make the 
change to C++. In addition, inline functions would not be possible, 
because virtual functions must have an address to put into the 
VTABLE. So the virtual function is an option, and the language 
defaults to nonvirtual, which is the fastest configuration. Stroustrup 
stated that his guideline was, “If you don’t use it, you don’t pay for 
it.” 

Thus, the virtual keyword is provided for efficiency tuning. When 
designing your classes, however, you shouldn’t be worrying about 
efficiency tuning. If you’re going to use polymorphism, use virtual 
functions everywhere. You only need to look for functions that can 
be made non-virtual when searching for ways to speed up your code 
(and there are usually much bigger gains to be had in other areas – 
a good profiler will do a better job of finding bottlenecks than you 
will by making guesses). 

Anecdotal evidence suggests that the size and speed impacts of 
going to C++ are within 10 percent of the size and speed of C, and 
often much closer to the same. The reason you might get better size 
and speed efficiency is because you may design a C++ program in a 
smaller, faster way than you would using C. 

Abstract base classes and pure 

virtual functions 
Often in a design, you want the base class to present only an 
interface for its derived classes. That is, you don’t want anyone to 
actually create an object of the base class, only to upcast to it so that 
its interface can be used. This is accomplished by making that class 
abstract, which happens if you give it at least one pure virtual 
function. You can recognize a pure virtual function because it uses 
the virtual keyword and is followed by = 0. If anyone tries to make 
an object of an abstract class, the compiler prevents them. This is a 
tool that allows you to enforce a particular design. 
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When an abstract class is inherited, all pure virtual functions must 
be implemented, or the inherited class becomes abstract as well. 
Creating a pure virtual function allows you to put a member 
function in an interface without being forced to provide a possibly 
meaningless body of code for that member function. At the same 
time, a pure virtual function forces inherited classes to provide a 
definition for it.  

In all of the instrument examples, the functions in the base class 
Instrument were always “dummy” functions. If these functions 
are ever called, something is wrong. That’s because the intent of 
Instrument is to create a common interface for all of the classes 
derived from it. 

Instrument

virtual void play()

virtual char* what()

virtual void adjust()

Wind

void play()

char* what()

void adjust()

Percussion

void play()

char* what()

void adjust()

Stringed

void play()

char* what()

void adjust()

Woodwind

void play()

char* what()

Brass

void play()

char* what()
 

The only reason to establish the common interface is so it can be 
expressed differently for each different subtype. It creates a basic 
form that determines what’s in common with all of the derived 
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classes – nothing else. So Instrument is an appropriate candidate 
to be an abstract class. You create an abstract class when you only 
want to manipulate a set of classes through a common interface, but 
the common interface doesn’t need to have an implementation (or 
at least, a full implementation).  

If you have a concept like Instrument that works as an abstract 
class, objects of that class almost always have no meaning. That is, 
Instrument is meant to express only the interface, and not a 
particular implementation, so creating an object that is only an 
Instrument makes no sense, and you’ll probably want to prevent 
the user from doing it. This can be accomplished by making all the 
virtual functions in Instrument print error messages, but that 
delays the appearance of the error information until runtime and it 
requires reliable exhaustive testing on the part of the user. It is 
much better to catch the problem at compile time. 

Here is the syntax used for a pure virtual declaration: 

virtual void f() = 0; 
 

By doing this, you tell the compiler to reserve a slot for a function in 
the VTABLE, but not to put an address in that particular slot. Even 
if only one function in a class is declared as pure virtual, the 
VTABLE is incomplete. 

If the VTABLE for a class is incomplete, what is the compiler 
supposed to do when someone tries to make an object of that class? 
It cannot safely create an object of an abstract class, so you get an 
error message from the compiler. Thus, the compiler guarantees the 
purity of the abstract class. By making a class abstract, you ensure 
that the client programmer cannot misuse it. 

Here’s Instrument4.cpp modified to use pure virtual functions. 
Because the class has nothing but pure virtual functions, we call it a 
pure abstract class: 

//: C15:Instrument5.cpp 

// Pure abstract base classes 

#include <iostream> 

using namespace std; 
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enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  // Pure virtual functions: 

  virtual void play(note) const = 0; 

  virtual char* what() const = 0; 

  // Assume this will modify the object: 

  virtual void adjust(int) = 0; 

}; 

// Rest of the file is the same ... 

 

class Wind : public Instrument { 

public: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

  char* what() const { return "Wind"; } 

  void adjust(int) {} 

}; 

 

class Percussion : public Instrument { 

public: 

  void play(note) const { 

    cout << "Percussion::play" << endl; 

  } 

  char* what() const { return "Percussion"; } 

  void adjust(int) {} 

}; 

 

class Stringed : public Instrument { 

public: 

  void play(note) const { 

    cout << "Stringed::play" << endl; 

  } 

  char* what() const { return "Stringed"; } 

  void adjust(int) {} 

}; 

 

class Brass : public Wind { 

public: 

  void play(note) const { 

    cout << "Brass::play" << endl; 

  } 

  char* what() const { return "Brass"; } 
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}; 

 

class Woodwind : public Wind { 

public: 

  void play(note) const { 

    cout << "Woodwind::play" << endl; 

  } 

  char* what() const { return "Woodwind"; } 

}; 

 

// Identical function from before: 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

// New function: 

void f(Instrument& i) { i.adjust(1); } 

 

int main() { 

  Wind flute; 

  Percussion drum; 

  Stringed violin; 

  Brass flugelhorn; 

  Woodwind recorder; 

  tune(flute); 

  tune(drum); 

  tune(violin); 

  tune(flugelhorn); 

  tune(recorder); 

  f(flugelhorn); 

} ///:~ 
 

Pure virtual functions are helpful because they make explicit the 
abstractness of a class and tell both the user and the compiler how 
it was intended to be used. 

Note that pure virtual functions prevent an abstract class from 
being passed into a function by value. Thus, it is also a way to 
prevent object slicing (which will be described shortly). By making 
a class abstract, you can ensure that a pointer or reference is always 
used during upcasting to that class. 
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Just because one pure virtual function prevents the VTABLE from 
being completed doesn’t mean that you don’t want function bodies 
for some of the others. Often you will want to call a base-class 
version of a function, even if it is virtual. It’s always a good idea to 
put common code as close as possible to the root of your hierarchy. 
Not only does this save code space, it allows easy propagation of 
changes. 

Pure virtual definitions 
It’s possible to provide a definition for a pure virtual function in the 
base class. You’re still telling the compiler not to allow objects of 
that abstract base class, and the pure virtual functions must still be 
defined in derived classes in order to create objects. However, there 
may be a common piece of code that you want some or all of the 
derived class definitions to call rather than duplicating that code in 
every function.  

Here’s what a pure virtual definition looks like: 

//: C15:PureVirtualDefinitions.cpp 

// Pure virtual base definitions 

#include <iostream> 

using namespace std; 

 

class Pet { 

public: 

  virtual void speak() const = 0; 

  virtual void eat() const = 0; 

  // Inline pure virtual definitions illegal: 

  //!  virtual void sleep() const = 0 {} 

}; 

 

// OK, not defined inline 

void Pet::eat() const { 

  cout << "Pet::eat()" << endl; 

} 

 

void Pet::speak() const {  

  cout << "Pet::speak()" << endl; 

} 
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class Dog : public Pet { 

public: 

  // Use the common Pet code: 

  void speak() const { Pet::speak(); } 

  void eat() const { Pet::eat(); } 

}; 

 

int main() { 

  Dog simba;  // Richard's dog 

  simba.speak(); 

  simba.eat(); 

} ///:~ 
 

The slot in the Pet VTABLE is still empty, but there happens to be a 
function by that name that you can call in the derived class. 

The other benefit to this feature is that it allows you to change from 
an ordinary virtual to a pure virtual without disturbing the existing 
code. (This is a way for you to locate classes that don’t override that 
virtual function.) 

Inheritance and the VTABLE 
You can imagine what happens when you perform inheritance and 
override some of the virtual functions. The compiler creates a new 
VTABLE for your new class, and it inserts your new function 
addresses using the base-class function addresses for any virtual 
functions you don’t override. One way or another, for every object 
that can be created (that is, its class has no pure virtuals) there’s 
always a full set of function addresses in the VTABLE, so you’ll 
never be able to make a call to an address that isn’t there (which 
would be disastrous). 

But what happens when you inherit and add new virtual functions 
in the derived class? Here’s a simple example: 

//: C15:AddingVirtuals.cpp 

// Adding virtuals in derivation 

#include <iostream> 

#include <string> 

using namespace std; 
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class Pet { 

  string pname; 

public: 

  Pet(const string& petName) : pname(petName) {} 

  virtual string name() const { return pname; } 

  virtual string speak() const { return ""; } 

}; 

 

class Dog : public Pet { 

  string name; 

public: 

  Dog(const string& petName) : Pet(petName) {} 

  // New virtual function in the Dog class: 

  virtual string sit() const { 

    return Pet::name() + " sits"; 

  } 

  string speak() const { // Override 

    return Pet::name() + " says 'Bark!'"; 

  } 

}; 

 

int main() { 

  Pet* p[] = {new Pet("generic"),new Dog("bob")}; 

  cout << "p[0]->speak() = " 

       << p[0]->speak() << endl; 

  cout << "p[1]->speak() = " 

       << p[1]->speak() << endl; 

//! cout << "p[1]->sit() = " 

//!      << p[1]->sit() << endl; // Illegal 

} ///:~ 
 

The class Pet contains a two virtual functions: speak( ) and 
name( ). Dog adds a third virtual function called sit( ), as well as 
overriding the meaning of speak( ). A diagram will help you 
visualize what’s happening. Here are the VTABLEs created by the 
compiler for Pet and Dog: 
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&Pet::name

&Pet::speak

&Pet::name

&Dog::speak

&Dog::sit

 

Notice that the compiler maps the location of the speak( ) address 
into exactly the same spot in the Dog VTABLE as it is in the Pet 
VTABLE. Similarly, if a class Pug is inherited from Dog, its version 
of sit( ) would be placed in its VTABLE in exactly the same spot as 
it is in Dog. This is because (as you saw with the assembly-language 
example) the compiler generates code that uses a simple numerical 
offset into the VTABLE to select the virtual function. Regardless of 
the specific subtype the object belongs to, its VTABLE is laid out the 
same way, so calls to the virtual functions will always be made the 
same way. 

In this case, however, the compiler is working only with a pointer to 
a base-class object. The base class has only the speak( ) and 
name( ) functions, so those is the only functions the compiler will 
allow you to call. How could it possibly know that you are working 
with a Dog object, if it has only a pointer to a base-class object? 
That pointer might point to some other type, which doesn’t have a 
sit( ) function. It may or may not have some other function address 
at that point in the VTABLE, but in either case, making a virtual call 
to that VTABLE address is not what you want to do. So the compiler 
is doing its job by protecting you from making virtual calls to 
functions that exist only in derived classes. 

There are some less-common cases in which you may know that the 
pointer actually points to an object of a specific subclass. If you 
want to call a function that only exists in that subclass, then you 
must cast the pointer. You can remove the error message produced 
by the previous program like this: 

  ((Dog*)p[1])->sit() 
 

Here, you happen to know that p[1] points to a Dog object, but in 
general you don’t know that. If your problem is set up so that you 
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must know the exact types of all objects, you should rethink it, 
because you’re probably not using virtual functions properly. 
However, there are some situations in which the design works best 
(or you have no choice) if you know the exact type of all objects kept 
in a generic container. This is the problem of run-time type 
identification (RTTI). 

RTTI is all about casting base-class pointers down to derived-class 
pointers (“up” and “down” are relative to a typical class diagram, 
with the base class at the top). Casting up happens automatically, 
with no coercion, because it’s completely safe. Casting down is 
unsafe because there’s no compile time information about the 
actual types, so you must know exactly what type the object is. If 
you cast it into the wrong type, you’ll be in trouble. 

RTTI is described later in this chapter, and Volume 2 of this book 
has a chapter devoted to the subject. 

Object slicing 
There is a distinct difference between passing the addresses of 
objects and passing objects by value when using polymorphism. All 
the examples you’ve seen here, and virtually all the examples you 
should see, pass addresses and not values. This is because addresses 
all have the same size5, so passing the address of an object of a 
derived type (which is usually a bigger object) is the same as 
passing the address of an object of the base type (which is usually a 
smaller object). As explained before, this is the goal when using 
polymorphism – code that manipulates a base type can 
transparently manipulate derived-type objects as well. 

If you upcast to an object instead of a pointer or reference, 
something will happen that may surprise you: the object is “sliced” 
until all that remains is the subobject that corresponds to the 
destination type of your cast. In the following example you can see 
what happens when an object is sliced: 

                                                   
5 Actually, not all pointers are the same size on all machines. In the context of this 
discussion, however, they can be considered to be the same. 
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//: C15:ObjectSlicing.cpp 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Pet { 

  string pname; 

public: 

  Pet(const string& name) : pname(name) {} 

  virtual string name() const { return pname; } 

  virtual string description() const { 

    return "This is " + pname; 

  } 

}; 

 

class Dog : public Pet { 

  string favoriteActivity; 

public: 

  Dog(const string& name, const string& activity) 

    : Pet(name), favoriteActivity(activity) {} 

  string description() const { 

    return Pet::name() + " likes to " + 

      favoriteActivity; 

  } 

}; 

 

void describe(Pet p) { // Slices the object 

  cout << p.description() << endl; 

} 

 

int main() { 

  Pet p("Alfred"); 

  Dog d("Fluffy", "sleep"); 

  describe(p); 

  describe(d); 

} ///:~ 
 

The function describe( ) is passed an object of type Pet by value. 
It then calls the virtual function description( ) for the Pet object. 
In main( ), you might expect the first call to produce “This is 
Alfred,” and the second to produce “Fluffy likes to sleep.” In fact, 
both calls use the base-class version of description( ). 
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Two things are happening in this program. First, because 
describe( ) accepts a Pet object (rather than a pointer or 
reference), any calls to describe( ) will cause an object the size of 
Pet to be pushed on the stack and cleaned up after the call. This 
means that if an object of a class inherited from Pet is passed to 
describe( ), the compiler accepts it, but it copies only the Pet 
portion of the object. It slices the derived portion off of the object, 
like this:  

favoriteActivity

Dog vptr

pname

Pet vptr

pname

Before Slice After Slice

 

Now you may wonder about the virtual function call. 
Dog::description( ) makes use of portions of both Pet (which 
still exists) and Dog, which no longer exists because it was sliced 
off! So what happens when the virtual function is called? 

You’re saved from disaster because the object is being passed by 
value. Because of this, the compiler knows the precise type of the 
object because the derived object has been forced to become a base 
object. When passing by value, the copy-constructor for a Pet 
object is used, which initializes the VPTR to the Pet VTABLE and 
copies only the Pet parts of the object. There’s no explicit copy-
constructor here, so the compiler synthesizes one. Under all 
interpretations, the object truly becomes a Pet during slicing. 

Object slicing actually removes part of the existing object as it 
copies it into the new object, rather than simply changing the 
meaning of an address as when using a pointer or reference. 
Because of this, upcasting into an object is not done often; in fact, 
it’s usually something to watch out for and prevent. Note that, in 
this example, if description( ) were made into a pure virtual 
function in the base class (which is not unreasonable, since it 
doesn’t really do anything in the base class), then the compiler 
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would prevent object slicing because that wouldn’t allow you to 
“create” an object of the base type (which is what happens when you 
upcast by value). This could be the most important value of pure 
virtual functions: to prevent object slicing by generating a compile-
time error message if someone tries to do it. 

Overloading & overriding 
In Chapter 14, you saw that redefining an overloaded function in 
the base class hides all of the other base-class versions of that 
function. When virtual functions are involved the behavior is a 
little different. Consider a modified version of the 
NameHiding.cpp example from Chapter 14: 

//: C15:NameHiding2.cpp 

// Virtual functions restrict overloading 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Base { 

public: 

  virtual int f() const {  

    cout << "Base::f()\n";  

    return 1;  

  } 

  virtual void f(string) const {} 

  virtual void g() const {} 

}; 

 

class Derived1 : public Base { 

public: 

  void g() const {} 

}; 

 

class Derived2 : public Base { 

public: 

  // Overriding a virtual function: 

  int f() const {  

    cout << "Derived2::f()\n";  

    return 2; 

  } 
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}; 

 

class Derived3 : public Base { 

public: 

  // Cannot change return type: 

  //! void f() const{ cout << "Derived3::f()\n";} 

}; 

 

class Derived4 : public Base { 

public: 

  // Change argument list: 

  int f(int) const {  

    cout << "Derived4::f()\n";  

    return 4;  

  } 

}; 

 

int main() { 

  string s("hello"); 

  Derived1 d1; 

  int x = d1.f(); 

  d1.f(s); 

  Derived2 d2; 

  x = d2.f(); 

//!  d2.f(s); // string version hidden 

  Derived4 d4; 

  x = d4.f(1); 

//!  x = d4.f(); // f() version hidden 

//!  d4.f(s); // string version hidden 

  Base& br = d4; // Upcast 

//!  br.f(1); // Derived version unavailable 

  br.f(); // Base version available 

  br.f(s); // Base version abailable 

} ///:~ 
 

The first thing to notice is that in Derived3, the compiler will not 
allow you to change the return type of an overridden function (it 
will allow it if f( ) is not virtual). This is an important restriction 
because the compiler must guarantee that you can polymorphically 
call the function through the base class, and if the base class is 
expecting an int to be returned from f( ), then the derived-class 
version of f( ) must keep that contract or else things will break. 
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The rule shown in Chapter 14 still works: if you override one of the 
overloaded member functions in the base class, the other 
overloaded versions become hidden in the derived class. In 
main( ) the code that tests Derived4 shows that this happens 
even if the new version of f( ) isn’t actually overriding an existing 
virtual function interface – both of the base-class versions of f( ) 
are hidden by f(int). However, if you upcast d4 to Base, then only 
the base-class versions are available (because that’s what the base-
class contract promises) and the derived-class version is not 
available (because it isn’t specified in the base class). 

Variant return type 
The Derived3 class above suggests that you cannot modify the 
return type of a virtual function during overriding. This is generally 
true, but there is a special case in which you can slightly modify the 
return type. If you’re returning a pointer or a reference to a base 
class, then the overridden version of the function may return a 
pointer or reference to a class derived from what the base returns. 
For example: 

//: C15:VariantReturn.cpp 

// Returning a pointer or reference to a derived 

// type during ovverriding 

#include <iostream> 

#include <string> 

using namespace std; 

 

class PetFood { 

public: 

  virtual string foodType() const = 0; 

}; 

 

class Pet { 

public: 

  virtual string type() const = 0; 

  virtual PetFood* eats() = 0; 

}; 

 

class Bird : public Pet { 

public: 

  string type() const { return "Bird"; } 
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  class BirdFood : public PetFood { 

  public: 

    string foodType() const {  

      return "Bird food";  

    } 

  }; 

  // Upcast to base type: 

  PetFood* eats() { return &bf; } 

private: 

  BirdFood bf; 

}; 

 

class Cat : public Pet { 

public: 

  string type() const { return "Cat"; } 

  class CatFood : public PetFood { 

  public: 

    string foodType() const { return "Birds"; } 

  }; 

  // Return exact type instead: 

  CatFood* eats() { return &cf; } 

private: 

  CatFood cf; 

}; 

 

int main() { 

  Bird b;  

  Cat c; 

  Pet* p[] = { &b, &c, }; 

  for(int i = 0; i < sizeof p / sizeof *p; i++) 

    cout << p[i]->type() << " eats " 

         << p[i]->eats()->foodType() << endl; 

  // Can return the exact type: 

  Cat::CatFood* cf = c.eats(); 

  Bird::BirdFood* bf; 

  // Cannot return the exact type: 

//!  bf = b.eats(); 

  // Must downcast: 

  bf = dynamic_cast<Bird::BirdFood*>(b.eats()); 

} ///:~ 
 

The Pet::eats( ) member function returns a pointer to a PetFood. 
In Bird, this member function is overloaded exactly as in the base 
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class, including the return type. That is, Bird::eats( ) upcasts the 
BirdFood to a PetFood. 

But in Cat, the return type of eats( )  is a pointer to CatFood, a 
type derived from PetFood. The fact that the return type is 
inherited from the return type of the base-class function is the only 
reason this compiles. That way, the contract is still fulfilled; eats( ) 
always returns a PetFood pointer. 

If you think polymorphically, this doesn’t seem necessary. Why not 
just upcast all the return types to PetFood*, just as Bird::eats( ) 
did? This is typically a good solution, but at the end of main( ), you 
see the difference: Cat::eats( ) can return the exact type of 
PetFood, whereas the return value of Bird::eats( ) must be 
downcast to the exact type. 

So being able to return the exact type is a little more general, and 
doesn’t lose the specific type information by automatically 
upcasting. However, returning the base type will generally solve 
your problems so this is a rather specialized feature. 

virtual functions & constructors 
When an object containing virtual functions is created, its VPTR 
must be initialized to point to the proper VTABLE. This must be 
done before there’s any possibility of calling a virtual function. As 
you might guess, because the constructor has the job of bringing an 
object into existence, it is also the constructor’s job to set up the 
VPTR. The compiler secretly inserts code into the beginning of the 
constructor that initializes the VPTR. And as described in Chapter 
14, if you don’t explicitly create a constructor for a class, the 
compiler will synthesize one for you. If the class has virtual 
functions, the synthesized constructor will include the proper VPTR 
initialization code. This has several implications. 

The first concerns efficiency. The reason for inline functions is to 
reduce the calling overhead for small functions. If C++ didn’t 
provide inline functions, the preprocessor might be used to create 
these “macros.” However, the preprocessor has no concept of access 
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or classes, and therefore couldn’t be used to create member 
function macros. In addition, with constructors that must have 
hidden code inserted by the compiler, a preprocessor macro 
wouldn’t work at all. 

You must be aware when hunting for efficiency holes that the 
compiler is inserting hidden code into your constructor function. 
Not only must it initialize the VPTR, it must also check the value of 
this (in case the operator new returns zero) and call base-class 
constructors. Taken together, this code can impact what you 
thought was a tiny inline function call. In particular, the size of the 
constructor may overwhelm the savings you get from reduced 
function-call overhead. If you make a lot of inline constructor calls, 
your code size can grow without any benefits in speed. 

Of course, you probably won’t make all tiny constructors non-inline 
right away, because they’re much easier to write as inlines. But 
when you’re tuning your code, remember to consider removing the 
inline constructors. 

Order of constructor calls 
The second interesting facet of constructors and virtual functions 
concerns the order of constructor calls and the way virtual calls are 
made within constructors. 

All base-class constructors are always called in the constructor for 
an inherited class. This makes sense because the constructor has a 
special job: to see that the object is built properly. A derived class 
has access only to its own members, and not those of the base class. 
Only the base-class constructor can properly initialize its own 
elements. Therefore it’s essential that all constructors get called; 
otherwise the entire object wouldn’t be constructed properly. That’s 
why the compiler enforces a constructor call for every portion of a 
derived class. It will call the default constructor if you don’t 
explicitly call a base-class constructor in the constructor initializer 
list. If there is no default constructor, the compiler will complain. 

The order of the constructor calls is important. When you inherit, 
you know all about the base class and can access any public and 
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protected members of the base class. This means you must be able 
to assume that all the members of the base class are valid when 
you’re in the derived class. In a normal member function, 
construction has already taken place, so all the members of all parts 
of the object have been built. Inside the constructor, however, you 
must be able to assume that all members that you use have been 
built. The only way to guarantee this is for the base-class 
constructor to be called first. Then when you’re in the derived-class 
constructor, all the members you can access in the base class have 
been initialized. “Knowing all members are valid” inside the 
constructor is also the reason that, whenever possible, you should 
initialize all member objects (that is, objects placed in the class 
using composition) in the constructor initializer list. If you follow 
this practice, you can assume that all base class members and 
member objects of the current object have been initialized. 

Behavior of virtual functions inside 

constructors 
The hierarchy of constructor calls brings up an interesting dilemma. 
What happens if you’re inside a constructor and you call a virtual 
function? Inside an ordinary member function you can imagine 
what will happen – the virtual call is resolved at runtime because 
the object cannot know whether it belongs to the class the member 
function is in, or some class derived from it. For consistency, you 
might think this is what should happen inside constructors. 

This is not the case. If you call a virtual function inside a 
constructor, only the local version of the function is used. That is, 
the virtual mechanism doesn’t work within the constructor. 

This behavior makes sense for two reasons. Conceptually, the 
constructor’s job is to bring the object into existence (which is 
hardly an ordinary feat). Inside any constructor, the object may 
only be partially formed – you can only know that the base-class 
objects have been initialized, but you cannot know which classes are 
inherited from you. A virtual function call, however, reaches 
“forward” or “outward” into the inheritance hierarchy. It calls a 
function in a derived class. If you could do this inside a constructor, 
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you’d be calling a function that might manipulate members that 
hadn’t been initialized yet, a sure recipe for disaster. 

The second reason is a mechanical one. When a constructor is 
called, one of the first things it does is initialize its VPTR. However, 
it can only know that it is of the “current” type – the type the 
constructor was written for. The constructor code is completely 
ignorant of whether or not the object is in the base of another class. 
When the compiler generates code for that constructor, it generates 
code for a constructor of that class, not a base class and not a class 
derived from it (because a class can’t know who inherits it). So the 
VPTR it uses must be for the VTABLE of that class. The VPTR 
remains initialized to that VTABLE for the rest of the object’s 
lifetime unless this isn’t the last constructor call. If a more-derived 
constructor is called afterwards, that constructor sets the VPTR to 
its VTABLE, and so on, until the last constructor finishes. The state 
of the VPTR is determined by the constructor that is called last. 
This is another reason why the constructors are called in order from 
base to most-derived. 

But while all this series of constructor calls is taking place, each 
constructor has set the VPTR to its own VTABLE. If it uses the 
virtual mechanism for function calls, it will produce only a call 
through its own VTABLE, not the most-derived VTABLE (as would 
be the case after all the constructors were called). In addition, many 
compilers recognize that a virtual function call is being made inside 
a constructor, and perform early binding because they know that 
late-binding will produce a call only to the local function. In either 
event, you won’t get the results you might initially expect from a 
virtual function call inside a constructor. 

Destructors and virtual destructors 
You cannot use the virtual keyword with constructors, but 
destructors can and often must be virtual. 

The constructor has the special job of putting an object together 
piece-by-piece, first by calling the base constructor, then the more 
derived constructors in order of inheritance (it must also call 
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member-object constructors along the way). Similarly, the 
destructor has a special job: it must disassemble an object that may 
belong to a hierarchy of classes. To do this, the compiler generates 
code that calls all the destructors, but in the reverse order that they 
are called by the constructor. That is, the destructor starts at the 
most-derived class and works its way down to the base class. This is 
the safe and desirable thing to do because  the current destructor 
can always know that the base-class members are alive and active. 
If you need to call a base-class member function inside your 
destructor, it is safe to do so. Thus, the destructor can perform its 
own cleanup, then call the next-down destructor, which will 
perform its own cleanup, etc. Each destructor knows what its class 
is derived from, but not what is derived from it. 

You should keep in mind that constructors and destructors are the 
only places where this hierarchy of calls must happen (and thus the 
proper hierarchy is automatically generated by the compiler). In all 
other functions, only that function will be called (and not base-class 
versions), whether it’s virtual or not. The only way for base-class 
versions of the same function to be called in ordinary functions 
(virtual or not) is if you explicitly call that function. 

Normally, the action of the destructor is quite adequate. But what 
happens if you want to manipulate an object through a pointer to its 
base class (that is, manipulate the object through its generic 
interface)? This activity is a major objective in object-oriented 
programming. The problem occurs when you want to delete a 
pointer of this type for an object that has been created on the heap 
with new. If the pointer is to the base class, the compiler can only 
know to call the base-class version of the destructor during delete. 
Sound familiar? This is the same problem that virtual functions 
were created to solve for the general case. Fortunately, virtual 
functions work for destructors as they do for all other functions 
except constructors. 

//: C15:VirtualDestructors.cpp 

// Behavior of virtual vs. non-virtual destructor 

#include <iostream> 

using namespace std; 
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class Base1 { 

public: 

  ~Base1() { cout << "~Base1()\n"; } 

}; 

 

class Derived1 : public Base1 { 

public: 

  ~Derived1() { cout << "~Derived1()\n"; } 

}; 

 

class Base2 { 

public: 

  virtual ~Base2() { cout << "~Base2()\n"; } 

}; 

 

class Derived2 : public Base2 { 

public: 

  ~Derived2() { cout << "~Derived2()\n"; } 

}; 

 

int main() { 

  Base1* bp = new Derived1; // Upcast 

  delete bp; 

  Base2* b2p = new Derived2; // Upcast 

  delete b2p; 

} ///:~ 
 

When you run the program, you’ll see that delete bp only calls the 
base-class destructor, while delete b2p calls the derived-class 
destructor followed by the base-class destructor, which is the 
behavior we desire. Forgetting to make a destructor virtual is an 
insidious bug because it often doesn’t directly affect the behavior of 
your program, but it can quietly introduce a memory leak. Also, the 
fact that some destruction is occurring can further mask the 
problem. 

Even though the destructor, like the constructor, is an “exceptional” 
function, it is possible for the destructor to be virtual because the 
object already knows what type it is (whereas it doesn’t during 
construction). Once an object has been constructed, its VPTR is 
initialized, so virtual function calls can take place. 
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Pure virtual destructors 
While pure virtual destructors are legal in Standard C++, there is an 
added constraint when using them: you must provide a function 
body for the pure virtual destructor. This seems counterintuitive;  
how can a virtual function be “pure” if it needs a function body? But 
if you keep in mind that constructors and destructors are special 
operations it makes more sense, especially if you remember that all 
destructors in a class hierarchy are always called. If you could leave 
off the definition for a pure virtual destructor, what function body 
would be called during destruction? Thus, it’s absolutely necessary 
that the compiler and linker enforce the existence of a function 
body for a pure virtual destructor. 

If it’s pure, but it has to have a function body, what’s the value of it? 
The only difference you’ll see between the pure and non-pure 
virtual destructor is that the pure virtual destructor does cause the 
base class to be abstract, so you cannot create an object of the base 
class (although this would also be true if any other member 
function of the base class were pure virtual). 

Things are a bit confusing, however, when you inherit a class from 
one that contains a pure virtual destructor. Unlike every other pure 
virtual function, you are not required to provide a definition of a 
pure virtual destructor in the derived class. The fact that the 
following compiles and links is the proof: 

//: C15:UnAbstract.cpp 

// Pure virtual destructors  

// seem to behave strangely 

 

class AbstractBase { 

public: 

  virtual ~AbstractBase() = 0; 

}; 

 

AbstractBase::~AbstractBase() {} 

 

class Derived : public AbstractBase {}; 

// No overriding of destructor necessary? 

 

int main() { Derived d; } ///:~ 
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Normally, a pure virtual function in a base class would cause the 
derived class to be abstract unless it (and all other pure virtual 
functions) is given a definition. But here, this seems not to be the 
case. However, remember that the compiler automatically creates a 
destructor definition for every class if you don’t create one. That’s 
what’s happening here – the base class destructor is being quietly 
overridden, and thus the definition is being provided by the 
compiler and Derived is not actually abstract. 

This brings up an interesting question: What is the point of a pure 
virtual destructor? Unlike an ordinary pure virtual function, you 
must give it a function body. In a derived class, you aren’t forced to 
provide a definition since the compiler synthesizes the destructor 
for you. So what’s the difference between a regular virtual 
destructor and a pure virtual destructor? 

The only distinction occurs when you have a class that only has a 
single pure virtual function: the destructor. In this case, the only 
effect of the purity of the destructor is to prevent the instantiation 
of the base class. If there were any other pure virtual functions, they 
would prevent the instantiation of the base class, but if there are no 
others, then the pure virtual destructor will do it. So, while the 
addition of a virtual destructor is essential, whether it’s pure or not 
isn’t so important. 

When you run the following example, you can see that the pure 
virtual function body is called after the derived class version, just as 
with any other destructor: 

//: C15:PureVirtualDestructors.cpp 

// Pure virtual destructors 

// require a function body 

#include <iostream> 

using namespace std; 

 

class Pet { 

public: 

  virtual ~Pet() = 0; 

}; 

 

Pet::~Pet() { 
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  cout << "~Pet()" << endl; 

} 

 

class Dog : public Pet { 

public: 

  ~Dog() { 

    cout << "~Dog()" << endl; 

  } 

}; 

 

int main() { 

  Pet* p = new Dog; // Upcast 

  delete p; // Virtual destructor call 

} ///:~ 
 

As a guideline, any time you have a virtual function in a class, you 
should immediately add a virtual destructor (even if it does 
nothing). This way, you ensure against any surprises later. 

Virtuals in destructors 
There’s something that happens during destruction that you might 
not immediately expect. If you’re inside an ordinary member 
function and you call a virtual function, that function is called using 
the late-binding mechanism. This is not true with destructors, 
virtual or not. Inside a destructor, only the “local” version of the 
member function is called; the virtual mechanism is ignored. 

//: C15:VirtualsInDestructors.cpp 

// Virtual calls inside destructors 

#include <iostream> 

using namespace std; 

 

class Base { 

public: 

  virtual ~Base() {  

    cout << "Base1()\n";  

    f();  

  } 

  virtual void f() { cout << "Base::f()\n"; } 

}; 

 

class Derived : public Base { 
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public: 

  ~Derived() { cout << "~Derived()\n"; } 

  void f() { cout << "Derived::f()\n"; } 

}; 

 

int main() { 

  Base* bp = new Derived; // Upcast 

  delete bp; 

} ///:~ 
 

During the destructor call, Derived::f( ) is not called, even though 
f( ) is virtual. 

Why is this? Suppose the virtual mechanism were used inside the 
destructor. Then it would be possible for the virtual call to resolve 
to a function that was “farther out” (more derived) on the 
inheritance hierarchy than the current destructor. But destructors 
are called from the “outside in” (from the most-derived destructor 
down to the base destructor), so the actual function called would 
rely on portions of an object that have already been destroyed! 
Instead, the compiler resolves the calls at compile-time and calls 
only the “local” version of the function. Notice that the same is true 
for the constructor (as described earlier), but in the constructor’s 
case the type information wasn’t available, whereas in the 
destructor the information (that is, the VPTR) is there, but is isn’t 
reliable. 

Creating an object-based hierarchy 
An issue that has been recurring throughout this book during the 
demonstration of the container classes Stack and Stash is the 
“ownership problem.” The “owner” refers to who or what is 
responsible for calling delete for objects that have been created 
dynamically (using new). The problem when using containers is 
that they need to be flexible enough to hold different types of 
objects. To do this, the containers have held void pointers and so 
they haven’t known the type of object they’ve held. Deleting a void 
pointer doesn’t call the destructor, so the container couldn’t be 
responsible for cleaning up its objects. 
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One solution was presented in the example 
C14:InheritStack.cpp, in which the Stack was inherited into a 
new class that accepted and produced only string pointers. Since it 
knew that it could hold only pointers to string objects, it could 
properly delete them. This was a nice solution, but it requires you to 
inherit a new container class for each type that you want to hold in 
the container. (Although this seems tedious now, it will actually 
work quite well in Chapter 16, when templates are introduced.) 

The problem is that you want the container to hold more than one 
type, but you don’t want to use void pointers. Another solution is to 
use polymorphism by forcing all the objects held in the container to 
be inherited from the same base class. That is, the container holds 
the objects of the base class, and then you can call virtual functions 
– in particular, you can call virtual destructors to solve the 
ownership problem. 

This solution uses what is referred to as a singly-rooted hierarchy 
or an object-based hierarchy (because the root class of the 
hierarchy is usually named “Object”). It turns out that there are 
many other benefits to using a singly-rooted hierarchy; in fact, 
every other object-oriented language but C++ enforces the use of 
such a hierarchy – when you create a class, you are automatically 
inheriting it directly or indirectly from a common base class, a base 
class that was established by the creators of the language. In C++, it 
was thought that the enforced use of this common base class would 
cause too much overhead, so it was left out. However, you can 
choose to use a common base class in your own projects, and this 
subject will be examined further in Volume 2 of this book. 

To solve the ownership problem, we can create an extremely simple 
Object for the base class, which contains only a virtual destructor. 
The Stack can then hold classes inherited from Object:  

//: C15:OStack.h 

// Using a singly-rooted hierarchy 

#ifndef OSTACK_H 

#define OSTACK_H 

 

class Object { 

public: 
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  virtual ~Object() = 0; 

}; 

 

// Required definition: 

inline Object::~Object() {} 

 

class Stack { 

  struct Link { 

    Object* data; 

    Link* next; 

    Link(Object* dat, Link* nxt) :  

      data(dat), next(nxt) {} 

  }* head; 

public: 

  Stack() : head(0) {} 

  ~Stack(){  

    while(head) 

      delete pop(); 

  } 

  void push(Object* dat) { 

    head = new Link(dat, head); 

  } 

  Object* peek() const {  

    return head ? head->data : 0; 

  } 

  Object* pop() { 

    if(head == 0) return 0; 

    Object* result = head->data; 

    Link* oldHead = head; 

    head = head->next; 

    delete oldHead; 

    return result; 

  } 

}; 

#endif // OSTACK_H ///:~ 
 

To simplify things by keeping everything in the header file, the 
(required) definition for the pure virtual destructor is inlined into 
the header file, and pop( ) (which might be considered too large for 
inlining) is also inlined. 

Link objects now hold pointers to Object rather than void 
pointers, and the Stack will only accept and return Object 
pointers. Now Stack is much more flexible, since it will hold lots of 
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different types but will also destroy any objects that are left on the 
Stack. The new limitation (which will be finally removed when 
templates are applied to the problem in Chapter 16) is that anything 
that is placed on the Stack must be inherited from Object. That’s 
fine if you are starting your class from scratch, but what if you 
already have a class such as string that you want to be able to put 
onto the Stack? In this case, the new class must be both a string 
and an Object, which means it must be inherited from both classes. 
This is called multiple inheritance and it is the subject of an entire 
chapter in Volume 2 of this book (downloadable from 
www.BruceEckel.com). When you read that chapter, you’ll see that 
multiple inheritance can be fraught with complexity, and is a 
feature you should use sparingly. In this situation, however, 
everything is simple enough that we don’t trip across any multiple 
inheritance pitfalls: 

//: C15:OStackTest.cpp 

//{T} OStackTest.cpp 

#include "OStack.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

// Use multiple inheritance. We want  

// both a string and an Object: 

class MyString: public string, public Object { 

public: 

  ~MyString() { 

    cout << "deleting string: " << *this << endl; 

  } 

  MyString(string s) : string(s) {} 

}; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack textlines; 

  string line; 

  // Read file and store lines in the stack: 

  while(getline(in, line)) 
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    textlines.push(new MyString(line)); 

  // Pop some lines from the stack: 

  MyString* s; 

  for(int i = 0; i < 10; i++) { 

    if((s=(MyString*)textlines.pop())==0) break; 

    cout << *s << endl; 

    delete s;  

  } 

  cout << "Letting the destructor do the rest:" 

    << endl; 

} ///:~ 
 

Although this is similar to the previous version of the test program 
for Stack, you’ll notice that only 10 elements are popped from the 
stack, which means there are probably some objects remaining. 
Because the Stack knows that it holds Objects, the destructor can 
properly clean things up, and you’ll see this in the output of the 
program, since the MyString objects print messages as they are 
destroyed. 

Creating containers that hold Objects is not an unreasonable 
approach – if you have a singly-rooted hierarchy (enforced either by 
the language or by the requirement that every class inherit from 
Object). In that case, everything is guaranteed to be an Object and 
so it’s not very complicated to use the containers. In C++, however, 
you cannot expect this from every class, so you’re bound to trip over 
multiple inheritance if you take this approach. You’ll see in Chapter 
16 that templates solve the problem in a much simpler and more 
elegant fashion. 

Operator overloading 
You can make operators virtual just like other member functions. 
Implementing virtual operators often becomes confusing, 
however, because you may be operating on two objects, both with 
unknown types. This is usually the case with mathematical 
components (for which you often overload operators). For example, 
consider a system that deals with matrices, vectors and scalar 
values, all three of which are derived from class Math: 

//: C15:OperatorPolymorphism.cpp 
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// Polymorphism with overloaded operators 

#include <iostream> 

using namespace std; 

 

class Matrix; 

class Scalar; 

class Vector; 

 

class Math { 

public: 

  virtual Math& operator*(Math& rv) = 0; 

  virtual Math& multiply(Matrix*) = 0; 

  virtual Math& multiply(Scalar*) = 0; 

  virtual Math& multiply(Vector*) = 0; 

  virtual ~Math() {} 

}; 

 

class Matrix : public Math { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Matrix" << endl; 

    return *this; 

  } 

  Math& multiply(Scalar*) { 

    cout << "Scalar * Matrix" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Matrix" << endl; 

    return *this; 

  } 

}; 

 

class Scalar : public Math  { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Scalar" << endl; 

    return *this; 

  } 
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  Math& multiply(Scalar*) { 

    cout << "Scalar * Scalar" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Scalar" << endl; 

    return *this; 

  } 

}; 

 

class Vector : public Math  { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Vector" << endl; 

    return *this; 

  } 

  Math& multiply(Scalar*) { 

    cout << "Scalar * Vector" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Vector" << endl; 

    return *this; 

  } 

}; 

 

int main() { 

  Matrix m; Vector v; Scalar s; 

  Math* math[] = { &m, &v, &s }; 

  for(int i = 0; i < 3; i++) 

    for(int j = 0; j < 3; j++) { 

      Math& m1 = *math[i]; 

      Math& m2 = *math[j]; 

      m1 * m2; 

    } 

} ///:~ 
 

For simplicity, only the operator* has been overloaded. The goal is 
to be able to multiply any two Math objects and produce the 
desired result – and note that multiplying a matrix by a vector is a 
very different operation than multiplying a vector by a matrix. 
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The problem is that, in main( ), the expression m1 * m2 contains 
two upcast Math references, and thus two objects of unknown type. 
A virtual function is only capable of making a single dispatch – that 
is, determining the type of one unknown object. To determine both 
types a technique called multiple dispatching is used in this 
example, whereby what appears to be a single virtual function call 
results in a second virtual call. By the time this second call is made, 
you’ve determined both types of object, and can perform the proper 
activity. It’s not transparent at first, but if you stare at the example 
for awhile it should begin to make sense. This topic is explored in 
more depth in the Design Patterns chapter in Volume 2, which you 
can download at www.BruceEckel.com.  

Downcasting 
As you might guess, since there’s such a thing as upcasting – 
moving up an inheritance hierarchy – there should also be 
downcasting to move down a hierarchy. But upcasting is easy since 
as you move up an inheritance hierarchy the classes always 
converge to more general classes. That is, when you upcast you are 
always clearly derived from an ancestor class (typically only one, 
except in the case of multiple inheritance) but when you downcast 
there are usually several possibilities that you could cast to. More 
specifically, a Circle is a type of Shape (that’s the upcast), but if 
you try to downcast a Shape it could be a Circle, Square, 
Triangle, etc. So the dilemma is figuring out a way to safely 
downcast. (But an even more important issue is asking yourself why 
you’re downcasting in the first place instead of just using 
polymorphism to automatically figure out the correct type. The 
avoidance of downcasting is covered in Volume 2 of this book.) 

C++ provides a special explicit cast (introduced in Chapter 3) called 
dynamic_cast that is a type-safe downcast operation. When you 
use dynamic_cast to try to cast down to a particular type, the 
return value will be a pointer to the desired type only if the cast is 
proper and successful, otherwise it will return zero to indicate that 
this was not the correct type. Here’s a minimal example: 

//: C15:DynamicCast.cpp 
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#include <iostream> 

using namespace std; 

 

class Pet { public: virtual ~Pet(){}}; 

class Dog : public Pet {}; 

class Cat : public Pet {}; 

 

int main() { 

  Pet* b = new Cat; // Upcast 

  // Try to cast it to Dog*: 

  Dog* d1 = dynamic_cast<Dog*>(b); 

  // Try to cast it to Cat*: 

  Cat* d2 = dynamic_cast<Cat*>(b); 

  cout << "d1 = " << (long)d1 << endl; 

  cout << "d2 = " << (long)d2 << endl; 

} ///:~ 
 

When you use dynamic_cast, you must be working with a true 
polymorphic hierarchy – one with virtual functions – because 
dynamic_cast uses information stored in the VTABLE to 
determine the actual type. Here, the base class contains a virtual 
destructor and that suffices. In main( ), a Cat pointer is upcast to a 
Pet, and then a downcast is attempted to both a Dog pointer and a 
Cat pointer. Both pointers are printed, and you’ll see when you run 
the program that the incorrect downcast produces a zero result. Of 
course, whenever you downcast you are responsible for checking to 
make sure that the result of the cast is nonzero. Also, you should 
not assume that the pointer will be exactly the same, because 
sometimes pointer adjustments take place during upcasting and 
downcasting (in particular, with multiple inheritance). 

A dynamic_cast requires a little bit of extra overhead to run; not 
much, but if you’re doing a lot of dynamic_casting (in which case 
you should be seriously questioning your program design) this may 
become a performance issue. In some cases you may know 
something special during downcasting that allows you to say for 
sure what type you’re dealing with, in which case the extra overhead 
of the dynamic_cast becomes unnecessary, and you can use a 
static_cast instead. Here’s how it might work: 

//: C15:StaticHierarchyNavigation.cpp 

// Navigating class hierarchies with static_cast 
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#include <iostream> 

#include <typeinfo> 

using namespace std; 

 

class Shape { public: virtual ~Shape() {}; }; 

class Circle : public Shape {}; 

class Square : public Shape {}; 

class Other {}; 

 

int main() { 

  Circle c; 

  Shape* s = &c; // Upcast: normal and OK 

  // More explicit but unnecessary: 

  s = static_cast<Shape*>(&c); 

  // (Since upcasting is such a safe and common 

  // operation, the cast becomes cluttering) 

  Circle* cp = 0; 

  Square* sp = 0; 

  // Static Navigation of class hierarchies 

  // requires extra type information: 

  if(typeid(s) == typeid(cp)) // C++ RTTI 

    cp = static_cast<Circle*>(s); 

  if(typeid(s) == typeid(sp)) 

    sp = static_cast<Square*>(s); 

  if(cp != 0) 

    cout << "It's a circle!" << endl; 

  if(sp != 0) 

    cout << "It's a square!" << endl; 

  // Static navigation is ONLY an efficiency hack; 

  // dynamic_cast is always safer. However: 

  // Other* op = static_cast<Other*>(s); 

  // Conveniently gives an error message, while 

  Other* op2 = (Other*)s; 

  // does not 

} ///:~ 
 

In this program, a new feature is used that is not fully described 
until Volume 2 of this book, where a chapter is given to the topic: 
C++’s run-time type information (RTTI) mechanism. RTTI allows 
you to discover type information that has been lost by upcasting. 
The dynamic_cast is actually one form of RTTI. Here, the typeid 
keyword (declared in the header file <typeinfo>) is used to detect 
the types of the pointers. You can see that the type of the upcast 
Shape pointer is successively compared to a Circle pointer and a 
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Square pointer to see if there’s a match. There’s more to RTTI than 
typeid, and you can also imagine that it would be fairly easy to 
implement your own type information system using a virtual 
function. 

A Circle object is created and the address is upcast to a Shape 
pointer; the second version of the expression shows how you can 
use static_cast to be more explicit about the upcast. However, 
since an upcast is always safe and it’s a common thing to do, I 
consider an explicit cast for upcasting to be cluttering and 
unnecessary.  

RTTI is used to determine the type, and then static_cast is used to 
perform the downcast. But notice that in this design the process is 
effectively the same as using dynamic_cast, and the client 
programmer must do some testing to discover the cast that was 
actually successful. You’ll typically want a situation that’s more 
deterministic than in the example above before using static_cast 
rather than dynamic_cast (and, again, you want to carefully 
examine your design before using dynamic_cast). 

If a class hierarchy has no virtual functions (which is a 
questionable design) or if you have other information that allows 
you to safely downcast, it’s a tiny bit faster to do the downcast 
statically than with dynamic_cast. In addition, static_cast won’t 
allow you to cast out of the hierarchy, as the traditional cast will, so 
it’s safer. However, statically navigating class hierarchies is always 
risky and you should use dynamic_cast unless you have a special 
situation. 

Summary 
Polymorphism – implemented in C++ with virtual functions – 
means “different forms.” In object-oriented programming, you have 
the same face (the common interface in the base class) and different 
forms using that face: the different versions of the virtual functions. 

You’ve seen in this chapter that it’s impossible to understand, or 
even create, an example of polymorphism without using data 
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abstraction and inheritance. Polymorphism is a feature that cannot 
be viewed in isolation (like const or a switch statement, for 
example), but instead works only in concert, as part of a “big 
picture” of class relationships. People are often confused by other, 
non-object-oriented features of C++, like overloading and default 
arguments, which are sometimes presented as object-oriented. 
Don’t be fooled; if it isn’t late binding, it isn’t polymorphism. 

To use polymorphism – and thus, object-oriented techniques – 
effectively in your programs you must expand your view of 
programming to include not just members and messages of an 
individual class, but also the commonality among classes and their 
relationships with each other. Although this requires significant 
effort, it’s a worthy struggle, because the results are faster program 
development, better code organization, extensible programs, and 
easier code maintenance. 

Polymorphism completes the object-oriented features of the 
language, but there are two more major features in C++: templates 
(which are introduced in Chapter 16 and covered in much more 
detail in Volume 2), and exception handling (which is covered in 
Volume 2). These features provide you as much increase in 
programming power as each of the object-oriented features: 
abstract data typing, inheritance, and polymorphism. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Create a simple “shape” hierarchy: a base class called 
Shape and derived classes called Circle, Square, and 
Triangle. In the base class, make a virtual function 
called draw( ), and override this in the derived classes. 
Make an array of pointers to Shape objects that you 
create on the heap (and thus perform upcasting of the 
pointers), and call draw( ) through the base-class 
pointers, to verify the behavior of the virtual function. If 
your debugger supports it, single-step through the code. 
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2.  Modify Exercise 1 so draw( ) is a pure virtual function. 
Try creating an object of type Shape. Try to call the pure 
virtual function inside the constructor and see what 
happens. Leaving it as a pure virtual, give draw( ) a 
definition. 

3.  Expanding on Exercise 2, create a function that takes a 
Shape object by value and try to upcast a derived object 
in as an argument. See what happens. Fix the function by 
taking a reference to the Shape object. 

4.  Modify C14:Combined.cpp so that f( ) is virtual in 
the base class. Change main( ) to perform an upcast and 
a virtual call. 

5.  Modify Instrument3.cpp by adding a virtual 
prepare( ) function. Call prepare( ) inside tune( ). 

6.  Create an inheritance hierarchy of Rodent: Mouse, 
Gerbil, Hamster, etc. In the base class, provide 
methods that are common to all Rodents, and redefine 
these in the derived classes to perform different 
behaviors depending on the specific type of Rodent. 
Create an array of pointers to Rodent, fill it with 
different specific types of Rodents, and call your base-
class methods to see what happens. 

7.  Modify Exercise 6 so that you use a vector<Rodent*> 
instead of an array of pointers. Make sure that memory is 
cleaned up properly. 

8.  Starting with the previous Rodent hierarchy, inherit 
BlueHamster from Hamster (yes, there is such a 
thing; I had one when I was a kid), override the base-
class methods, and show that the code that calls the base-
class methods doesn’t need to change in order to 
accommodate the new type.  

9.  Starting with the previous Rodent hierarchy, add a non 
virtual destructor, create an object of class Hamster 
using new, upcast the pointer to a Rodent*, and delete 
the pointer to show that it doesn’t call all the destructors 
in the hierarchy. Change the destructor to be virtual and 
demonstrate that the behavior is now correct. 

10.  Starting with the previous Rodent hierarchy, modify 
Rodent so it is a pure abstract base class. 
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11.  Create an air-traffic control system with base-class 
Aircraft and various derived types. Create a Tower 
class with a vector<Aircraft*> that sends the 
appropriate messages to the various aircraft under its 
control. 

12.  Create a model of a greenhouse by inheriting various 
types of Plant and building mechanisms into your 
greenhouse that take care of the plants. 

13.  In Early.cpp, make Pet a pure abstract base class. 

14.  In AddingVirtuals.cpp, make all the member functions 
of Pet pure virtuals, but provide a definition for 
name( ). Fix Dog as necessary, using the base-class 
definition of name( ). 

15.  Write a small program to show the difference between 
calling a virtual function inside a normal member 
function and calling a virtual function inside a 
constructor. The program should prove that the two calls 
produce different results. 

16.  Modify VirtualsInDestructors.cpp by inheriting a 
class from Derived and overriding f( ) and the 
destructor. In main( ), create and upcast an object of 
your new type, then delete it. 

17.  Take Exercise 16 and add calls to f( ) in each destructor. 
Explain what happens. 

18.  Create a class that has a data member and a derived class 
that adds another data member. Write a non-member 
function that takes an object of the base class by value 
and prints out the size of that object using sizeof. In 
main( ) create an object of the derived class, print out its 
size, and then call your function. Explain what happens. 

19.  Create a simple example of a virtual function call and 
generate assembly output. Locate the assembly code for 
the virtual call and trace and explain the code. 

20.  Write a class with one virtual function and one non-
virtual function. Inherit a new class, make an object of 
this class, and upcast to a pointer of the base-class type. 
Use the clock( ) function found in <ctime> (you’ll need 
to look this up in your local C library guide) to measure 
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the difference between a virtual call and non-virtual call. 
You’ll need to make multiple calls to each function inside 
your timing loop in order to see the difference. 

21.  Modify C14:Order.cpp by adding a virtual function in 
the base class of the CLASS macro (have it print 
something) and by making the destructor virtual. Make 
objects of the various subclasses and upcast them to the 
base class. Verify that the virtual behavior works and that 
proper construction and destruction takes place. 

22.  Write a class with three overloaded virtual functions. 
Inherit a new class from this and override one of the 
functions. Create an object of your derived class. Can you 
call all the base class functions through the derived-class 
object? Upcast the address of the object to the base. Can 
you call all three functions through the base? Remove the 
overridden definition in the derived class. Now can you 
call all the base class functions through the derived-class 
object? 

23.  Modify VariantReturn.cpp to show that its behavior 
works with references as well as pointers. 

24.  In Early.cpp, how can you tell whether the compiler 
makes the call using early or late binding? Determine the 
case for your own compiler. 

25.  Create a base class containing a clone( ) function that 
returns a pointer to a copy of the current object. Derive 
two subclasses that override clone( ) to return copies of 
their specific types. In main( ), create and upcast objects 
of your two derived types, then call clone( ) for each and 
verify that the cloned copies are the correct subtypes. 
Experiment with your clone( ) function so that you 
return the base type, then try returning the exact derived 
type. Can you think of situations in which the latter 
approach is necessary? 

26.  Modify OStackTest.cpp by creating your own class, 
then multiply-inheriting it with Object to create 
something that can be placed into the Stack. Test your 
class in main( ). 

27.  Add a type called Tensor to 
OperatorPolymorphism.cpp. 
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28.  (Intermediate) Create a base class X with no data 
members and no constructor, but with a virtual function. 
Create a class Y that inherits from X, but without an 
explicit constructor. Generate assembly code and 
examine it to determine if a constructor is created and 
called for X, and if so, what the code does. Explain what 
you discover. X has no default constructor, so why 
doesn’t the compiler complain? 

29.  (Intermediate) Modify Exercise 28 by writing 
constructors for both classes so that each constructor 
calls a virtual function. Generate assembly code. 
Determine where the VPTR is being assigned inside each 
constructor. Is the virtual mechanism being used by your 
compiler inside the constructor? Establish why the local 
version of the function is still being called. 

30.  (Advanced) If function calls to an object passed by value 
weren’t early-bound, a virtual call might access parts that 
didn’t exist. Is this possible? Write some code to force a 
virtual call, and see if this causes a crash. To explain the 
behavior, examine what happens when you pass an object 
by value. 

31.  (Advanced) Find out exactly how much more time is 
required for a virtual function call by going to your 
processor’s assembly-language information or other 
technical manual and finding out the number of clock 
states required for a simple call versus the number 
required for the virtual function instructions. 

32.  Determine the sizeof the VPTR for your implementation. 
Now multiply-inherit two classes that contain virtual 
functions. Did you get one VPTR or two in the derived 
class? 

33.  Create a class with data members and virtual functions. 
Write a function that looks at the memory in an object of 
your class and prints out the various pieces of it. To do 
this you will need to experiment and iteratively discover 
where the VPTR is located in the object. 

34.  Pretend that virtual functions don’t exist, and modify 
Instrument4.cpp so that it uses dynamic_cast to 
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make the equivalent of the virtual calls. Explain why this 
is a bad idea. 

35.  Modify StaticHierarchyNavigation.cpp so that 
instead of using C++ RTTI you create your own RTTI via 
a virtual function in the base class called whatAmI( ) 
and an enum type { Circles, Squares };. 

36.  Start with PointerToMemberOperator.cpp from 
Chapter 12 and show that polymorphism still works with 
pointers-to-members, even if operator->* is 
overloaded. 
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16: Introduction to 

Templates 
Inheritance and composition provide a way to reuse 

object code. The template feature in C++ provides  

a way to reuse source code. 
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Although C++ templates are a general-purpose programming tool, 
when they were introduced in the language, they seemed to 
discourage the use of object-based container-class hierarchies 
(demonstrated at the end of Chapter 15). For example, the Standard 
C++ containers and algorithms (explained in two chapters of 
Volume 2 of this book, downloadable from www.BruceEckel.com) 
are built exclusively with templates and are relatively easy for the 
programmer to use. 

This chapter not only demonstrates the basics of templates, it is 
also an introduction to containers, which are fundamental 
components of object-oriented programming and are almost 
completely realized through the containers in the Standard C++ 
Library. You’ll see that this book has been using container examples 
– the Stash and Stack – throughout, precisely to get you 
comfortable with containers; in this chapter the concept of the 
iterator will also be added. Although containers are ideal examples 
for use with templates, in Volume 2 (which has an advanced 
templates chapter) you’ll learn that there are many other uses for 
templates as well. 

Containers 
Suppose you want to create a stack, as we have been doing 
throughout the book. This stack class will hold ints, to keep it 
simple: 

//: C16:IntStack.cpp 

// Simple integer stack 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 

  int top; 

public: 

  IntStack() : top(0) {} 
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  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

}; 

 

int main() { 

  IntStack is; 

  // Add some Fibonacci numbers, for interest: 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Pop & print them: 

  for(int k = 0; k < 20; k++) 

    cout << is.pop() << endl; 

} ///:~ 
 

The class IntStack is a trivial example of a push-down stack. For 
simplicity it has been created here with a fixed size, but you can also 
modify it to automatically expand by allocating memory off the 
heap, as in the Stack class that has been examined throughout the 
book. 

main( ) adds some integers to the stack, and pops them off again. 
To make the example more interesting, the integers are created 
with the fibonacci( ) function, which generates the traditional 
rabbit-reproduction numbers. Here is the header file that declares 
the function: 

//: C16:fibonacci.h 

// Fibonacci number generator 

int fibonacci(int n); ///:~ 
 

Here’s the implementation: 

//: C16:fibonacci.cpp {O} 

#include "../require.h" 

 

int fibonacci(int n) { 

  const int sz = 100; 

  require(n < sz); 



692 Thinking in C++ www.BruceEckel.com 

  static int f[sz]; // Initialized to zero 

  f[0] = f[1] = 1; 

  // Scan for unfilled array elements: 

  int i; 

  for(i = 0; i < sz; i++) 

    if(f[i] == 0) break; 

  while(i <= n) { 

    f[i] = f[i-1] + f[i-2]; 

    i++; 

  } 

  return f[n]; 

} ///:~ 
 

This is a fairly efficient implementation, because it never generates 
the numbers more than once. It uses a static array of int, and 
relies on the fact that the compiler will initialize a static array to 
zero. The first for loop moves the index i to where the first array 
element is zero, then a while loop adds Fibonacci numbers to the 
array until the desired element is reached. But notice that if the 
Fibonacci numbers through element n are already initialized, it 
skips the while loop altogether. 

The need for containers 
Obviously, an integer stack isn’t a crucial tool. The real need for 
containers comes when you start making objects on the heap using 
new and destroying them with delete. In the general 
programming problem, you don’t know how many objects you’re 
going to need while you’re writing the program. For example, in an 
air-traffic control system you don’t want to limit the number of 
planes your system can handle. You don’t want the program to 
abort just because you exceed some number. In a computer-aided 
design system, you’re dealing with lots of shapes, but only the user 
determines (at runtime) exactly how many shapes you’re going to 
need. Once you notice this tendency, you’ll discover lots of 
examples in your own programming situations. 

C programmers who rely on virtual memory to handle their 
“memory management” often find the idea of new, delete, and 
container classes disturbing. Apparently, one practice in C is to 
create a huge global array, larger than anything the program would 
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appear to need. This may not require much thought (or awareness 
of malloc( ) and free( )), but it produces programs that don’t port 
well and that hide subtle bugs. 

In addition, if you create a huge global array of objects in C++, the 
constructor and destructor overhead can slow things down 
significantly. The C++ approach works much better: When you 
need an object, create it with new, and put its pointer in a 
container. Later on, fish it out and do something to it. This way, you 
create only the objects you absolutely need. And usually you don’t 
have all the initialization conditions available at the start-up of the 
program. new allows you to wait until something happens in the 
environment before you can actually create the object. 

So in the most common situation, you’ll make a container that 
holds pointers to some objects of interest. You will create those 
objects using new and put the resulting pointer in the container 
(potentially upcasting it in the process), pulling it out later when 
you want to do something with the object. This technique produces 
the most flexible, general sort of program. 

Overview of templates 
Now a problem arises. You have an IntStack, which holds integers. 
But you want a stack that holds shapes or aircraft or plants or 
something else. Reinventing your source code every time doesn’t 
seem like a very intelligent approach with a language that touts 
reusability. There must be a better way. 

There are three techniques for source code reuse in this situation: 
the C way, presented here for contrast; the Smalltalk approach, 
which significantly affected C++; and the C++ approach: templates. 

The C solution. Of course you’re trying to get away from the C 
approach because it’s messy and error prone and completely 
inelegant. In this approach, you copy the source code for a Stack 
and make modifications by hand, introducing new errors in the 
process. This is certainly not a very productive technique. 
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The Smalltalk solution. Smalltalk (and Java, following its 
example) took a simple and straightforward approach: You want to 
reuse code, so use inheritance. To implement this, each container 
class holds items of the generic base class Object (similar to the 
example at the end of Chapter 15). But because the library in 
Smalltalk is of such fundamental importance, you don’t ever create 
a class from scratch. Instead, you must always inherit it from an 
existing class. You find a class as close as possible to the one you 
want, inherit from it, and make a few changes. Obviously, this is a 
benefit because it minimizes your effort (and explains why you 
spend a lot of time learning the class library before becoming an 
effective Smalltalk programmer). 

But it also means that all classes in Smalltalk end up being part of a 
single inheritance tree. You must inherit from a branch of this tree 
when creating a new class. Most of the tree is already there (it’s the 
Smalltalk class library), and at the root of the tree is a class called 
Object – the same class that each Smalltalk container holds. 

This is a neat trick because it means that every class in the 
Smalltalk (and Java1) class hierarchy is derived from Object, so 
every class can be held in every container (including that container 
itself). This type of single-tree hierarchy based on a fundamental 
generic type (often named Object, which is also the case in Java) is 
referred to as an “object-based hierarchy.” You may have heard this 
term and assumed it was some new fundamental concept in OOP, 
like polymorphism. It simply refers to a class hierarchy with Object 
(or some similar name) at its root and container classes that hold 
Object. 

Because the Smalltalk class library had a much longer history and 
experience behind it than did C++, and because the original C++ 
compilers had no container class libraries, it seemed like a good 
idea to duplicate the Smalltalk library in C++. This was done as an 
experiment with an early C++ implementation2, and because it 

                                                   
1 With the exception, in Java, of the primitive data types. These were made non-
Objects for efficiency. 
2 The OOPS library, by Keith Gorlen while he was at NIH.  
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represented a significant body of code, many people began using it. 
In the process of trying to use the container classes, they discovered 
a problem. 

The problem was that in Smalltalk (and most other OOP languages 
that I know of), all classes are automatically derived from a single 
hierarchy, but this isn’t true in C++. You might have your nice 
object-based hierarchy with its container classes, but then you 
might buy a set of shape classes or aircraft classes from another 
vendor who didn’t use that hierarchy. (For one thing, using that 
hierarchy imposes overhead, which C programmers eschew.) How 
do you insert a separate class tree into the container class in your 
object-based hierarchy? Here’s what the problem looks like: 

(Not derived

from Object)

Container
(Holds pointers

to Objects)

Object

Object

Object

Shape

Circle Square Triangle

 
Because C++ supports multiple independent hierarchies, 
Smalltalk’s object-based hierarchy does not work so well. 

The solution seemed obvious. If you can have many inheritance 
hierarchies, then you should be able to inherit from more than one 
class: Multiple inheritance will solve the problem. So you do the 
following (a similar example was given at the end of Chapter 15): 

Shape

Circle Square
OShape

OCircle OSquare OTriangle

Triangle

Object

 
Now OShape has Shape’s characteristics and behaviors, but 
because it is also derived from Object it can be placed in 
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Container. The extra inheritance into OCircle, OSquare, etc. is 
necessary so that those classes can be upcast into OShape and thus 
retain the correct behavior. You can see that things are rapidly 
getting messy. 

Compiler vendors invented and included their own object-based 
container-class hierarchies, most of which have since been replaced 
by template versions. You can argue that multiple inheritance is 
needed for solving general programming problems, but you’ll see in 
Volume 2 of this book that its complexity is best avoided except in 
special cases. 

The template solution 
Although an object-based hierarchy with multiple inheritance is 
conceptually straightforward, it turns out to be painful to use. In his 
original book3 Stroustrup demonstrated what he considered a 
preferable alternative to the object-based hierarchy. Container 
classes were created as large preprocessor macros with arguments 
that could be substituted with your desired type. When you wanted 
to create a container to hold a particular type, you made a couple of 
macro calls. 

Unfortunately, this approach was confused by all the existing 
Smalltalk literature and programming experience, and it was a bit 
unwieldy. Basically, nobody got it. 

In the meantime, Stroustrup and the C++ team at Bell Labs had 
modified his original macro approach, simplifying it and moving it 
from the domain of the preprocessor into the compiler. This new 
code-substitution device is called a template4, and it represents a 
completely different way to reuse code. Instead of reusing object 
code, as with inheritance and composition, a template reuses source 
code. The container no longer holds a generic base class called 
Object, but instead it holds an unspecified parameter. When you 

                                                   
3 The C++ Programming Language by Bjarne Stroustrup (1st edition, Addison-
Wesley, 1986). 
4 The inspiration for templates appears to be ADA generics. 
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use a template, the parameter is substituted by the compiler, much 
like the old macro approach, but cleaner and easier to use. 

Now, instead of worrying about inheritance or composition when 
you want to use a container class, you take the template version of 
the container and stamp out a specific version for your particular 
problem, like this: 

Shape

Container

Shape

Shape

Shape

 
The compiler does the work for you, and you end up with exactly 
the container you need to do your job, rather than an unwieldy 
inheritance hierarchy. In C++, the template implements the 
concept of a parameterized type. Another benefit of the template 
approach is that the novice programmer who may be unfamiliar or 
uncomfortable with inheritance can still use canned container 
classes right away (as we’ve been doing with vector throughout the 
book). 

Template syntax 
The template keyword tells the compiler that the class definition 
that follows will manipulate one or more unspecified types. At the 
time the actual class code is generated from the template, those 
types must be specified so that the compiler can substitute them. 

To demonstrate the syntax, here’s a small example that produces a 
bounds-checked array: 

//: C16:Array.cpp 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

template<class T> 

class Array { 
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  enum { size = 100 }; 

  T A[size]; 

public: 

  T& operator[](int index) { 

    require(index >= 0 && index < size, 

      "Index out of range"); 

    return A[index]; 

  } 

}; 

 

int main() { 

  Array<int> ia; 

  Array<float> fa; 

  for(int i = 0; i < 20; i++) { 

    ia[i] = i * i; 

    fa[i] = float(i) * 1.414; 

  } 

  for(int j = 0; j < 20; j++) 

    cout << j << ": " << ia[j] 

         << ", " << fa[j] << endl; 

} ///:~ 
 

You can see that it looks like a normal class except for the line 

template<class T>  
 

which says that T is the substitution parameter, and that it 
represents a type name. Also, you see T used everywhere in the 
class where you would normally see the specific type the container 
holds. 

In Array, elements are inserted and extracted with the same 
function: the overloaded operator [ ] . It returns a reference, so it 
can be used on both sides of an equal sign (that is, as both an lvalue 
and an rvalue). Notice that if the index is out of bounds, the 
require( ) function is used to print a message. Since operator[] 
is an inline, you could use this approach to guarantee that no 
array-bounds violations occur, then remove the require( ) for the 
shipping code. 

In main( ), you can see how easy it is to create Arrays that hold 
different types of objects. When you say 
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Array<int> ia; 

Array<float> fa; 
 

the compiler expands the Array template (this is called 
instantiation) twice, to create two new generated classes, which 
you can think of as Array_int and Array_float. (Different 
compilers may decorate the names in different ways.) These are 
classes just like the ones you would have produced if you had 
performed the substitution by hand, except that the compiler 
creates them for you as you define the objects ia and fa. Also note 
that duplicate class definitions are either avoided by the compiler or 
merged by the linker. 

Non-inline function definitions 
Of course, there are times when you’ll want to have non-inline 
member function definitions. In this case, the compiler needs to see 
the template declaration before the member function definition. 
Here’s the example above, modified to show the non-inline member 
definition: 

//: C16:Array2.cpp 

// Non-inline template definition 

#include "../require.h" 

 

template<class T> 

class Array { 

  enum { size = 100 }; 

  T A[size]; 

public: 

  T& operator[](int index); 

}; 

 

template<class T> 

T& Array<T>::operator[](int index) { 

  require(index >= 0 && index < size, 

    "Index out of range"); 

  return A[index]; 

} 

 

int main() { 

  Array<float> fa; 

  fa[0] = 1.414; 
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} ///:~ 
 

Any reference to a template’s class name must be accompanied by 
its template argument list, as in Array<T>::operator[]. You can 
imagine that internally, the class name is being decorated with the 
arguments in the template argument list to produce a unique class 
name identifier for each template instantiation. 

Header files 
Even if you create non-inline function definitions, you’ll usually 
want to put all declarations and definitions for a template into a 
header file. This may seem to violate the normal header file rule of 
“Don’t put in anything that allocates storage,” (which prevents 
multiple definition errors at link time), but template definitions are 
special. Anything preceded by template<...> means the compiler 
won’t allocate storage for it at that point, but will instead wait until 
it’s told to (by a template instantiation), and that somewhere in the 
compiler and linker there’s a mechanism for removing multiple 
definitions of an identical template. So you’ll almost always put the 
entire template declaration and definition in the header file, for 
ease of use. 

There are times when you may need to place the template 
definitions in a separate cpp file to satisfy special needs (for 
example, forcing template instantiations to exist in only a single 
Windows dll file). Most compilers have some mechanism to allow 
this; you’ll have to investigate your particular compiler’s 
documentation to use it. 

Some people feel that putting all of the source code for your 
implementation in a header file makes it possible for people to steal 
and modify your code if they buy a library from you. This might be 
an issue, but it probably depends on the way you look at the 
problem: Are they buying a product or a service? If it’s a product, 
then you have to do everything you can to protect it, and probably 
you don’t want to give source code, just compiled code. But many 
people see software as a service, and even more than that, a 
subscription service. The customer wants your expertise, they want 
you to continue maintaining this piece of reusable code so that they 
don’t have to – so they can focus on getting their job done. I 
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personally think most customers will treat you as a valuable 
resource and will not want to jeopardize their relationship with you. 
As for the few who want to steal rather than buy or do original 
work, they probably can’t keep up with you anyway. 

IntStack as a template 
Here is the container and iterator from IntStack.cpp, 
implemented as a generic container class using templates: 

//: C16:StackTemplate.h 

// Simple stack template 

#ifndef STACKTEMPLATE_H 

#define STACKTEMPLATE_H 

#include "../require.h" 

 

template<class T> 

class StackTemplate { 

  enum { ssize = 100 }; 

  T stack[ssize]; 

  int top; 

public: 

  StackTemplate() : top(0) {} 

  void push(const T& i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  int size() { return top; } 

}; 

#endif // STACKTEMPLATE_H ///:~ 
 

Notice that a template makes certain assumptions about the objects 
it is holding. For example, StackTemplate assumes there is some 
sort of assignment operation for T inside the push( ) function. You 
could say that a template “implies an interface” for the types it is 
capable of holding. 

Another way to say this is that templates provide a kind of weak 
typing mechanism for C++, which is ordinarily a strongly-typed 
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language. Instead of insisting that an object be of some exact type in 
order to be acceptable, weak typing requires only that the member 
functions that it wants to call are available for a particular object. 
Thus, weakly-typed code can be applied to any object that can 
accept those member function calls, and is thus much more 
flexible5. 

Here’s the revised example to test the template: 

//: C16:StackTemplateTest.cpp 

// Test simple stack template 

//{L} fibonacci 

#include "fibonacci.h" 

#include "StackTemplate.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  StackTemplate<int> is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  for(int k = 0; k < 20; k++) 

    cout << is.pop() << endl; 

  ifstream in("StackTemplateTest.cpp"); 

  assure(in, "StackTemplateTest.cpp"); 

  string line; 

  StackTemplate<string> strings; 

  while(getline(in, line)) 

    strings.push(line); 

  while(strings.size() > 0) 

    cout << strings.pop() << endl; 

} ///:~ 
 

The only difference is in the creation of is. Inside the template 
argument list you specify the type of object the stack and iterator 
should hold. To demonstrate the genericness of the template, a 

                                                   
5 All methods in both Smalltalk and Python are weakly typed, and so those languages 
do not need a template mechanism. In effect, you get templates without templates. 
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StackTemplate is also created to hold string. This is tested by 
reading in lines from the source-code file. 

Constants in templates 
Template arguments are not restricted to class types; you can also 
use built-in types. The values of these arguments then become 
compile-time constants for that particular instantiation of the 
template. You can even use default values for these arguments. The 
following example allows you to set the size of the Array class 
during instantiation, but also provides a default value: 

//: C16:Array3.cpp 

// Built-in types as template arguments 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

template<class T, int size = 100> 

class Array { 

  T array[size]; 

public: 

  T& operator[](int index) { 

    require(index >= 0 && index < size, 

      "Index out of range"); 

    return array[index]; 

  } 

  int length() const { return size; } 

}; 

 

class Number { 

  float f; 

public: 

  Number(float ff = 0.0f) : f(ff) {} 

  Number& operator=(const Number& n) { 

    f = n.f; 

    return *this; 

  } 

  operator float() const { return f; } 

  friend ostream& 

    operator<<(ostream& os, const Number& x) { 

      return os << x.f; 

  } 
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}; 

 

template<class T, int size = 20> 

class Holder { 

  Array<T, size>* np; 

public: 

  Holder() : np(0) {} 

  T& operator[](int i) { 

    require(0 <= i && i < size); 

    if(!np) np = new Array<T, size>; 

    return np->operator[](i); 

  } 

  int length() const { return size; } 

  ~Holder() { delete np; } 

}; 

 

int main() { 

  Holder<Number> h; 

  for(int i = 0; i < 20; i++) 

    h[i] = i; 

  for(int j = 0; j < 20; j++) 

    cout << h[j] << endl; 

} ///:~ 
 

As before, Array is a checked array of objects and prevents you 
from indexing out of bounds. The class Holder is much like Array 
except that it has a pointer to an Array instead of an embedded 
object of type Array. This pointer is not initialized in the 
constructor; the initialization is delayed until the first access. This is 
called lazy initialization; you might use a technique like this if you 
are creating a lot of objects, but not accessing them all, and want to 
save storage. 

You’ll notice that the size value in both templates is never stored 
internally in the class, but it is used as if it were a data member 
inside the member functions. 
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Stack and Stash 

as templates 
The recurring  “ownership” problems with the Stash and Stack 
container classes that have been revisited throughout this book 
come from the fact that these containers haven’t been able to know 
exactly what types they hold. The nearest they’ve come is the Stack 
“container of Object” that was seen at the end of Chapter 15 in 
OStackTest.cpp. 

If the client programmer doesn’t explicitly remove all the pointers 
to objects that are held in the container, then the container should 
be able to correctly delete those pointers. That is to say, the 
container “owns” any objects that haven’t been removed, and is 
thus responsible for cleaning them up. The snag has been that 
cleanup requires knowing the type of the object, and creating a 
generic container class requires not knowing the type of the object. 
With templates, however, we can write code that doesn’t know the 
type of the object, and easily instantiate a new version of that 
container for every type that we want to contain. The individual 
instantiated containers do know the type of objects they hold and 
can thus call the correct destructor (assuming, in the typical case 
where polymorphism is involved, that a virtual destructor has been 
provided). 

For the Stack this turns out to be quite simple since all of the 
member functions can be reasonably inlined: 

//: C16:TStack.h 

// The Stack as a template 

#ifndef TSTACK_H 

#define TSTACK_H 

 

template<class T> 

class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt):  

      data(dat), next(nxt) {} 

  }* head; 
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public: 

  Stack() : head(0) {} 

  ~Stack(){  

    while(head) 

      delete pop(); 

  } 

  void push(T* dat) { 

    head = new Link(dat, head); 

  } 

  T* peek() const { 

    return head ? head->data : 0;  

  } 

  T* pop(){ 

    if(head == 0) return 0; 

    T* result = head->data; 

    Link* oldHead = head; 

    head = head->next; 

    delete oldHead; 

    return result; 

  } 

}; 

#endif // TSTACK_H ///:~ 
 

If you compare this to the OStack.h example at the end of Chapter 
15, you will see that Stack is virtually identical, except that Object 
has been replaced with T. The test program is also nearly identical, 
except that the necessity for multiply-inheriting from string and 
Object (and even the need for Object itself) has been eliminated. 
Now there is no MyString class to announce its destruction, so a 
small new class is added to show a Stack container cleaning up its 
objects: 

//: C16:TStackTest.cpp 

//{T} TStackTest.cpp 

#include "TStack.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

class X { 

public: 

  virtual ~X() { cout << "~X " << endl; } 
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}; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack<string> textlines; 

  string line; 

  // Read file and store lines in the Stack: 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  // Pop some lines from the stack: 

  string* s; 

  for(int i = 0; i < 10; i++) { 

    if((s = (string*)textlines.pop())==0) break; 

    cout << *s << endl; 

    delete s;  

  } // The destructor deletes the other strings. 

  // Show that correct destruction happens: 

  Stack<X> xx; 

  for(int j = 0; j < 10; j++) 

    xx.push(new X); 

} ///:~ 
 

The destructor for X is virtual, not because it’s necessary here, but 
because xx could later be used to hold objects derived from X. 

Notice how easy it is to create different kinds of Stacks for string 
and for X. Because of the template, you get the best of both worlds: 
the ease of use of the Stack class along with proper cleanup. 

Templatized pointer Stash 
Reorganizing the PStash code into a template isn’t quite so simple 
because there are a number of member functions that should not be 
inlined. However, as a template those function definitions still 
belong in the header file (the compiler and linker take care of any 
multiple definition problems). The code looks quite similar to the 
ordinary PStash except that you’ll notice the size of the increment 
(used by inflate( )) has been templatized as a non-class parameter 
with a default value, so that the increment size can be modified at 
the point of instantiation (notice that this means that the increment 
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size is fixed; you may also argue that the increment size should be 
changeable throughout the lifetime of the object): 

//: C16:TPStash.h 

#ifndef TPSTASH_H 

#define TPSTASH_H 

 

template<class T, int incr = 10> 

class PStash { 

  int quantity; // Number of storage spaces 

  int next; // Next empty space 

  T** storage; 

  void inflate(int increase = incr); 

public: 

  PStash() : quantity(0), next(0), storage(0) {} 

  ~PStash(); 

  int add(T* element); 

  T* operator[](int index) const; // Fetch 

  // Remove the reference from this PStash: 

  T* remove(int index); 

  // Number of elements in Stash: 

  int count() const { return next; } 

}; 

 

template<class T, int incr> 

int PStash<T, incr>::add(T* element) { 

  if(next >= quantity) 

    inflate(incr); 

  storage[next++] = element; 

  return(next - 1); // Index number 

} 

 

// Ownership of remaining pointers: 

template<class T, int incr> 

PStash<T, incr>::~PStash() { 

  for(int i = 0; i < next; i++) { 

    delete storage[i]; // Null pointers OK 

    storage[i] = 0; // Just to be safe 

  } 

  delete []storage; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::operator[](int index) const { 
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  require(index >= 0, 

    "PStash::operator[] index negative"); 

  if(index >= next) 

    return 0; // To indicate the end 

  require(storage[index] != 0,  

    "PStash::operator[] returned null pointer"); 

  // Produce pointer to desired element: 

  return storage[index]; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::remove(int index) { 

  // operator[] performs validity checks: 

  T* v = operator[](index); 

  // "Remove" the pointer: 

  if(v != 0) storage[index] = 0; 

  return v; 

} 

 

template<class T, int incr> 

void PStash<T, incr>::inflate(int increase) { 

  const int psz = sizeof(T*); 

  T** st = new T*[quantity + increase]; 

  memset(st, 0, (quantity + increase) * psz); 

  memcpy(st, storage, quantity * psz); 

  quantity += increase; 

  delete []storage; // Old storage 

  storage = st; // Point to new memory 

} 

#endif // TPSTASH_H ///:~ 
 

The default increment size used here is small to guarantee that calls 
to inflate( ) occur. This way we can make sure it works correctly. 

To test the ownership control of the templatized PStash, the 
following class will report creations and destructions of itself, and 
also guarantee that all objects that have been created were also 
destroyed. AutoCounter will allow only objects of its type to be 
created on the stack: 

//: C16:AutoCounter.h 

#ifndef AUTOCOUNTER_H 

#define AUTOCOUNTER_H 

#include "../require.h" 
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#include <iostream> 

#include <set> // Standard C++ Library container 

#include <string> 

 

class AutoCounter { 

  static int count; 

  int id; 

  class CleanupCheck { 

    std::set<AutoCounter*> trace; 

  public: 

    void add(AutoCounter* ap) { 

      trace.insert(ap); 

    } 

    void remove(AutoCounter* ap) { 

      require(trace.erase(ap) == 1, 

        "Attempt to delete AutoCounter twice"); 

    } 

    ~CleanupCheck() { 

      std::cout << "~CleanupCheck()"<< std::endl; 

      require(trace.size() == 0, 

       "All AutoCounter objects not cleaned up"); 

    } 

  }; 

  static CleanupCheck verifier; 

  AutoCounter() : id(count++) { 

    verifier.add(this); // Register itself 

    std::cout << "created[" << id << "]"  

              << std::endl; 

  } 

  // Prevent assignment and copy-construction: 

  AutoCounter(const AutoCounter&); 

  void operator=(const AutoCounter&); 

public: 

  // You can only create objects with this: 

  static AutoCounter* create() {  

    return new AutoCounter(); 

  } 

  ~AutoCounter() { 

    std::cout << "destroying[" << id  

              << "]" << std::endl; 

    verifier.remove(this); 

  } 

  // Print both objects and pointers: 

  friend std::ostream& operator<<( 

    std::ostream& os, const AutoCounter& ac){ 
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    return os << "AutoCounter " << ac.id; 

  } 

  friend std::ostream& operator<<( 

    std::ostream& os, const AutoCounter* ac){ 

    return os << "AutoCounter " << ac->id; 

  } 

};  

#endif // AUTOCOUNTER_H ///:~ 
 

The AutoCounter class does two things. First, it sequentially 
numbers each instance of AutoCounter: the value of this number 
is kept in id, and the number is generated using the static data 
member count. 

Second, and more complex, a static instance (called verifier) of 
the nested class CleanupCheck keeps track of all of the 
AutoCounter objects that are created and destroyed, and reports 
back to you if you don’t clean all of them up (i.e. if there is a 
memory leak). This behavior is accomplished using a set class from 
the Standard C++ Library, which is a wonderful example of how 
well-designed templates can make life easy (you can learn about all 
the containers in the Standard C++ Library in Volume 2 of this 
book, available online). 

The set class is templatized on the type that it holds; here it is 
instantiated to hold AutoCounter pointers. A set will allow only 
one instance of each distinct object to be added; in add( ) you can 
see this take place with the set::insert( ) function. insert( ) 
actually informs you with its return value if you’re trying to add 
something that’s already been added; however, since object 
addresses are being added we can rely on C++’s guarantee that all 
objects have unique addresses. 

In remove( ), set::erase( ) is used to remove an AutoCounter 
pointer from the set. The return value tells you how many instances 
of the element were removed; in our case we only expect zero or 
one. If the value is zero, however, it means this object was already 
deleted from the set and you’re trying to delete it a second time, 
which is a programming error that will be reported through 
require( ). 
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The destructor for CleanupCheck does a final check by making 
sure that the size of the set is zero – this means that all of the 
objects have been properly cleaned up. If it’s not zero, you have a 
memory leak, which is reported through require( ). 

The constructor and destructor for AutoCounter register and 
unregister themselves with the verifier object. Notice that the 
constructor, copy-constructor, and assignment operator are 
private, so the only way for you to create an object is with the 
static create( ) member function – this is a simple example of a 
factory, and it guarantees that all objects are created on the heap, 
so verifier will not get confused over assignments and copy-
constructions. 

Since all of the member functions have been inlined, the only 
reason for the implementation file is to contain the static data 
member definitions: 

//: C16:AutoCounter.cpp {O} 

// Definition of static class members 

#include "AutoCounter.h" 

AutoCounter::CleanupCheck AutoCounter::verifier; 

int AutoCounter::count = 0; 

///:~ 
 

With AutoCounter in hand, we can now test the facilities of the 
PStash. The following example not only shows that the PStash 
destructor cleans up all the objects that it currently owns, but it also 
demonstrates how the AutoCounter class detects objects that 
haven’t been cleaned up: 

//: C16:TPStashTest.cpp 

//{L} AutoCounter 

#include "AutoCounter.h" 

#include "TPStash.h" 

#include <iostream> 

#include <fstream> 

using namespace std; 

 

int main() { 

  PStash<AutoCounter> acStash; 

  for(int i = 0; i < 10; i++) 
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    acStash.add(AutoCounter::create()); 

  cout << "Removing 5 manually:" << endl; 

  for(int j = 0; j < 5; j++) 

    delete acStash.remove(j); 

  cout << "Remove two without deleting them:" 

       << endl; 

  // ... to generate the cleanup error message. 

  cout << acStash.remove(5) << endl; 

  cout << acStash.remove(6) << endl; 

  cout << "The destructor cleans up the rest:" 

       << endl; 

  // Repeat the test from earlier chapters:  

  ifstream in("TPStashTest.cpp"); 

  assure(in, "TPStashTest.cpp"); 

  PStash<string> stringStash; 

  string line; 

  while(getline(in, line)) 

    stringStash.add(new string(line)); 

  // Print out the strings: 

  for(int u = 0; stringStash[u]; u++) 

    cout << "stringStash[" << u << "] = " 

         << *stringStash[u] << endl; 

} ///:~ 
 

When AutoCounter elements 5 and 6 are removed from the 
PStash, they become the responsibility of the caller, but since the 
caller never cleans them up they cause memory leaks, which are 
then detected by AutoCounter at run time. 

When you run the program, you’ll see that the error message isn’t 
as specific as it could be. If you use the scheme presented in 
AutoCounter to discover memory leaks in your own system, you 
will probably want to have it print out more detailed information 
about the objects that haven’t been cleaned up. Volume 2 of this 
book shows more sophisticated ways to do this. 

Turning ownership on and off 
Let’s return to the ownership problem. Containers that hold objects 
by value don’t usually worry about ownership because they clearly 
own the objects they contain. But if your container holds pointers 
(which is more common with C++, especially with polymorphism), 
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then it’s very likely those pointers may also be used somewhere else 
in the program, and you don’t necessarily want to delete the object 
because then the other pointers in the program would be 
referencing a destroyed object. To prevent this from happening, you 
must consider ownership when designing and using a container. 

Many programs are much simpler than this, and don’t encounter 
the ownership problem: One container holds pointers to objects 
that are used only by that container. In this case ownership is very 
straightforward: The container owns its objects. 

The best approach to handling the ownership problem is to give the 
client programmer a choice. This is often accomplished by a 
constructor argument that defaults to indicating ownership (the 
simplest case). In addition there may be “get” and “set” functions to 
view and modify the ownership of the container. If the container 
has functions to remove an object, the ownership state usually 
affects that removal, so you may also find options to control 
destruction in the removal function. You could conceivably add 
ownership data for every element in the container, so each position 
would know whether it needed to be destroyed; this is a variant of 
reference counting,  except that the container and not the object 
knows the number of references pointing to an object. 

//: C16:OwnerStack.h 

// Stack with runtime conrollable ownership 

#ifndef OWNERSTACK_H 

#define OWNERSTACK_H 

 

template<class T> class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt)  

      : data(dat), next(nxt) {} 

  }* head; 

  bool own; 

public: 

  Stack(bool own = true) : head(0), own(own) {} 

  ~Stack(); 

  void push(T* dat) { 

    head = new Link(dat,head); 
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  } 

  T* peek() const {  

    return head ? head->data : 0;  

  } 

  T* pop(); 

  bool owns() const { return own; } 

  void owns(bool newownership) { 

    own = newownership; 

  } 

  // Auto-type conversion: true if not empty: 

  operator bool() const { return head != 0; } 

}; 

 

template<class T> T* Stack<T>::pop() { 

  if(head == 0) return 0; 

  T* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

 

template<class T> Stack<T>::~Stack() { 

  if(!own) return; 

  while(head) 

    delete pop(); 

} 

#endif // OWNERSTACK_H ///:~ 
 

The default behavior is for the container to destroy its objects but 
you can change this by either modifying the constructor argument 
or using the owns( ) read/write member functions. 

As with most templates you’re likely to see, the entire 
implementation is contained in the header file. Here’s a small test 
that exercises the ownership abilities: 

//: C16:OwnerStackTest.cpp 

//{L} AutoCounter  

#include "AutoCounter.h" 

#include "OwnerStack.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 
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#include <string> 

using namespace std; 

 

int main() { 

  Stack<AutoCounter> ac; // Ownership on 

  Stack<AutoCounter> ac2(false); // Turn it off 

  AutoCounter* ap; 

  for(int i = 0; i < 10; i++) { 

    ap = AutoCounter::create(); 

    ac.push(ap); 

    if(i % 2 == 0) 

      ac2.push(ap); 

  } 

  while(ac2) 

    cout << ac2.pop() << endl; 

  // No destruction necessary since 

  // ac "owns" all the objects 

} ///:~ 
 

The ac2 object doesn’t own the objects you put into it, thus ac is 
the “master” container which takes responsibility for ownership. If, 
partway through the lifetime of a container, you want to change 
whether a container owns its objects, you can do so using owns( ). 

It would also be possible to change the granularity of the ownership 
so that it is on an object-by-object basis, but that will probably 
make the solution to the ownership problem more complex than the 
problem. 

Holding objects by value 
Actually creating a copy of the objects inside a generic container is a 
complex problem if you don’t have templates. With templates, 
things are relatively simple – you just say that you are holding 
objects rather than pointers: 

//: C16:ValueStack.h 

// Holding objects by value in a Stack 

#ifndef VALUESTACK_H 

#define VALUESTACK_H 

#include "../require.h" 
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template<class T, int ssize = 100> 

class Stack { 

  // Default constructor performs object 

  // initialization for each element in array: 

  T stack[ssize]; 

  int top; 

public: 

  Stack() : top(0) {} 

  // Copy-constructor copies object into array: 

  void push(const T& x) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = x; 

  } 

  T peek() const { return stack[top]; } 

  // Object still exists when you pop it;  

  // it just isn't available anymore: 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

}; 

#endif // VALUESTACK_H ///:~ 
 

The copy constructor for the contained objects does most of the 
work by passing and returning the objects by value. Inside push( ), 
storage of the object onto the Stack array is accomplished with 
T::operator=. To guarantee that it works, a class called 
SelfCounter keeps track of object creations and copy-
constructions: 

//: C16:SelfCounter.h 

#ifndef SELFCOUNTER_H 

#define SELFCOUNTER_H 

#include "ValueStack.h" 

#include <iostream> 

 

class SelfCounter { 

  static int counter; 

  int id; 

public: 

  SelfCounter() : id(counter++) { 

    std::cout << "Created: " << id << std::endl; 

  } 

  SelfCounter(const SelfCounter& rv) : id(rv.id){ 
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    std::cout << "Copied: " << id << std::endl; 

  } 

  SelfCounter operator=(const SelfCounter& rv) { 

    std::cout << "Assigned " << rv.id << " to "  

              << id << std::endl; 

    return *this; 

  } 

  ~SelfCounter() { 

    std::cout << "Destroyed: "<< id << std::endl; 

  } 

  friend std::ostream& operator<<(  

    std::ostream& os, const SelfCounter& sc){ 

    return os << "SelfCounter: " << sc.id; 

  } 

}; 

#endif // SELFCOUNTER_H ///:~ 

 

//: C16:SelfCounter.cpp {O} 

#include "SelfCounter.h" 

int SelfCounter::counter = 0; ///:~ 

 

//: C16:ValueStackTest.cpp 

//{L} SelfCounter 

#include "ValueStack.h" 

#include "SelfCounter.h" 

#include <iostream> 

using namespace std; 

 

int main() { 

  Stack<SelfCounter> sc; 

  for(int i = 0; i < 10; i++) 

    sc.push(SelfCounter()); 

  // OK to peek(), result is a temporary: 

  cout << sc.peek() << endl; 

  for(int k = 0; k < 10; k++) 

    cout << sc.pop() << endl; 

} ///:~ 
 

When a Stack container is created, the default constructor of the 
contained object is called for each object in the array. You’ll initially 
see 100 SelfCounter objects created for no apparent reason, but 
this is just the array initialization. This can be a bit expensive, but 
there’s no way around it in a simple design like this. An even more 
complex situation arises if you make the Stack more general by 

16: Introduction to Templates 719 

allowing the size to grow dynamically, because in the 
implementation shown above this would involve creating a new 
(larger) array, copying the old array to the new, and destroying the 
old array (this is, in fact, what the Standard C++ Library vector 
class does). 

Introducing iterators 
An iterator is an object that moves through a container of other 
objects and selects them one at a time, without providing direct 
access to the implementation of that container. Iterators provide a 
standard way to access elements, whether or not a container 
provides a way to access the elements directly. You will see iterators 
used most often in association with container classes, and iterators 
are a fundamental concept in the design and use of the Standard 
C++ containers, which are fully described in Volume 2 of this book 
(downloadable from www.BruceEckel.com). An iterator is also a 
kind of design pattern, which is the subject of a chapter in Volume 
2. 

In many ways, an iterator is a “smart pointer,” and in fact you’ll 
notice that iterators usually mimic most pointer operations. Unlike 
a pointer, however, the iterator is designed to be safe, so you’re 
much less likely to do the equivalent of walking off the end of an 
array (or if you do, you find out about it more easily). 

Consider the first example in this chapter. Here it is with a simple 
iterator added: 

//: C16:IterIntStack.cpp 

// Simple integer stack with iterators 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 
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  int top; 

public: 

  IntStack() : top(0) {} 

  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  friend class IntStackIter; 

}; 

 

// An iterator is like a "smart" pointer: 

class IntStackIter { 

  IntStack& s; 

  int index; 

public: 

  IntStackIter(IntStack& is) : s(is), index(0) {} 

  int operator++() { // Prefix 

    require(index < s.top,  

      "iterator moved out of range"); 

    return s.stack[++index]; 

  } 

  int operator++(int) { // Postfix 

    require(index < s.top,  

      "iterator moved out of range"); 

    return s.stack[index++]; 

  } 

}; 

 

int main() { 

  IntStack is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Traverse with an iterator: 

  IntStackIter it(is); 

  for(int j = 0; j < 20; j++) 

    cout << it++ << endl; 

} ///:~ 
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The IntStackIter has been created to work only with an IntStack. 
Notice that IntStackIter is a friend of IntStack, which gives it 
access to all the private elements of IntStack. 

Like a pointer, IntStackIter’s job is to move through an IntStack 
and retrieve values. In this simple example, the IntStackIter can 
move only forward (using both the pre- and postfix forms of the 
operator++). However, there is no boundary to the way an 
iterator can be defined, other than those imposed by the constraints 
of the container it works with. It is perfectly acceptable (within the 
limits of the underlying container) for an iterator to move around in 
any way within its associated container and to cause the contained 
values to be modified. 

It is customary that an iterator is created with a constructor that 
attaches it to a single container object, and that the iterator is not 
attached to a different container during its lifetime. (Iterators are 
usually small and cheap, so you can easily make another one.) 

With the iterator, you can traverse the elements of the stack without 
popping them, just as a pointer can move through the elements of 
an array. However, the iterator knows the underlying structure of 
the stack and how to traverse the elements, so even though you are 
moving through them by pretending to “increment a pointer,” 
what’s going on underneath is more involved. That’s the key to the 
iterator: It is abstracting the complicated process of moving from 
one container element to the next into something that looks like a 
pointer. The goal is for every iterator in your program to have the 
same interface so that any code that uses the iterator doesn’t care 
what it’s pointing to – it just knows that it can reposition all 
iterators the same way, so the container that the iterator points to is 
unimportant. In this way you can write more generic code. All of the 
containers and algorithms in the Standard C++ Library are based 
on this principle of iterators. 

To aid in making things more generic, it would be nice to be able to 
say “every container has an associated class called iterator,” but 
this will typically cause naming problems. The solution is to add a 
nested iterator class to each container (notice that in this case, 
“iterator” begins with a lowercase letter so that it conforms to the 
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style of the Standard C++ Library). Here is IterIntStack.cpp with 
a nested iterator: 

//: C16:NestedIterator.cpp 

// Nesting an iterator inside the container 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

#include <string> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 

  int top; 

public: 

  IntStack() : top(0) {} 

  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  class iterator; 

  friend class iterator; 

  class iterator { 

    IntStack& s; 

    int index; 

  public: 

    iterator(IntStack& is) : s(is), index(0) {} 

    // To create the "end sentinel" iterator: 

    iterator(IntStack& is, bool)  

      : s(is), index(s.top) {} 

    int current() const { return s.stack[index]; } 

    int operator++() { // Prefix 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[++index]; 

    } 

    int operator++(int) { // Postfix 

      require(index < s.top,  
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        "iterator moved out of range"); 

      return s.stack[index++]; 

    } 

    // Jump an iterator forward 

    iterator& operator+=(int amount) { 

      require(index + amount < s.top, 

        "IntStack::iterator::operator+=() " 

        "tried to move out of bounds"); 

      index += amount; 

      return *this; 

    } 

    // To see if you're at the end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

    friend ostream&  

    operator<<(ostream& os, const iterator& it) { 

      return os << it.current(); 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  // Create the "end sentinel": 

  iterator end() { return iterator(*this, true);} 

}; 

 

int main() { 

  IntStack is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  cout << "Traverse the whole IntStack\n"; 

  IntStack::iterator it = is.begin(); 

  while(it != is.end()) 

    cout << it++ << endl; 

  cout << "Traverse a portion of the IntStack\n"; 

  IntStack::iterator  

    start = is.begin(), end = is.begin(); 

  start += 5, end += 15; 

  cout << "start = " << start << endl; 

  cout << "end = " << end << endl; 

  while(start != end) 

    cout << start++ << endl; 

} ///:~ 
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When making a nested friend class, you must go through the 
process of first declaring the name of the class, then declaring it as a 
friend, then defining the class. Otherwise, the compiler will get 
confused. 

Some new twists have been added to the iterator. The current( ) 
member function produces the element in the container that the 
iterator is currently selecting. You can “jump” an iterator forward 
by an arbitrary number of elements using operator+=. Also, you’ll 
see two overloaded operators: == and != that will compare one 
iterator with another. These can compare any two 
IntStack::iterators, but they are primarily intended as a test to 
see if the iterator is at the end of a sequence in the same way that 
the “real” Standard C++ Library iterators do. The idea is that two 
iterators define a range, including the first element pointed to by 
the first iterator and up to but not including the last element 
pointed to by the second iterator. So if you want to move through 
the range defined by the two iterators, you say something like this: 

  while(start != end) 

    cout << start++ << endl; 
 

where start and end are the two iterators in the range. Note that 
the end iterator, which we often refer to as the end sentinel, is not 
dereferenced and is there only to tell you that you’re at the end of 
the sequence. Thus it represents “one past the end.” 

Much of the time you’ll want to move through the entire sequence 
in a container, so the container needs some way to produce the 
iterators indicating the beginning of the sequence and the end 
sentinel. Here, as in the Standard C++ Library, these iterators are 
produced by the container member functions begin( ) and end( ). 
begin( ) uses the first iterator constructor that defaults to 
pointing at the beginning of the container (this is the first element 
pushed on the stack). However, a second constructor, used by 
end( ), is necessary to create the end sentinel iterator. Being “at 
the end” means pointing to the top of the stack, because top always 
indicates the next available – but unused – space on the stack. This 
iterator constructor takes a second argument of type bool, which 
is a dummy to distinguish the two constructors. 
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The Fibonacci numbers are used again to fill the IntStack in 
main( ), and iterators are used to move through the whole 
IntStack and also within a narrowed range of the sequence. 

The next step, of course, is to make the code general by templatizing 
it on the type that it holds, so that instead of being forced to hold 
only ints you can hold any type: 

//: C16:IterStackTemplate.h 

// Simple stack template with nested iterator 

#ifndef ITERSTACKTEMPLATE_H 

#define ITERSTACKTEMPLATE_H 

#include "../require.h" 

#include <iostream> 

 

template<class T, int ssize = 100> 

class StackTemplate { 

  T stack[ssize]; 

  int top; 

public: 

  StackTemplate() : top(0) {} 

  void push(const T& i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    StackTemplate& s; 

    int index; 

  public: 

    iterator(StackTemplate& st): s(st),index(0){} 

    // To create the "end sentinel" iterator: 

    iterator(StackTemplate& st, bool)  

      : s(st), index(s.top) {} 

    T operator*() const { return s.stack[index];} 

    T operator++() { // Prefix form 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[++index]; 
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    } 

    T operator++(int) { // Postfix form 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[index++]; 

    } 

    // Jump an iterator forward 

    iterator& operator+=(int amount) { 

      require(index + amount < s.top, 

        " StackTemplate::iterator::operator+=() " 

        "tried to move out of bounds"); 

      index += amount; 

      return *this; 

    } 

    // To see if you're at the end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

    friend std::ostream& operator<<( 

      std::ostream& os, const iterator& it) { 

      return os << *it; 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  // Create the "end sentinel": 

  iterator end() { return iterator(*this, true);} 

}; 

#endif // ITERSTACKTEMPLATE_H ///:~ 
 

You can see that the transformation from a regular class to a 
template is reasonably transparent. This approach of first creating 
and debugging an ordinary class, then making it into a template, is 
generally considered to be easier than creating the template from 
scratch. 

Notice that instead of just saying: 

friend iterator; // Make it a friend 
 

This code has: 
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friend class iterator; // Make it a friend 
 

This is important because the name “iterator” is already in scope, 
from an included file. 

Instead of the current( ) member function, the iterator has an 
operator* to select the current element, which makes the iterator 
look more like a pointer and is a common practice. 

Here’s the revised example to test the template: 

//: C16:IterStackTemplateTest.cpp 

//{L} fibonacci 

#include "fibonacci.h" 

#include "IterStackTemplate.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  StackTemplate<int> is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Traverse with an iterator: 

  cout << "Traverse the whole StackTemplate\n"; 

  StackTemplate<int>::iterator it = is.begin(); 

  while(it != is.end()) 

    cout << it++ << endl; 

  cout << "Traverse a portion\n"; 

  StackTemplate<int>::iterator  

    start = is.begin(), end = is.begin(); 

  start += 5, end += 15; 

  cout << "start = " << start << endl; 

  cout << "end = " << end << endl; 

  while(start != end) 

    cout << start++ << endl; 

  ifstream in("IterStackTemplateTest.cpp"); 

  assure(in, "IterStackTemplateTest.cpp"); 

  string line; 

  StackTemplate<string> strings; 

  while(getline(in, line)) 

    strings.push(line); 

  StackTemplate<string>::iterator  
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    sb = strings.begin(), se = strings.end(); 

  while(sb != se) 

    cout << sb++ << endl; 

} ///:~ 
 

The first use of the iterator just marches it from beginning to end 
(and shows that the end sentinel works properly). In the second 
usage, you can see how iterators allow you to easily specify a range 
of elements (the containers and iterators in the Standard C++ 
Library use this concept of ranges almost everywhere). The 
overloaded operator+= moves the start and end iterators to 
positions in the middle of the range of the elements in is, and these 
elements are printed out. Notice in the output that the end sentinel 
is not included in the range, thus it can be one past the end of the 
range to let you know you’ve passed the end – but you don’t 
dereference the end sentinel, or else you can end up dereferencing a 
null pointer. (I’ve put guarding in the StackTemplate::iterator, 
but in the Standard C++ Library containers and iterators there is no 
such code – for efficiency reasons – so you must pay attention.) 

Lastly, to verify that the StackTemplate works with class objects, 
one is instantiated for string and filled with the lines from the 
source-code file, which are then printed out. 

Stack with iterators 
We can repeat the process with the dynamically-sized Stack class 
that has been used as an example throughout the book. Here’s the 
Stack class with a nested iterator folded into the mix: 

//: C16:TStack2.h 

// Templatized Stack with nested iterator 

#ifndef TSTACK2_H 

#define TSTACK2_H 

 

template<class T> class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt) 

      : data(dat), next(nxt) {} 

  }* head; 
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public: 

  Stack() : head(0) {} 

  ~Stack(); 

  void push(T* dat) { 

    head = new Link(dat, head); 

  } 

  T* peek() const {  

    return head ? head->data : 0; 

  } 

  T* pop(); 

  // Nested iterator class: 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    Stack::Link* p; 

  public: 

    iterator(const Stack<T>& tl) : p(tl.head) {} 

    // Copy-constructor: 

    iterator(const iterator& tl) : p(tl.p) {} 

    // The end sentinel iterator: 

    iterator() : p(0) {} 

    // operator++ returns boolean indicating end: 

    bool operator++() { 

      if(p->next) 

        p = p->next; 

      else p = 0; // Indicates end of list 

      return bool(p); 

    } 

    bool operator++(int) { return operator++(); } 

    T* current() const { 

      if(!p) return 0; 

      return p->data; 

    } 

    // Pointer dereference operator: 

    T* operator->() const {  

      require(p != 0,  

        "PStack::iterator::operator->returns 0"); 

      return current();  

    } 

    T* operator*() const { return current(); } 

    // bool conversion for conditional test: 

    operator bool() const { return bool(p); } 

    // Comparison to test for end: 

    bool operator==(const iterator&) const { 

      return p == 0; 
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    } 

    bool operator!=(const iterator&) const { 

      return p != 0; 

    } 

  }; 

  iterator begin() const {  

    return iterator(*this);  

  } 

  iterator end() const { return iterator(); } 

}; 

 

template<class T> Stack<T>::~Stack() { 

  while(head) 

    delete pop(); 

} 

 

template<class T> T* Stack<T>::pop() { 

  if(head == 0) return 0; 

  T* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

#endif // TSTACK2_H ///:~ 
 

You’ll also notice the class has been changed to support ownership, 
which works now because the class knows the exact type (or at least 
the base type, which will work assuming virtual destructors are 
used). The default is for the container to destroy its objects but you 
are responsible for any pointers that you pop( ). 

The iterator is simple, and physically very small – the size of a 
single pointer. When you create an iterator, it’s initialized to the 
head of the linked list, and you can only increment it forward 
through the list. If you want to start over at the beginning, you 
create a new iterator, and if you want to remember a spot in the list, 
you create a new iterator from the existing iterator pointing at that 
spot (using the iterator’s copy-constructor). 

To call functions for the object referred to by the iterator, you can 
use the current( ) function, the operator*, or the pointer 
dereference operator-> (a common sight in iterators). The latter 
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has an implementation that looks identical to current( ) because it 
returns a pointer to the current object, but is different because the 
pointer dereference operator performs the extra levels of 
dereferencing (see Chapter 12). 

The iterator class follows the form you saw in the prior example. 
class iterator is nested inside the container class, it contains 
constructors to create both an iterator pointing at an element in the 
container and an “end sentinel” iterator, and the container class has 
the begin( ) and end( ) methods to produce these iterators. (When 
you learn the more about the Standard C++ Library, you’ll see that 
the names iterator, begin( ), and end( ) that are used here were 
clearly lifted standard container classes. At the end of this chapter, 
you’ll see that this enables these container classes to be used as if 
they were Standard C++ Library container classes.) 

The entire implementation is contained in the header file, so there’s 
no separate cpp file. Here’s a small test that exercises the iterator: 

//: C16:TStack2Test.cpp 

#include "TStack2.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  ifstream file("TStack2Test.cpp"); 

  assure(file, "TStack2Test.cpp"); 

  Stack<string> textlines; 

  // Read file and store lines in the Stack: 

  string line; 

  while(getline(file, line)) 

    textlines.push(new string(line)); 

  int i = 0; 

  // Use iterator to print lines from the list: 

  Stack<string>::iterator it = textlines.begin(); 

  Stack<string>::iterator* it2 = 0; 

  while(it != textlines.end()) { 

    cout << it->c_str() << endl; 

    it++; 
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    if(++i == 10) // Remember 10th line 

      it2 = new Stack<string>::iterator(it); 

  } 

  cout << (*it2)->c_str() << endl; 

  delete it2; 

} ///:~ 
 

A Stack is instantiated to hold string objects and filled with lines 
from a file. Then an iterator is created and used to move through 
the sequence. The tenth line is remembered by copy-constructing a 
second iterator from the first; later this line is printed and the 
iterator – created dynamically – is destroyed. Here, dynamic object 
creation is used to control the lifetime of the object. 

PStash with iterators 
For most container classes it makes sense to have an iterator. 
Here’s an iterator added to the PStash class: 

//: C16:TPStash2.h 

// Templatized PStash with nested iterator 

#ifndef TPSTASH2_H 

#define TPSTASH2_H 

#include "../require.h" 

#include <cstdlib> 

 

template<class T, int incr = 20> 

class PStash { 

  int quantity; 

  int next; 

  T** storage; 

  void inflate(int increase = incr); 

public: 

  PStash() : quantity(0), storage(0), next(0) {} 

  ~PStash(); 

  int add(T* element); 

  T* operator[](int index) const; 

  T* remove(int index); 

  int count() const { return next; } 

  // Nested iterator class: 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    PStash& ps; 
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    int index; 

  public: 

    iterator(PStash& pStash) 

      : ps(pStash), index(0) {} 

    // To create the end sentinel: 

    iterator(PStash& pStash, bool) 

      : ps(pStash), index(ps.next) {} 

    // Copy-constructor: 

    iterator(const iterator& rv) 

      : ps(rv.ps), index(rv.index) {} 

    iterator& operator=(const iterator& rv) { 

      ps = rv.ps; 

      index = rv.index; 

      return *this; 

    } 

    iterator& operator++() { 

      require(++index <= ps.next, 

        "PStash::iterator::operator++ " 

        "moves index out of bounds"); 

      return *this; 

    } 

    iterator& operator++(int) { 

      return operator++(); 

    } 

    iterator& operator--() { 

      require(--index >= 0, 

        "PStash::iterator::operator-- " 

        "moves index out of bounds"); 

      return *this; 

    } 

    iterator& operator--(int) {  

      return operator--(); 

    } 

    // Jump interator forward or backward: 

    iterator& operator+=(int amount) { 

      require(index + amount < ps.next &&  

        index + amount >= 0,  

        "PStash::iterator::operator+= " 

        "attempt to index out of bounds"); 

      index += amount; 

      return *this; 

    } 

    iterator& operator-=(int amount) { 

      require(index - amount < ps.next &&  

        index - amount >= 0,  
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        "PStash::iterator::operator-= " 

        "attempt to index out of bounds"); 

      index -= amount; 

      return *this; 

    } 

    // Create a new iterator that's moved forward 

    iterator operator+(int amount) const { 

      iterator ret(*this); 

      ret += amount; // op+= does bounds check 

      return ret; 

    } 

    T* current() const { 

      return ps.storage[index]; 

    } 

    T* operator*() const { return current(); } 

    T* operator->() const {  

      require(ps.storage[index] != 0,  

        "PStash::iterator::operator->returns 0"); 

      return current();  

    } 

    // Remove the current element: 

    T* remove(){ 

      return ps.remove(index); 

    } 

    // Comparison tests for end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  iterator end() { return iterator(*this, true);} 

}; 

 

// Destruction of contained objects: 

template<class T, int incr> 

PStash<T, incr>::~PStash() { 

  for(int i = 0; i < next; i++) { 

    delete storage[i]; // Null pointers OK 

    storage[i] = 0; // Just to be safe 

  } 

  delete []storage; 

} 
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template<class T, int incr> 

int PStash<T, incr>::add(T* element) { 

  if(next >= quantity) 

    inflate(); 

  storage[next++] = element; 

  return(next - 1); // Index number 

} 

 

template<class T, int incr> inline 

T* PStash<T, incr>::operator[](int index) const { 

  require(index >= 0, 

    "PStash::operator[] index negative"); 

  if(index >= next) 

    return 0; // To indicate the end 

  require(storage[index] != 0,  

    "PStash::operator[] returned null pointer"); 

  return storage[index]; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::remove(int index) { 

  // operator[] performs validity checks: 

  T* v = operator[](index); 

  // "Remove" the pointer: 

  storage[index] = 0; 

  return v; 

} 

 

template<class T, int incr> 

void PStash<T, incr>::inflate(int increase) { 

  const int tsz = sizeof(T*); 

  T** st = new T*[quantity + increase]; 

  memset(st, 0, (quantity + increase) * tsz); 

  memcpy(st, storage, quantity * tsz); 

  quantity += increase; 

  delete []storage; // Old storage 

  storage = st; // Point to new memory 

} 

#endif // TPSTASH2_H ///:~ 
 

Most of this file is a fairly straightforward translation of both the 
previous PStash and the nested iterator into a template. This 
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time, however, the operators return references to the current 
iterator, which is the more typical and flexible approach to take. 

The destructor calls delete for all contained pointers, and because 
the type is captured by the template, proper destruction will take 
place. You should be aware that if the container holds pointers to a 
base-class type, that type should have a virtual destructor to 
ensure proper cleanup of derived objects whose addresses have 
been upcast when placing them in the container. 

The PStash::iterator follows the iterator model of bonding to a 
single container object for its lifetime. In addition, the copy-
constructor allows you to make a new iterator pointing at the same 
location as the existing iterator that you create it from, effectively 
making a bookmark into the container. The operator+= and 
operator-= member functions allow you to move an iterator by a 
number of spots, while respecting the boundaries of the container. 
The overloaded increment and decrement operators move the 
iterator by one place. The operator+ produces a new iterator 
that’s moved forward by the amount of the addend. As in the 
previous example, the pointer dereference operators are used to 
operate on the element the iterator is referring to, and remove( ) 
destroys the current object by calling the container’s remove( ). 

The same kind of code as before (a la the Standard C++ Library 
containers) is used for creating the end sentinel: a second 
constructor, the container’s end( ) member function, and 
operator== and operator!= for comparison. 

The following example creates and tests two different kinds of 
Stash objects, one for a new class called Int that announces its 
construction and destruction and one that holds objects of the 
Standard library string class. 

//: C16:TPStash2Test.cpp 

#include "TPStash2.h" 

#include "../require.h" 

#include <iostream> 

#include <vector> 

#include <string> 

using namespace std; 
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class Int { 

  int i; 

public: 

  Int(int ii = 0) : i(ii) { 

    cout << ">" << i << ' '; 

  } 

  ~Int() { cout << "~" << i << ' '; } 

  operator int() const { return i; } 

  friend ostream& 

    operator<<(ostream& os, const Int& x) { 

      return os << "Int: " << x.i; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Int* x) { 

      return os << "Int: " << x->i; 

  } 

}; 

 

int main() { 

  { // To force destructor call 

    PStash<Int> ints; 

    for(int i = 0; i < 30; i++) 

      ints.add(new Int(i)); 

    cout << endl; 

    PStash<Int>::iterator it = ints.begin(); 

    it += 5; 

    PStash<Int>::iterator it2 = it + 10; 

    for(; it != it2; it++) 

      delete it.remove(); // Default removal 

    cout << endl; 

    for(it = ints.begin();it != ints.end();it++) 

      if(*it) // Remove() causes "holes" 

        cout << *it << endl; 

  } // "ints" destructor called here 

  cout << "\n-------------------\n";   

  ifstream in("TPStash2Test.cpp"); 

  assure(in, "TPStash2Test.cpp"); 

  // Instantiate for String: 

  PStash<string> strings; 

  string line; 

  while(getline(in, line)) 

    strings.add(new string(line)); 

  PStash<string>::iterator sit = strings.begin(); 

  for(; sit != strings.end(); sit++) 
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    cout << **sit << endl; 

  sit = strings.begin(); 

  int n = 26; 

  sit += n; 

  for(; sit != strings.end(); sit++) 

    cout << n++ << ": " << **sit << endl; 

} ///:~ 
 

For convenience, Int has an associated ostream operator<< for 
both an Int& and an Int*. 

The first block of code in main( ) is surrounded by braces to force 
the destruction of the PStash<Int> and thus the automatic 
cleanup by that destructor. A range of elements is removed and 
deleted by hand to show that the PStash cleans up the rest. 

For both instances of PStash, an iterator is created and used to 
move through the container. Notice the elegance produced by using 
these constructs; you aren’t assailed with the implementation 
details of using an array. You tell the container and iterator objects 
what to do, not how. This makes the solution easier to 
conceptualize, to build, and to modify. 

Why iterators? 
Up until now you’ve seen the mechanics of iterators, but 
understanding why they are so important takes a more complex 
example. 

It’s common to see polymorphism, dynamic object creation, and 
containers used together in a true object-oriented program. 
Containers and dynamic object creation solve the problem of not 
knowing how many or what type of objects you’ll need. And if the 
container is configured to hold pointers to base-class objects, an 
upcast occurs every time you put a derived-class pointer into the 
container (with the associated code organization and extensibility 
benefits). As the final code in Volume 1 of this book, this example 
will also pull together various aspects of everything you’ve learned 
so far – if you can follow this example, then you’re ready for 
Volume 2. 
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Suppose you are creating a program that allows the user to edit and 
produce different kinds of drawings. Each drawing is an object that 
contains a collection of Shape objects: 

//: C16:Shape.h 

#ifndef SHAPE_H 

#define SHAPE_H 

#include <iostream> 

#include <string> 

 

class Shape { 

public: 

  virtual void draw() = 0; 

  virtual void erase() = 0; 

  virtual ~Shape() {} 

}; 

 

class Circle : public Shape { 

public: 

  Circle() {} 

  ~Circle() { std::cout << "Circle::~Circle\n"; } 

  void draw() { std::cout << "Circle::draw\n";} 

  void erase() { std::cout << "Circle::erase\n";} 

}; 

 

class Square : public Shape { 

public: 

  Square() {} 

  ~Square() { std::cout << "Square::~Square\n"; } 

  void draw() { std::cout << "Square::draw\n";} 

  void erase() { std::cout << "Square::erase\n";} 

}; 

 

class Line : public Shape { 

public: 

  Line() {} 

  ~Line() { std::cout << "Line::~Line\n"; } 

  void draw() { std::cout << "Line::draw\n";} 

  void erase() { std::cout << "Line::erase\n";} 

}; 

#endif // SHAPE_H ///:~ 
 

This uses the classic structure of virtual functions in the base class 
that are overridden in the derived class. Notice that the Shape class 
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includes a virtual destructor, something you should automatically 
add to any class with virtual functions. If a container holds 
pointers or references to Shape objects, then when the virtual 
destructors are called for those objects everything will be properly 
cleaned up. 

Each different type of drawing in the following example makes use 
of a different kind of templatized container class: the PStash and 
Stack that have been defined in this chapter, and the vector class 
from the Standard C++ Library. The “use”’ of the containers is 
extremely simple, and in general inheritance might not be the best 
approach (composition could make more sense), but in this case 
inheritance is a simple approach and it doesn’t detract from the 
point made in the example. 

//: C16:Drawing.cpp 

#include <vector> // Uses Standard vector too! 

#include "TPStash2.h" 

#include "TStack2.h" 

#include "Shape.h" 

using namespace std; 

 

// A Drawing is primarily a container of Shapes: 

class Drawing : public PStash<Shape> { 

public: 

  ~Drawing() { cout << "~Drawing" << endl; } 

}; 

 

// A Plan is a different container of Shapes: 

class Plan : public Stack<Shape> { 

public: 

  ~Plan() { cout << "~Plan" << endl; } 

}; 

 

// A Schematic is a different container of Shapes: 

class Schematic : public vector<Shape*> { 

public: 

  ~Schematic() { cout << "~Schematic" << endl; } 

}; 

 

// A function template: 

template<class Iter> 

void drawAll(Iter start, Iter end) { 
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  while(start != end) { 

    (*start)->draw(); 

    start++; 

  } 

} 

 

int main() { 

  // Each type of container has  

  // a different interface: 

  Drawing d; 

  d.add(new Circle); 

  d.add(new Square); 

  d.add(new Line); 

  Plan p; 

  p.push(new Line); 

  p.push(new Square); 

  p.push(new Circle); 

  Schematic s; 

  s.push_back(new Square); 

  s.push_back(new Circle); 

  s.push_back(new Line); 

  Shape* sarray[] = {  

    new Circle, new Square, new Line  

  }; 

  // The iterators and the template function 

  // allow them to be treated generically: 

  cout << "Drawing d:" << endl; 

  drawAll(d.begin(), d.end()); 

  cout << "Plan p:" << endl; 

  drawAll(p.begin(), p.end()); 

  cout << "Schematic s:" << endl; 

  drawAll(s.begin(), s.end()); 

  cout << "Array sarray:" << endl; 

  // Even works with array pointers: 

  drawAll(sarray,  

    sarray + sizeof(sarray)/sizeof(*sarray)); 

  cout << "End of main" << endl; 

} ///:~ 
 

The different types of containers all hold pointers to Shape and 
pointers to upcast objects of classes derived from Shape. However, 
because of polymorphism, the proper behavior still occurs when the 
virtual functions are called. 
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Note that sarray, the array of Shape*, can also be thought of as a 
container. 

Function templates 
In drawAll( ) you see something new. So far in this chapter, we 
have been using only class templates, which instantiate new classes 
based on one or more type parameters. However, you can as easily 
create function templates, which create new functions based on 
type parameters. The reason you create a function template is the 
same reason you use for a class template: You’re trying to create 
generic code, and you do this by delaying the specification of one or 
more types. You just want to say that these type parameters support 
certain operations, not exactly what types they are. 

The function template drawAll( ) can be thought of as an 
algorithm (and this is what most of the function templates in the 
Standard C++ Library are called). It just says how to do something 
given iterators describing a range of elements, as long as these 
iterators can be dereferenced, incremented, and compared. These 
are exactly the kind of iterators we have been developing in this 
chapter, and also – not coincidentally – the kind of iterators that 
are produced by the containers in the Standard C++ Library, 
evidenced by the use of vector in this example.  

We’d also like drawAll( ) to be a generic algorithm, so that the 
containers can be any type at all and we don’t have to write a new 
version of the algorithm for each different type of container. Here’s 
where function templates are essential, because they automatically 
generate the specific code for each different type of container. But 
without the extra indirection provided by the iterators, this 
genericness wouldn’t be possible. That’s why iterators are 
important; they allow you to write general-purpose code that 
involves containers without knowing the underlying structure of the 
container. (Notice that, in C++, iterators and generic algorithms 
require function templates in order to work.) 

You can see the proof of this in main( ), since drawAll( ) works 
unchanged with each different type of container. And even more 
interesting, drawAll( ) also works with pointers to the beginning 
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and end of the array sarray. This ability to treat arrays as 
containers is integral to the design of the Standard C++ Library, 
whose algorithms look much like drawAll( ). 

Because container class templates are rarely subject to the 
inheritance and upcasting you see with “ordinary” classes, you’ll 
almost never see virtual functions in container classes. Container 
class reuse is implemented with templates, not with inheritance. 

Summary 
Container classes are an essential part of object-oriented 
programming. They are another way to simplify and hide the details 
of a program and to speed the process of program development. In 
addition, they provide a great deal of safety and flexibility by 
replacing the primitive arrays and relatively crude data structure 
techniques found in C. 

Because the client programmer needs containers, it’s essential that 
they be easy to use. This is where the template comes in. With 
templates the syntax for source-code reuse (as opposed to object-
code reuse provided by inheritance and composition) becomes 
trivial enough for the novice user. In fact, reusing code with 
templates is notably easier than inheritance and composition. 

Although you’ve learned about creating container and iterator 
classes in this book, in practice it’s much more expedient to learn 
the containers and iterators in the Standard C++ Library, since you 
can expect them to be available with every compiler. As you will see 
in Volume 2 of this book (downloadable from 
www.BruceEckel.com), the containers and algorithms in the 
Standard C++ Library will virtually always fulfill your needs so you 
don’t have to create new ones yourself. 

The issues involved with container-class design have been touched 
upon in this chapter, but you may have gathered that they can go 
much further. A complicated container-class library may cover all 
sorts of additional issues, including multithreading, persistence and 
garbage collection. 
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Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Implement the inheritance hierarchy in the OShape 
diagram in this chapter. 

2.  Modify the result of Exercise 1 from Chapter 15 to use the  
Stack and iterator in TStack2.h instead of an array of 
Shape pointers. Add destructors to the class hierarchy so 
you can see that the Shape objects are destroyed when 
the Stack goes out of scope. 

3.  Modify TPStash.h so that the increment value used by 
inflate( ) can be changed throughout the lifetime of a 
particular container object. 

4.  Modify TPStash.h so that the increment value used by 
inflate( ) automatically resizes itself to reduce the 
number of times it needs to be called. For example, each 
time it is called it could double the increment value for 
use in the next call. Demonstrate this functionality by 
reporting whenever an inflate( ) is called, and write test 
code in main( ). 

5.  Templatize the fibonacci( ) function on the type of value 
that it produces (so it can produce long, float, etc. 
instead of just int). 

6.  Using the Standard C++ Library vector as an underlying 
implementation, create a Set template class that accepts 
only one of each type of object that you put into it. Make a 
nested iterator class that supports the “end sentinel” 
concept in this chapter. Write test code for your Set in 
main( ), and then substitute the Standard C++ Library 
set template to verify that the behavior is correct. 

7.  Modify AutoCounter.h so that it can be used as a 
member object inside any class whose creation and 
destruction you want to trace. Add a string member to 
hold the name of the class. Test this tool inside a class of 
your own. 

8.  Create a version of OwnerStack.h that uses a Standard 
C++ Library vector as its underlying implementation. 
You may need to look up some of the member functions 
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of vector in order to do this (or just look at the 
<vector> header file). 

9.  Modify ValueStack.h so that it dynamically expands as 
you push( ) more objects and it runs out of space. 
Change ValueStackTest.cpp to test the new 
functionality. 

10.  Repeat Exercise 9 but use a Standard C++ Library 
vector as the internal implementation of the 
ValueStack. Notice how much easier this is.  

11.  Modify ValueStackTest.cpp so that it uses a Standard 
C++ Library vector instead of a Stack in main( ). 
Notice the run-time behavior: Does the vector 
automatically create a bunch of default objects when it is 
created? 

12.  Modify TStack2.h so that it uses a Standard C++ 
Library vector as its underlying implementation. Make 
sure that you don’t change the interface, so that 
TStack2Test.cpp works unchanged. 

13.  Repeat Exercise 12 using a Standard C++ Library stack 
instead of a vector (you may need to look up information 
about the stack, or hunt through the <stack> header 
file). 

14.  Modify TPStash2.h so that it uses a Standard C++ 
Library vector as its underlying implementation. Make 
sure that you don’t change the interface, so that 
TPStash2Test.cpp works unchanged. 

15.  In IterIntStack.cpp, modify IntStackIter to give it an 
“end sentinel” constructor, and add operator== and 
operator!=. In main( ), use an iterator to move 
through the elements of the container until you reach the 
end sentinel. 

16.  Using TStack2.h, TPStash2.h, and Shape.h, 
instantiate Stack and PStash containers for Shape*, fill 
them each with an assortment of upcast Shape pointers, 
then use iterators to move through each container and 
call draw( ) for each object. 

17.  Templatize the Int class in TPStash2Test.cpp so that it 
holds any type of object (feel free to change the name of 
the class to something more appropriate). 
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18.  Templatize the IntArray class in 
IostreamOperatorOverloading.cpp from Chapter 
12, templatizing both the type of object that is contained 
and the size of the internal array. 

19.  Turn ObjContainer in NestedSmartPointer.cpp 
from Chapter 12 into a template. Test it with two different 
classes. 

20.  Modify C15:OStack.h and C15:OStackTest.cpp by 
templatizing class Stack so that it automatically 
multiply inherits from the contained class and from 
Object. The generated Stack should accept and produce 
only pointers of the contained type. 

21.  Repeat Exercise 20 using vector instead of Stack. 

22.  Inherit a class StringVector from vector<void*> and 
redefine the push_back( ) and operator[] member 
functions to accept and produce only string* (and 
perform the proper casting). Now create a template that 
will automatically make a container class to do the same 
thing for pointers to any type. This technique is often 
used to reduce code bloat from too many template 
instantiations. 

23.  In TPStash2.h, add and test an operator- to 
PStash::iterator, following the logic of operator+. 

24.  In Drawing.cpp, add and test a function template to call 
erase( ) member functions. 

25.  (Advanced) Modify the Stack class in TStack2.h to 
allow full granularity of ownership: Add a flag to each 
link indicating whether that link owns the object it points 
to, and support this information in the push( ) function 
and destructor. Add member functions to read and 
change the ownership for each link. 

26.  (Advanced) Modify PointerToMemberOperator.cpp 
from Chapter 12 so that the FunctionObject and 
operator->* are templatized to work with any return 
type (for operator->*, you’ll have to use member 
templates, described in Volume 2). Add and test support 
for zero, one and two arguments in Dog member 
functions. 
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A: Coding Style 
This appendix is not about indenting and placement of 

parentheses and curly braces, although that will be 

mentioned. It is about the general guidelines used in  

this book for organizing the code listings. 
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Although many of these issues have been introduced throughout 
the book, this appendix appears at the end so it can be assumed that 
every topic is fair game, and if you don’t understand something you 
can look it up in the appropriate section. 

All the decisions about coding style in this book have been 
deliberately considered and made, sometimes over a period of 
years. Of course, everyone has their reasons for organizing code the 
way they do, and I’m just trying to tell you how I arrived at mine 
and the constraints and environmental factors that brought me to 
those decisions. 

General 
In the text of this book, identifiers (function, variable, and class 
names) are set in bold. Most keywords will also be set in bold, 
except for those keywords that are used so much that the bolding 
can become tedious, such as “class” and “virtual.” 

I use a particular coding style for the examples in this book. It was 
developed over a number of years, and was partially inspired by 
Bjarne Stroustrup’s style in his original The C++ Programming 
Language.1 The subject of formatting style is good for hours of hot 
debate, so I’ll just say I’m not trying to dictate correct style via my 
examples; I have my own motivation for using the style that I do. 
Because C++ is a free-form programming language, you can 
continue to use whatever style you’re comfortable with. 

That said, I will note that it is important to have a consistent 
formatting style within a project. If you search the Internet, you will 
find a number of tools that can be used to reformat all the code in 
your project to achieve this valuable consistency. 

The programs in this book are files that are automatically extracted 
from the text of the book, which allows them to be tested to ensure 
that they work correctly. Thus, the code files printed in the book 

                                                   
1 Ibid. 
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should all work without compile-time errors when compiled with an 
implementation that conforms to Standard C++ (note that not all 
compilers support all language features). The errors that should 
cause compile-time error messages are commented out with the 
comment //! so they can be easily discovered and tested using 
automatic means. Errors discovered and reported to the author will 
appear first in the electronic version of the book (at 
www.BruceEckel.com) and later in updates of the book. 

One of the standards in this book is that all programs will compile 
and link without errors (although they will sometimes cause 
warnings). To this end, some of the programs, which demonstrate 
only a coding example and don’t represent stand-alone programs, 
will have empty main( ) functions, like this 

int main() {} 
 

This allows the linker to complete without an error.  

The standard for main( ) is to return an int, but Standard C++ 
states that if there is no return statement inside main( ), the 
compiler will automatically generate code to return 0. This option 
(no return statement in main( )) will be used in this book (some 
compilers may still generate warnings for this, but those are not 
compliant with Standard C++). 

File names 
In C, it has been traditional to name header files (containing 
declarations) with an extension of .h and implementation files (that 
cause storage to be allocated and code to be generated) with an 
extension of .c. C++ went through an evolution. It was first 
developed on Unix, where the operating system was aware of upper 
and lower case in file names. The original file names were simply 
capitalized versions of the C extensions: .H and .C. This of course 
didn’t work for operating systems that didn’t distinguish upper and 
lower case, such as DOS. DOS C++ vendors used extensions of hxx 
and cxx for header files and implementation files, respectively, or 
hpp and cpp. Later, someone figured out that the only reason you 
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needed a different extension for a file was so the compiler could 
determine whether to compile it as a C or C++ file. Because the 
compiler never compiled header files directly, only the 
implementation file extension needed to be changed. The custom, 
across virtually all systems, has now become to use cpp for 
implementation files and h for header files. Note that when 
including Standard C++ header files, the option of having no file 
name extension is used, i.e.: #include <iostream>. 

Begin and end comment tags 
A very important issue with this book is that all code that you see in 
the book must be verified to be correct (with at least one compiler). 
This is accomplished by automatically extracting the files from the 
book. To facilitate this, all code listings that are meant to be 
compiled (as opposed to code fragments, of which there are few) 
have comment tags at the beginning and end. These tags are used 
by the code-extraction tool ExtractCode.cpp in Volume 2 of this 
book (which you can find on the Web site www.BruceEckel.com) to 
pull each code listing out of the plain-ASCII text version of this 
book. 

The end-listing tag simply tells ExtractCode.cpp that it’s the end 
of the listing, but the begin-listing tag is followed by information 
about what subdirectory the file belongs in (generally organized by 
chapters, so a file that belongs in Chapter 8 would have a tag of 
C08), followed by a colon and the name of the listing file. 

Because ExtractCode.cpp also creates a makefile for each 
subdirectory, information about how a program is made and the 
command-line used to test it is also incorporated into the listings. If 
a program is stand-alone (it doesn’t need to be linked with anything 
else) it has no extra information. This is also true for header files. 
However, if it doesn’t contain a main( ) and is meant to be linked 
with something else, then it has an {O} after the file name. If this 
listing is meant to be the main program but needs to be linked with 
other components, there’s a separate line that begins with //{L} 
and continues with all the files that need to be linked (without 
extensions, since those can vary from platform to platform). 
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You can find examples throughout the book. 

If a file should be extracted but the begin- and end-tags should not 
be included in the extracted file (for example, if it’s a file of test 
data) then the begin-tag is immediately followed by a ‘!’. 

Parentheses, braces, and indentation 
You may notice the formatting style in this book is different from 
many traditional C styles. Of course, everyone thinks their own style 
is the most rational. However, the style used here has a simple logic 
behind it, which will be presented here mixed in with ideas on why 
some of the other styles developed. 

The formatting style is motivated by one thing: presentation, both 
in print and in live seminars. You may feel your needs are different 
because you don’t make a lot of presentations. However, working 
code is read much more than it is written, and so it should be easy 
for the reader to perceive. My two most important criteria are 
“scannability” (how easy it is for the reader to grasp the meaning of 
a single line) and the number of lines that can fit on a page. This 
latter may sound funny, but when you are giving a live presentation, 
it’s very distracting for the audience if the presenter must shuffle 
back and forth between slides, and a few wasted lines can cause 
this. 

Everyone seems to agree that code inside braces should be 
indented. What people don’t agree on – and the place where there’s 
the most inconsistency within formatting styles – is this: Where 
does the opening brace go? This one question, I think, is what 
causes such variations among coding styles (For an enumeration of 
coding styles, see C++ Programming Guidelines, by Tom Plum and 
Dan Saks, Plum Hall 1991.) I’ll try to convince you that many of 
today’s coding styles come from pre-Standard C constraints (before 
function prototypes) and are thus inappropriate now. 

First, my answer to that key question: the opening brace should 
always go on the same line as the “precursor” (by which I mean 
“whatever the body is about: a class, function, object definition, if 
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statement, etc.”). This is a single, consistent rule I apply to all of the 
code I write, and it makes formatting much simpler. It makes the 
“scannability” easier – when you look at this line: 

int func(int a); 
 

you know, by the semicolon at the end of the line, that this is a 
declaration and it goes no further, but when you see the line: 

int func(int a) { 
 

you immediately know it’s a definition because the line finishes 
with an opening brace, not a semicolon. By using this approach, 
there’s no difference in where you place the opening parenthesis for 
a multi-line definition: 

int func(int a) { 

  int b = a + 1; 

  return b * 2; 

} 
 

and for a single-line definition that is often used for inlines: 

int func(int a) { return (a + 1) * 2; } 
 

Similarly, for a class: 

class Thing; 
 

is a class name declaration, and 

class Thing { 
 

is a class definition. You can tell by looking at the single line in all 
cases whether it’s a declaration or definition. And of course, putting 
the opening brace on the same line, instead of a line by itself, allows 
you to fit more lines on a page.  

So why do we have so many other styles? In particular, you’ll notice 
that most people create classes following the style above (which 
Stroustrup uses in all editions of his book The C++ Programming 
Language from Addison-Wesley) but create function definitions by 
putting the opening brace on a single line by itself (which also 
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engenders many different indentation styles). Stroustrup does this 
except for short inline functions. With the approach I describe here, 
everything is consistent – you name whatever it is (class, function, 
enum, etc.) and on that same line you put the opening brace to 
indicate that the body for this thing is about to follow. Also, the 
opening brace is the same for short inlines and ordinary function 
definitions. 

I assert that the style of function definition used by many folks 
comes from pre-function-prototyping C, in which you didn’t declare 
the arguments inside the parentheses, but instead between the 
closing parenthesis and the opening curly brace (this shows C’s 
assembly-language roots): 

void bar() 

 int x; 

 float y; 

{ 

 /* body here */ 

} 
 

Here, it would be quite ungainly to put the opening brace on the 
same line, so no one did it. However, they did make various 
decisions about whether the braces should be indented with the 
body of the code or whether they should be at the level of the 
“precursor.” Thus, we got many different formatting styles.  

There are other arguments for placing the brace on the line 
immediately following the declaration (of a class, struct, function, 
etc.). The following came from a reader, and is presented here so 
you know what the issues are: 

Experienced ‘vi’ (vim) users know that typing the ‘]’ key twice 
will take the user to the next occurrence of ‘{‘ (or ^L) in column 
0. This feature is extremely useful in navigating code (jumping 
to the next function or class definition). [My comment: when I 
was initially working under Unix, GNU Emacs was just 
appearing and I became enmeshed in that. As a result, ‘vi’ has 
never made sense to me, and thus I do not think in terms of 
“column 0 locations.” However, there is a fair contingent of ‘vi’ 
users out there, and they are affected by this issue.] 
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Placing the ‘{‘ on the next line eliminates some confusing code in 
complex conditionals, aiding in the scannability. Example: 

if(cond1 

   && cond2 

   && cond3) { 

   statement; 

} 
 

The above [asserts the reader] has poor scannability. However, 

if (cond1 

&& cond2 

&& cond3) 

{ 

statement; 

} 
 

breaks up the ‘if’ from the body, resulting in better readability. 
[Your opinions on whether this is true will vary depending on 
what you’re used to.] 

Finally, it’s much easier to visually align braces when they are 
aligned in the same column. They visually "stick out" much 
better. [End of reader comment] 

The issue of where to put the opening curly brace is probably the 
most discordant issue. I’ve learned to scan both forms, and in the 
end it comes down to what you’ve grown comfortable with. 
However, I note that the official Java coding standard (found on 
Sun’s Java Web site) is effectively the same as the one I present 
here – since more folks are beginning to program in both 
languages, the consistency between coding styles may be helpful. 

The approach I use removes all the exceptions and special cases, 
and logically produces a single style of indentation as well. Even 
within a function body, the consistency holds, as in: 

for(int i = 0; i < 100; i++) { 

  cout << i << endl; 

  cout << x * i << endl; 

} 
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The style is easy to teach and to remember – you use a single, 
consistent rule for all your formatting, not one for classes, two for 
functions (one-line inlines vs. multi-line), and possibly others for 
for loops, if statements, etc. The consistency alone, I think, makes 
it worthy of consideration. Above all, C++ is a newer language than 
C, and although we must make many concessions to C, we shouldn’t 
be carrying too many artifacts with us that cause problems in the 
future. Small problems multiplied by many lines of code become big 
problems. For a thorough examination of the subject, albeit in C, 
see C Style: Standards and Guidelines, by David Straker (Prentice-
Hall 1992). 

The other constraint I must work under is the line width, since the 
book has a limitation of 50 characters. What happens when 
something is too long to fit on one line? Well, again I strive to have 
a consistent policy for the way lines are broken up, so they can be 
easily viewed. As long as something is part of a single definition, 
argument list, etc., continuation lines should be indented one level 
in from the beginning of that definition, argument list, etc.  

Identifier names 
Those familiar with Java will notice that I have switched to using 
the standard Java style for all identifier names. However, I cannot 
be completely consistent here because identifiers in the Standard C 
and C++ libraries do not follow this style. 

The style is quite straightforward. The first letter of an identifier is 
only capitalized if that identifier is a class. If it is a function or 
variable, then the first letter is lowercase. The rest of the identifier 
consists of one or more words, run together but distinguished by 
capitalizing each word. So a class looks like this: 

class FrenchVanilla : public IceCream { 
 

an object identifier looks like this: 

FrenchVanilla myIceCreamCone(3); 
 

and a function looks like this: 
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void eatIceCreamCone(); 
 

(for either a member function or a regular function). 

The one exception is for compile-time constants (const or 
#define), in which all of the letters in the identifier are uppercase. 

The value of the style is that capitalization has meaning – you can 
see from the first letter whether you’re talking about a class or an 
object/method. This is especially useful when static class members 
are accessed. 

Order of header inclusion 
Headers are included in order from “the most specific to the most 
general.” That is, any header files in the local directory are included 
first, then any of my own “tool” headers, such as require.h, then 
any third-party library headers, then the Standard C++ Library 
headers, and finally the C library headers. 

The justification for this comes from John Lakos in Large-Scale 
C++ Software Design (Addison-Wesley, 1996): 

Latent usage errors can be avoided by ensuring that the .h file 
of a component parses by itself – without externally-provided 
declarations or definitions... Including the .h file as the very 
first line of the .c file ensures that no critical piece of 
information intrinsic to the physical interface of the component 
is missing from the .h file (or, if there is, that you will find out 
about it as soon as you try to compile the .c file). 

If the order of header inclusion goes “from most specific to most 
general,” then it’s more likely that if your header doesn’t parse by 
itself, you’ll find out about it sooner and prevent annoyances down 
the road. 
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Include guards on header files 
Include guards are always used inside header files to prevent 
multiple inclusion of a header file during the compilation of a single 
.cpp file. The include guards are implemented using a preprocessor 
#define and checking to see that a name hasn’t already been 
defined. The name used for the guard is based on the name of the 
header file, with all letters of the file name uppercase and replacing 
the ‘.’ with an underscore. For example: 

// IncludeGuard.h 

#ifndef INCLUDEGUARD_H 

#define INCLUDEGUARD_H 

// Body of header file here... 

#endif // INCLUDEGUARD_H 
 

The identifier on the last line is included for clarity. Although some 
preprocessors ignored any characters after an #endif, that isn’t 
standard behavior and so the identifier is commented.  

Use of namespaces 
In header files, any “pollution” of the namespace in which the 
header is included must be scrupulously avoided. That is, if you 
change the namespace outside of a function or class, you will cause 
that change to occur for any file that includes your header, resulting 
in all kinds of problems. No using declarations of any kind are 
allowed outside of function definitions, and no global using 
directives are allowed in header files. 

In cpp files, any global using directives will only affect that file, 
and so in this book they are generally used to produce more easily-
readable code, especially in small programs. 

Use of require( ) and assure( ) 
The require( ) and assure( ) functions defined in require.h are 
used consistently throughout most of the book, so that they may 
properly report problems. If you are familiar with the concepts of 
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preconditions and postconditions (introduced by Bertrand Meyer) 
you will recognize that the use of require( ) and assure( ) more 
or less provide preconditions (usually) and postconditions 
(occasionally). Thus, at the beginning of a function, before any of 
the “core” of the function is executed, the preconditions are checked 
to make sure everything is proper and that all of the necessary 
conditions are correct. Then the “core” of the function is executed, 
and sometimes some postconditions are checked to make sure that 
the new state of the data is within defined parameters. You’ll notice 
that the postcondition checks are rare in this book, and assure( ) 
is primarily used to make sure that files were opened successfully. 
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B: Programming Guidelines 
This appendix is a collection of suggestions for C++ 

programming. They’ve been assembled over the course 

of my teaching and programming experience and 
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also from the insights of friends including Dan Saks (co-author with 
Tom Plum of C++ Programming Guidelines, Plum Hall, 1991), Scott 
Meyers (author of Effective C++, 2nd edition, Addison-Wesley, 1998), 
and Rob Murray (author of C++ Strategies & Tactics, Addison-Wesley, 
1993). Also, many of the tips are summarized from the pages of 
Thinking in C++.  

1. First make it work, then make it fast. This is true even if you 
are certain that a piece of code is really important and that it 
will be a principal bottleneck in your system. Don’t do it. Get 
the system going first with as simple a design as possible. 
Then if it isn’t going fast enough, profile it. You’ll almost 
always discover that “your” bottleneck isn’t the problem. Save 
your time for the really important stuff. 

2. Elegance always pays off. It’s not a frivolous pursuit. Not only 
does it give you a program that’s easier to build and debug, 
but it’s also easier to understand and maintain, and that’s 
where the financial value lies. This point can take some 
experience to believe, because it can seem that while you’re 
making a piece of code elegant, you’re not being productive. 
The productivity comes when the code seamlessly integrates 
into your system, and even more so when the code or system 
is modified. 

3. Remember the “divide and conquer” principle. If the problem 
you’re looking at is too confusing, try to imagine what the 
basic operation of the program would be, given the existence 
of a magic “piece” that handles the hard parts. That “piece” is 
an object – write the code that uses the object, then look at 
the object and encapsulate its hard parts into other objects, 
etc. 

4. Don’t automatically rewrite all your existing C code in C++ 
unless you need to significantly change its functionality (that 
is, don’t fix it if it isn’t broken). Recompiling C in C++ is a 
valuable activity because it may reveal hidden bugs. However, 
taking C code that works fine and rewriting it in C++ may not 
be the best use of your time, unless the C++ version will 
provide a lot of opportunities for reuse as a class. 
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5. If you do have a large body of C code that needs changing, 
first isolate the parts of the code that will not be modified, 
possibly wrapping those functions in an “API class” as static 
member functions. Then focus on the code that will be 
changed, refactoring it into classes to facilitate easy 
modifications as your maintenance proceeds. 

6. Separate the class creator from the class user (client 
programmer). The class user is the “customer” and doesn’t 
need or want to know what’s going on behind the scenes of 
the class. The class creator must be the expert in class design 
and write the class so that it can be used by the most novice 
programmer possible, yet still work robustly in the 
application. Library use will be easy only if it’s transparent. 

7. When you create a class, make your names as clear as 
possible. Your goal should be to make the client 
programmer’s interface conceptually simple. Attempt to 
make your names so clear that comments are unnecessary. To 
this end, use function overloading and default arguments to 
create an intuitive, easy-to-use interface. 

8. Access control allows you (the class creator) to change as 
much as possible in the future without damaging client code 
in which the class is used. In this light, keep everything as 
private as possible, and make only the class interface 
public, always using functions rather than data. Make data 
public only when forced. If class users don’t need to access a 
function, make it private. If a part of your class must be 
exposed to inheritors as protected, provide a function 
interface rather than expose the actual data. In this way, 
implementation changes will have minimal impact on derived 
classes. 

9. Don’t fall into analysis paralysis. There are some things that 
you don’t learn until you start coding and get some kind of 
system working. C++ has built-in firewalls; let them work for 
you. Your mistakes in a class or set of classes won’t destroy 
the integrity of the whole system. 
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10. Your analysis and design must produce, at minimum, the 
classes in your system, their public interfaces, and their 
relationships to other classes, especially base classes. If your 
design methodology produces more than that, ask yourself if 
all the pieces produced by that methodology have value over 
the lifetime of the program. If they do not, maintaining them 
will cost you. Members of development teams tend not to 
maintain anything that does not contribute to their 
productivity; this is a fact of life that many design methods 
don’t account for. 

11. Write the test code first (before you write the class), and keep 
it with the class. Automate the running of your tests through 
a makefile or similar tool. This way, any changes can be 
automatically verified by running the test code, and you’ll 
immediately discover errors. Because you know that you have 
the safety net of your test framework, you will be bolder about 
making sweeping changes when you discover the need. 
Remember that the greatest improvements in languages 
come from the built-in testing that type checking, exception 
handling, etc., provide, but those features take you only so 
far. You must go the rest of the way in creating a robust 
system by filling in the tests that verify features that are 
specific to your class or program. 

12. Write the test code first (before you write the class) in order 
to verify that your class design is complete. If you can’t write 
test code, you don’t know what your class looks like. In 
addition, the act of writing the test code will often flush out 
additional features or constraints that you need in the class – 
these features or constraints don’t always appear during 
analysis and design. 

13. Remember a fundamental rule of software engineering1: All 
software design problems can be simplified by introducing 
an extra level of conceptual indirection. This one idea is the 

                                                   
1 Explained to me by Andrew Koenig. 
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basis of abstraction, the primary feature of object-oriented 
programming. 

14. Make classes as atomic as possible; that is, give each class a 
single, clear purpose. If your classes or your system design 
grows too complicated, break complex classes into simpler 
ones. The most obvious indicator of this is sheer size: if a 
class is big, chances are it’s doing too much and should be 
broken up. 

15. Watch for long member function definitions. A function that 
is long and complicated is difficult and expensive to maintain, 
and is probably trying to do too much all by itself. If you see 
such a function, it indicates that, at the least, it should be 
broken up into multiple functions. It may also suggest the 
creation of a new class. 

16. Watch for long argument lists. Function calls then become 
difficult to write, read and maintain. Instead, try to move the 
member function to a class where it is (more) appropriate, 
and/or pass objects in as arguments. 

17. Don’t repeat yourself. If a piece of code is recurring in many 
functions in derived classes, put that code into a single 
function in the base class and call it from the derived-class 
functions. Not only do you save code space, you provide for 
easy propagation of changes. You can use an inline function 
for efficiency. Sometimes the discovery of this common code 
will add valuable functionality to your interface. 

18. Watch for switch statements or chained if-else clauses. This 
is typically an indicator of type-check coding, which means 
you are choosing what code to execute based on some kind of 
type information (the exact type may not be obvious at first). 
You can usually replace this kind of code with inheritance and 
polymorphism; a polymorphic function call will perform the 
type checking for you, and allow for more reliable and easier 
extensibility. 

19. From a design standpoint, look for and separate things that 
change from things that stay the same. That is, search for the 
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elements in a system that you might want to change without 
forcing a redesign, then encapsulate those elements in 
classes. You can learn significantly more about this concept in 
the Design Patterns chapter in Volume 2 of this book, 
available at www.BruceEckel.com. 

20. Watch out for variance. Two semantically different objects 
may have identical actions, or responsibilities, and there is a 
natural temptation to try to make one a subclass of the other 
just to benefit from inheritance. This is called variance, but 
there’s no real justification to force a superclass/subclass 
relationship where it doesn’t exist. A better solution is to 
create a general base class that produces an interface for both 
as derived classes – it requires a bit more space, but you still 
benefit from inheritance and will probably make an 
important discovery about the design. 

21. Watch out for limitation during inheritance. The clearest 
designs add new capabilities to inherited ones. A suspicious 
design removes old capabilities during inheritance without 
adding new ones. But rules are made to be broken, and if you 
are working from an old class library, it may be more efficient 
to restrict an existing class in its subclass than it would be to 
restructure the hierarchy so your new class fits in where it 
should, above the old class. 

22. Don’t extend fundamental functionality by subclassing. If an 
interface element is essential to a class it should be in the 
base class, not added during derivation. If you’re adding 
member functions by inheriting, perhaps you should rethink 
the design. 

23. Less is more. Start with a minimal interface to a class, as 
small and simple as you need to solve the problem at hand, 
but don’t try to anticipate all the ways that your class might 
be used. As the class is used, you’ll discover ways you must 
expand the interface. However, once a class is in use you 
cannot shrink the interface without disturbing client code. If 
you need to add more functions, that’s fine; it won’t disturb 
code, other than forcing recompiles. But even if new member 
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functions replace the functionality of old ones, leave the 
existing interface alone (you can combine the functionality in 
the underlying implementation if you want). If you need to 
expand the interface of an existing function by adding more 
arguments, leave the existing arguments in their current 
order, and put default values on all of the new arguments; 
this way you won’t disturb any existing calls to that function. 

24. Read your classes aloud to make sure they’re logical, referring 
to the relationship between a base class and derived class as 
“is-a” and member objects as “has-a.” 

25. When deciding between inheritance and composition, ask if 
you need to upcast to the base type. If not, prefer composition 
(member objects) to inheritance. This can eliminate the 
perceived need for multiple inheritance. If you inherit, users 
will think they are supposed to upcast. 

26. Sometimes you need to inherit in order to access protected 
members of the base class. This can lead to a perceived need 
for multiple inheritance. If you don’t need to upcast, first 
derive a new class to perform the protected access. Then 
make that new class a member object inside any class that 
needs to use it, rather than inheriting. 

27. Typically, a base class will be used primarily to create an 
interface to classes derived from it. Thus, when you create a 
base class, default to making the member functions pure 
virtual. The destructor can also be pure virtual (to force 
inheritors to explicitly override it), but remember to give the 
destructor a function body, because all destructors in a 
hierarchy are always called. 

28. When you put a virtual function in a class, make all 
functions in that class virtual, and put in a virtual 
destructor. This approach prevents surprises in the behavior 
of the interface. Only start removing the virtual keyword 
when you’re tuning for efficiency and your profiler has 
pointed you in this direction. 
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29. Use data members for variation in value and virtual 
functions for variation in behavior. That is, if you find a class 
that uses state variables along with member functions that 
switch behavior based on those variables, you should 
probably redesign it to express the differences in behavior 
within subclasses and overridden virtual functions. 

30. If you must do something nonportable, make an abstraction 
for that service and localize it within a class. This extra level 
of indirection prevents the non-portability from being 
distributed throughout your program. 

31. Avoid multiple inheritance. It’s for getting you out of bad 
situations, especially repairing class interfaces in which you 
don’t have control of the broken class (see Volume 2). You 
should be an experienced programmer before designing 
multiple inheritance into your system. 

32. Don’t use private inheritance. Although it’s in the language 
and seems to have occasional functionality, it introduces  
significant ambiguities when combined with run-time type 
identification. Create a private member object instead of 
using private inheritance. 

33. If two classes are associated with each other in some 
functional way (such as containers and iterators), try to make 
one a public nested friend class of the other, as the 
Standard C++ Library does with iterators inside containers 
(examples of this are shown in the latter part of Chapter 16). 
This not only emphasizes the association between the classes, 
but it allows the class name to be reused by nesting it within 
another class. The Standard C++ Library does this by 
defining a nested iterator class inside each container class, 
thereby providing the containers with a common interface. 
The other reason you’ll want to nest a class is as part of the 
private implementation. Here, nesting is beneficial for 
implementation hiding rather than the class association and 
prevention of namespace pollution noted above. 
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34. Operator overloading is only “syntactic sugar:” a different 
way to make a function call. If overloading an operator 
doesn’t make the class interface clearer and easier to use, 
don’t do it. Create only one automatic type conversion 
operator for a class. In general, follow the guidelines and 
format given in Chapter 12 when overloading operators. 

35. Don’t fall prey to premature optimization. That way lies 
madness. In particular, don’t worry about writing (or 
avoiding) inline functions, making some functions 
nonvirtual, or tweaking code to be efficient when you are 
first constructing the system. Your primary goal should be to 
prove the design, unless the design requires a certain 
efficiency. 

36. Normally, don’t let the compiler create the constructors, 
destructors, or the operator= for you. Class designers 
should always say exactly what the class should do and keep 
the class entirely under control. If you don’t want a copy-
constructor or operator=, declare them as private. 
Remember that if you create any constructor, it prevents the 
default constructor from being synthesized. 

37. If your class contains pointers, you must create the copy-
constructor, operator=, and destructor for the class to work 
properly. 

38. When you write a copy-constructor for a derived class, 
remember to call the base-class copy-constructor explicitly 
(also the member-object versions). (See Chapter 14.) If you 
don’t, the default constructor will be called for the base class 
(or member object) and that probably isn’t what you want. To 
call the base-class copy-constructor, pass it the derived object 
you’re copying from: 
Derived(const Derived& d) : Base(d) { // ... 

39. When you write an assignment operator for a derived class, 
remember to call the base-class version of the assignment 
operator explicitly. (See Chapter 14.) If you don’t, then 
nothing will happen (the same is true for the member 



768 Thinking in C++ www.BruceEckel.com 

objects). To call the base-class assignment operator, use the 
base-class name and scope resolution: 
Derived& operator=(const Derived& d) { 
  Base::operator=(d); 

40. If you need to minimize recompiles during development of a 
large project, use the handle class/Cheshire cat technique 
demonstrated in Chapter 5, and remove it only if runtime 
efficiency is a problem. 

41. Avoid the preprocessor. Always use const for value 
substitution and inlines for macros. 

42. Keep scopes as small as possible so the visibility and lifetime 
of your objects are as small as possible. This reduces the 
chance of using an object in the wrong context and hiding a 
difficult-to-find bug. For example, suppose you have a 
container and a piece of code that iterates through it. If you 
copy that code to use with a new container, you may 
accidentally end up using the size of the old container as the 
upper bound of the new one. If, however, the old container is 
out of scope, the error will be caught at compile time. 

43. Avoid global variables. Always strive to put data inside 
classes. Global functions are more likely to occur naturally 
than global variables, although you may later discover that a 
global function may fit better as a static member of a class. 

44. If you need to declare a class or function from a library, 
always do so by including a header file. For example, if you 
want to create a function to write to an ostream, never 
declare ostream yourself using an incomplete type 
specification like this, 
class ostream; 

This approach leaves your code vulnerable to changes in 
representation. (For example, ostream could actually be a 
typedef.) Instead, always use the header file: 
#include <iostream> 

When creating your own classes, if a library is big, provide 
your users an abbreviated form of the header file with 
incomplete type specifications (that is, class name 
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declarations) for cases in which they need to use only 
pointers. (It can speed compilations.) 

45. When choosing the return type of an overloaded operator, 
consider what will happen if expressions are chained 
together. Return a copy or reference to the lvalue (return 
*this) so it can be used in a chained expression (A = B = C). 
When defining operator=, remember x=x. 

46. When writing a function, pass arguments by const reference 
as your first choice. As long as you don’t need to modify the 
object being passed, this practice is best because it has the 
simplicity of pass-by-value syntax but doesn’t require 
expensive constructions and destructions to create a local 
object, which occurs when passing by value. Normally you 
don’t want to be worrying too much about efficiency issues 
when designing and building your system, but this habit is a 
sure win. 

47. Be aware of temporaries. When tuning for performance, 
watch out for temporary creation, especially with operator 
overloading. If your constructors and destructors are 
complicated, the cost of creating and destroying temporaries 
can be high. When returning a value from a function, always 
try to build the object “in place” with a constructor call in the 
return statement:  
return MyType(i, j); 

rather than 
MyType x(i, j); 
return x; 

The former return statement (the so-called return-value 
optimization) eliminates a copy-constructor call and 
destructor call. 

48. When creating constructors, consider exceptions. In the best 
case, the constructor won’t do anything that throws an 
exception. In the next-best scenario, the class will be 
composed and inherited from robust classes only, so they will 
automatically clean themselves up if an exception is thrown. 
If you must have naked pointers, you are responsible for 
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catching your own exceptions and then deallocating any 
resources pointed to before you throw an exception in your 
constructor. If a constructor must fail, the appropriate action 
is to throw an exception. 

49. Do only what is minimally necessary in your constructors. 
Not only does this produce a lower overhead for constructor 
calls (many of which may not be under your control) but your 
constructors are then less likely to throw exceptions or cause 
problems. 

50. The responsibility of the destructor is to release resources 
allocated during the lifetime of the object, not just during 
construction. 

51. Use exception hierarchies, preferably derived from the 
Standard C++ exception hierarchy and nested as public 
classes within the class that throws the exceptions. The 
person catching the exceptions can then catch the specific 
types of exceptions, followed by the base type. If you add new 
derived exceptions, existing client code will still catch the 
exception through the base type. 

52. Throw exceptions by value and catch exceptions by reference. 
Let the exception-handling mechanism handle memory 
management. If you throw pointers to exception objects that 
have been created on the heap, the catcher must know to 
destroy the exception, which is bad coupling. If you catch 
exceptions by value, you cause extra constructions and 
destructions; worse, the derived portions of your exception 
objects may be sliced during upcasting by value. 

53. Don’t write your own class templates unless you must. Look 
first in the Standard C++ Library, then to vendors who create 
special-purpose tools. Become proficient with their use and 
you’ll greatly increase your productivity. 

54. When creating templates, watch for code that does not 
depend on type and put that code in a non-template base 
class to prevent needless code bloat. Using inheritance or 
composition, you can create templates in which the bulk of 
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the code they contain is type-dependent and therefore 
essential. 

55. Don’t use the <cstdio> functions, such as printf( ). Learn 
to use iostreams instead; they are type-safe and type-
extensible, and significantly more powerful. Your investment 
will be rewarded regularly. In general, always use C++ 
libraries in preference to C libraries. 

56. Avoid C’s built-in types. They are supported in C++ for 
backward compatibility, but they are much less robust than 
C++ classes, so your bug-hunting time will increase. 

57. Whenever you use built-in types as globals or automatics, 
don’t define them until you can also initialize them. Define 
variables one per line along with their initialization. When 
defining pointers, put the ‘*’ next to the type name. You can 
safely do this if you define one variable per line. This style 
tends to be less confusing for the reader. 

58. Guarantee that initialization occurs in all aspects of your 
code. Perform all member initialization in the constructor 
initializer list, even built-in types (using pseudo-constructor 
calls). Using the constructor initializer list is often more 
efficient when initializing subobjects; otherwise the default 
constructor is called, and you end up calling other member 
functions (probably operator=) on top of that in order to get 
the initialization you want. 

59. Don’t use the form MyType a = b; to define an object. This 
one feature is a major source of confusion because it calls a 
constructor instead of the operator=. For clarity, always be 
specific and use the form MyType a(b); instead. The results 
are identical, but other programmers won’t be confused. 

60. Use the explicit casts described in Chapter 3. A cast overrides 
the normal typing system and is a potential error spot. Since 
the explicit casts divide C’s one-cast-does-all into classes of 
well-marked casts, anyone debugging and maintaining the 
code can easily find all the places where logical errors are 
most likely to happen. 
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61. For a program to be robust, each component must be robust. 
Use all the tools provided by C++: access control, exceptions, 
const-correctness, type checking, and so on in each class you 
create. That way you can safely move to the next level of 
abstraction when building your system. 

62. Build in const-correctness. This allows the compiler to point 
out bugs that would otherwise be subtle and difficult to find. 
This practice takes a little discipline and must be used 
consistently throughout your classes, but it pays off. 

63. Use compiler error checking to your advantage. Perform all 
compiles with full warnings, and fix your code to remove all 
warnings. Write code that utilizes the compile-time errors 
and warnings rather than that which causes runtime errors 
(for example, don’t use variadic argument lists, which disable 
all type checking). Use assert( ) for debugging, but use 
exceptions for runtime errors. 

64. Prefer compile-time errors to runtime errors. Try to handle 
an error as close to the point of its occurrence as possible. 
Prefer dealing with the error at that point to throwing an 
exception. Catch any exceptions in the nearest handler that 
has enough information to deal with them. Do what you can 
with the exception at the current level; if that doesn’t solve 
the problem, rethrow the exception. (See Volume 2 for more 
details.) 

65. If you’re using exception specifications (see Volume 2 of this 
book, downloadable from www.BruceEckel.com, to learn 
about exception handling), install your own unexpected( ) 
function using set_unexpected( ). Your unexpected( ) 
should log the error and rethrow the current exception. That 
way, if an existing function gets overridden and starts 
throwing exceptions, you will have a record of the culprit and 
can modify your calling code to handle the exception.  

66. Create a user-defined terminate( ) (indicating a 
programmer error) to log the error that caused the exception, 
then release system resources, and exit the program. 
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67. If a destructor calls any functions, those functions might 
throw exceptions. A destructor cannot throw an exception 
(this can result in a call to terminate( ), which indicates a 
programming error), so any destructor that calls functions 
must catch and manage its own exceptions. 

68. Don’t create your own “decorated” private data member 
names (prepending underscores, Hungarian notation, etc.), 
unless you have a lot of pre-existing global values; otherwise, 
let classes and namespaces do the name scoping for you. 

69. Watch for overloading. A function should not conditionally 
execute code based on the value of an argument, default or 
not. In this case, you should create two or more overloaded 
functions instead. 

70. Hide your pointers inside container classes. Bring them out 
only when you are going to immediately perform operations 
on them. Pointers have always been a major source of bugs. 
When you use new, try to drop the resulting pointer into a 
container. Prefer that a container “own” its pointers so it’s 
responsible for cleanup. Even better, wrap a pointer inside a 
class; if you still want it to look like a pointer, overload 
operator-> and operator*. If you must have a free-
standing pointer, always initialize it, preferably to an object 
address, but to zero if necessary. Set it to zero when you 
delete it to prevent accidental multiple deletions. 

71. Don’t overload global new and delete; always do this on a 
class-by-class basis. Overloading the global versions affects 
the entire client programmer project, something only the 
creators of a project should control. When overloading new 
and delete for classes, don’t assume that you know the size 
of the object; someone may be inheriting from you. Use the 
provided argument. If you do anything special, consider the 
effect it could have on inheritors. 

72. Prevent object slicing. It virtually never makes sense to 
upcast an object by value. To prevent upcasting by value, put 
pure virtual functions in your base class. 
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73. Sometimes simple aggregation does the job. A “passenger 
comfort system” on an airline consists of disconnected 
elements: seat, air conditioning, video, etc., and yet you need 
to create many of these in a plane. Do you make private 
members and build a whole new interface? No – in this case, 
the components are also part of the public interface, so you 
should create public member objects. Those objects have 
their own private implementations, which are still safe. Be 
aware that simple aggregation is not a solution to be used 
often, but it does happen.  
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C: Recommended Reading 
Resources for further study. 
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C 
Thinking in C: Foundations for Java & C++, by Chuck Allison 
(a MindView, Inc. Seminar-on-CD ROM, ©2000, bound into the 
back of this book and also available at www.BruceEckel.com). This 
is a course including lectures and slides in the foundations of the C 
Language to prepare you to learn Java or C++. This is not an 
exhaustive course in C; only the necessities for moving on to the 
other languages are included. Additional language-specific sections 
introduce features for the C++ or Java programmer-to-be. 
Recommended prerequisite: some experience with a high-level 
programming language, such as Pascal, BASIC, Fortran, or LISP 
(it’s possible to struggle through the CD without this background, 
but the course isn’t designed to be an introduction to the basics of 
programming).  

General C++ 
The C++ Programming Language, 3rd edition, by Bjarne 
Stroustrup (Addison-Wesley 1997). To some degree, the goal of the 
book that you’re currently holding is to allow you to use Bjarne’s 
book as a reference. Since his book contains the description of the 
language by the author of that language, it’s typically the place 
where you’ll go to resolve any uncertainties about what C++ is or 
isn’t supposed to do. When you get the knack of the language and 
are ready to get serious, you’ll need it. 

C++ Primer, 3rd Edition, by Stanley Lippman and Josee Lajoie 
(Addison-Wesley 1998). Not that much of a primer anymore; it’s 
evolved into a thick book filled with lots of detail, and the one that I 
reach for along with Stroustrup’s when trying to resolve an issue. 
Thinking in C++ should provide a basis for understanding the C++ 
Primer as well as Stroustrup’s book. 

C & C++ Code Capsules, by Chuck Allison (Prentice-Hall, 1998). 
This book assumes that you already know C and C++, and covers 
some of the issues that you may be rusty on, or that you may not 
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have gotten right the first time. This book fills in C gaps as well as 
C++ gaps. 

The C++ Standard. This is the document that the committee 
worked so hard on for all those years. This is not free, 
unfortunately. But at least you can buy the electronic form in PDF 
for only $18 at www.cssinfo.com. 

My own list of books  
Listed in order of publication. Not all of these are currently 
available. 

Computer Interfacing with Pascal & C (Self-published via the 
Eisys imprint, 1988. Only available via www.BruceEckel.com). An 
introduction to electronics from back when CP/M was still king and 
DOS was an upstart. I used high-level languages and often the 
parallel port of the computer to drive various electronic projects. 
Adapted from my columns in the first and best magazine I wrote 
for, Micro Cornucopia (To paraphrase Larry O’Brien, long-time 
editor of Software Development Magazine: the best computer 
magazine ever published – they even had plans for building a robot 
in a flower pot!) Alas, Micro C became lost long before the Internet 
appeared. Creating this book was an extremely satisfying publishing 
experience. 

Using C++ (Osborne/McGraw-Hill 1989). One of the first books 
out on C++. This is out of print and replaced by its second edition, 
the renamed C++ Inside & Out. 

C++ Inside & Out (Osborne/McGraw-Hill 1993). As noted, 
actually the 2nd edition of Using C++. The C++ in this book is 
reasonably accurate, but it's circa 1992 and Thinking in C++ is 
intended to replace it. You can find out more about this book and 
download the source code at www.BruceEckel.com. 

Thinking in C++, 1st edition (Prentice-Hall 1995).  

Black Belt C++, the Master’s Collection, Bruce Eckel, editor 
(M&T Books 1994). Out of print. A collection of chapters by various 
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C++ luminaries based on their presentations in the C++ track at the 
Software Development Conference, which I chaired. The cover on 
this book stimulated me to gain control over all future cover 
designs. 

Thinking in Java, 2nd edition (Prentice-Hall, 2000). The first 
edition of this book won the Software Development Magazine 
Productivity Award and the Java Developer’s Journal Editor’s 
Choice Award in 1999. Downloadable from www.BruceEckel.com. 

Depth & dark corners 
These books go more deeply into language topics, and help you 
avoid the typical pitfalls inherent in developing C++ programs. 

Effective C++ (2nd Edition, Addison-Wesley 1998) and More 
Effective C++ (Addison-Wesley 1996), by Scott Meyers. The 
classic, must-have texts for serious problem-solving and code 
design in C++. I’ve tried to capture and express many of the 
concepts from these books in Thinking in C++, but I don’t fool 
myself in thinking that I’ve succeeded. If you spend any serious 
time with C++ you’ll end up with these books. Also available on CD 
ROM.  

Ruminations on C++, by Andrew Koenig and Barbara Moo 
(Addison-Wesley, 1996). Andrew worked directly with Stroustrup 
on many aspects of the C++ language and is an extremely reliable 
authority. I’ve also found the incisiveness of his insights to be 
refreshing, and have learned much from him, both in print and in 
person, over the years. 

Large-Scale C++ Software Design, by John Lakos (Addison-
Wesley, 1996). Covers issues and answers questions you will 
encounter during the creation of big projects, but often smaller ones 
as well. 

C++ Gems, Stan Lippman, editor (SIGS publications, 1996). A 
selection of articles from The C++ Report. 
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The Design & Evolution of C++, by Bjarne Stroustrup 
(Addison-Wesley 1994). Insights from the inventor of C++ about 
why he made various design decisions. Not essential, but 
interesting. 

Analysis & design 
Extreme Programming Explained by Kent Beck (Addison-
Wesley 2000). I love this book. Yes, I tend to take a radical 
approach to things but I've always felt that there could be a much 
different, much better program development process, and I think 
XP comes pretty darn close. The only book that has had a similar 
impact on me was PeopleWare (described below), which talks 
primarily about the environment and dealing with corporate 
culture. Extreme Programming Explained talks about 
programming, and turns most things, even recent “findings,” on 
their ear. They even go so far as to say that pictures are OK as long 
as you don’t spend too much time on them and are willing to throw 
them away. (You’ll notice that this book does not have the “UML 
stamp of approval” on its cover.) I could see deciding whether to 
work for a company based solely on whether they used XP. Small 
book, small chapters, effortless to read, exciting to think about. You 
start imagining yourself working in such an atmosphere and it 
brings visions of a whole new world. 

UML Distilled by Martin Fowler (2nd edition, Addison-Wesley, 
2000). When you first encounter UML, it is daunting because there 
are so many diagrams and details. According to Fowler, most of this 
stuff is unnecessary so he cuts through to the essentials. For most 
projects, you only need to know a few diagramming tools, and 
Fowler’s goal is to come up with a good design rather than worry 
about all the artifacts of getting there. A nice, thin, readable book; 
the first one you should get if you need to understand UML. 

The Unified Software Development Process by Ivar 
Jacobsen, Grady Booch, and James Rumbaugh (Addison-Wesley 
1999). I went in fully prepared to dislike this book. It seemed to 
have all the makings of a boring college text. I was pleasantly 
surprised – only pockets of the book contain explanations that seem 
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as if those concepts aren’t clear to the authors. The bulk of the book 
is not only clear, but enjoyable. And best of all, the process makes a 
lot of practical sense. It’s not Extreme Programming (and does not 
have their clarity about testing) but it’s also part of the UML 
juggernaut – even if you can’t get XP adopted, most people have 
climbed aboard the “UML is good” bandwagon (regardless of their 
actual level of experience with it) and so you can probably get it 
adopted. I think this book should be the flagship of UML, and the 
one you can read after Fowler’s UML Distilled when you want more 
detail. 

Before you choose any method, it’s helpful to gain perspective from 
those who are not trying to sell one. It’s easy to adopt a method 
without really understanding what you want out of it or what it will 
do for you. Others are using it, which seems a compelling reason. 
However, humans have a strange little psychological quirk: If they 
want to believe something will solve their problems, they’ll try it. 
(This is experimentation, which is good.) But if it doesn’t solve their 
problems, they may redouble their efforts and begin to announce 
loudly what a great thing they’ve discovered. (This is denial, which 
is not good.) The assumption here may be that if you can get other 
people in the same boat, you won’t be lonely, even if it’s going 
nowhere (or sinking). 

This is not to suggest that all methodologies go nowhere, but that 
you should be armed to the teeth with mental tools that help you 
stay in experimentation mode (“It’s not working; let’s try something 
else”) and out of denial mode (“No, that’s not really a problem. 
Everything’s wonderful, we don’t need to change”). I think the 
following books, read before you choose a method, will provide you 
with these tools. 

Software Creativity, by Robert Glass (Prentice-Hall, 1995). This 
is the best book I’ve seen that discusses perspective on the whole 
methodology issue. It’s a collection of short essays and papers that 
Glass has written and sometimes acquired (P.J. Plauger is one 
contributor), reflecting his many years of thinking and study on the 
subject. They’re entertaining and only long enough to say what’s 
necessary; he doesn’t ramble and bore you. He’s not just blowing 
smoke, either; there are hundreds of references to other papers and 
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studies. All programmers and managers should read this book 
before wading into the methodology mire. 

Software Runaways: Monumental Software Disasters, by 
Robert Glass (Prentice-Hall 1997). The great thing about this book 
is that it brings to the forefront what we don’t talk about: how many 
projects not only fail, but fail spectacularly. I find that most of us 
still think “That can’t happen to me” (or “That can’t happen again”) 
and I think this puts us at a disadvantage. By keeping in mind that 
things can always go wrong, you’re in a much better position to 
make them go right. 

Object Lessons by Tom Love (SIGS Books, 1993). Another good 
“perspective” book. 

Peopleware, by Tom Demarco and Timothy Lister (Dorset House, 
2nd edition 1999). Although they have backgrounds in software 
development, this book is about projects and teams in general. But 
the focus is on the people and their needs rather than the 
technology and its needs. They talk about creating an environment 
where people will be happy and productive, rather than deciding 
what rules those people should follow to be adequate components 
of a machine. This latter attitude, I think, is the biggest contributor 
to programmers smiling and nodding when XYZ method is adopted 
and then quietly doing whatever they’ve always done. 

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). 
This chronicles the coming together of a group of scientists from 
different disciplines in Santa Fe, New Mexico, to discuss real 
problems that the individual disciplines couldn’t solve (the stock 
market in economics, the initial formation of life in biology, why 
people do what they do in sociology, etc.). By crossing physics, 
economics, chemistry, math, computer science, sociology, and 
others, a multidisciplinary approach to these problems is 
developing. But more importantly, a different way of thinking about 
these ultra-complex problems is emerging: Away from 
mathematical determinism and the illusion that you can write an 
equation that predicts all behavior and toward first observing and 
looking for a pattern and trying to emulate that pattern by any 
means possible. (The book chronicles, for example, the emergence 
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of genetic algorithms.) This kind of thinking, I believe, is useful as 
we observe ways to manage more and more complex software 
projects.
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End-User License Agreement for Microsoft Software 
 
IMPORTANT-READ CAREFULLY: This Microsoft End-User License 
Agreement ("EULA") is a legal agreement between you (either an 
individual or a single entity) and Microsoft Corporation for the 
Microsoft software product included in this package, which includes 
computer software and may include associated media, printed 
materials, and "online" or electronic documentation ("SOFTWARE 
PRODUCT"). The SOFTWARE PRODUCT also includes any updates and 
supplements to the original SOFTWARE PRODUCT provided to you by 
Microsoft. By installing, copying, downloading, accessing or otherwise 
using the SOFTWARE PRODUCT, you agree to be bound by the terms 
of this EULA. If you do not agree to the terms of this EULA, do not 
install, copy, or otherwise use the SOFTWARE PRODUCT. 
 
SOFTWARE PRODUCT LICENSE 
 
The SOFTWARE PRODUCT is protected by copyright laws and 
international copyright treaties, as well as other intellectual property 
laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.  
1. GRANT OF LICENSE. This EULA grants you the following rights: 
1.1 License Grant. Microsoft grants to you as an individual, a personal 
nonexclusive license to make and use copies of the SOFTWARE 
PRODUCT for the sole purposes of evaluating and learning how to use 
the SOFTWARE PRODUCT, as may be instructed in accompanying 
publications or documentation. You may install the software on an 
unlimited number of computers provided that you are the only 
individual using the SOFTWARE PRODUCT.  
1.2 Academic Use. You must be a "Qualified Educational User" to use 
the SOFTWARE PRODUCT in the manner described in this section. To 
determine whether you are a Qualified Educational User, please 
contact the Microsoft Sales Information Center/One Microsoft 
Way/Redmond, WA 98052-6399 or the Microsoft subsidiary serving 
your country. If you are a Qualified Educational User, you may either: 
(i) exercise the rights granted in Section 1.1, OR  
(ii) if you intend to use the SOFTWARE PRODUCT solely for 
instructional purposes in connection with a class or other educational 
program, this EULA grants you the following alternative license 
models:  
(A) Per Computer Model. For every valid license you have acquired for 
the SOFTWARE PRODUCT, you may install a single copy of the 
SOFTWARE PRODUCT on a single computer for access and use by an 
unlimited number of student end users at your educational institution, 
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provided that all such end users comply with all other terms of this 
EULA, OR  
(B) Per License Model. If you have multiple licenses for the SOFTWARE 
PRODUCT, then at any time you may have as many copies of the 
SOFTWARE PRODUCT in use as you have licenses, provided that such 
use is limited to student or faculty end users at your educational 
institution and provided that all such end users comply with all other 
terms of this EULA. For purposes of this subsection, the SOFTWARE 
PRODUCT is "in use" on a computer when it is loaded into the 
temporary memory (i.e., RAM) or installed into the permanent memory 
(e.g., hard disk, CD ROM, or other storage device) of that computer, 
except that a copy installed on a network server for the sole purpose 
of distribution to other computers is not "in use". If the anticipated 
number of users of the SOFTWARE PRODUCT will exceed the number 
of applicable licenses, then you must have a reasonable mechanism or 
process in place to ensure that the number of persons using the 
SOFTWARE PRODUCT concurrently does not exceed the number of 
licenses. 
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.  
• Limitations on Reverse Engineering, Decompilation, and 
Disassembly. You may not reverse engineer, decompile, or disassemble 
the SOFTWARE PRODUCT, except and only to the extent that such 
activity is expressly permitted by applicable law notwithstanding this 
limitation. 
• Separation of Components. The SOFTWARE PRODUCT is licensed as 
a single product. Its component parts may not be separated for use on 
more than one computer. 
• Rental. You may not rent, lease or lend the SOFTWARE PRODUCT. 
• Trademarks. This EULA does not grant you any rights in connection 
with any trademarks or service marks of Microsoft. 
• Software Transfer. The initial user of the SOFTWARE PRODUCT may 
make a one-time permanent transfer of this EULA and SOFTWARE 
PRODUCT only directly to an end user. This transfer must include all of 
the SOFTWARE PRODUCT (including all component parts, the media 
and printed materials, any upgrades, this EULA, and, if applicable, the 
Certificate of Authenticity). Such transfer may not be by way of 
consignment or any other indirect transfer. The transferee of such one-
time transfer must agree to comply with the terms of this EULA, 
including the obligation not to further transfer this EULA and 
SOFTWARE PRODUCT. 
• No Support. Microsoft shall have no obligation to provide any 
product support for the SOFTWARE PRODUCT. 
• Termination. Without prejudice to any other rights, Microsoft may 
terminate this EULA if you fail to comply with the terms and conditions 
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of this EULA. In such event, you must destroy all copies of the 
SOFTWARE PRODUCT and all of its component parts. 
3.  COPYRIGHT. All title and intellectual property rights in and to the 
SOFTWARE PRODUCT (including but not limited to any images, 
photographs, animations, video, audio, music, text, and "applets" 
incorporated into the SOFTWARE PRODUCT), the accompanying 
printed materials, and any copies of the SOFTWARE PRODUCT are 
owned by Microsoft or its suppliers. All title and intellectual property 
rights in and to the content which may be accessed through use of the 
SOFTWARE PRODUCT is the property of the respective content owner 
and may be protected by applicable copyright or other intellectual 
property laws and treaties. This EULA grants you no rights to use such 
content. All rights not expressly granted are reserved by Microsoft. 
4. BACKUP COPY. After installation of one copy of the SOFTWARE 
PRODUCT pursuant to this EULA, you may keep the original media on 
which the SOFTWARE PRODUCT was provided by Microsoft solely for 
backup or archival purposes. If the original media is required to use 
the SOFTWARE PRODUCT on the COMPUTER, you may make one copy 
of the SOFTWARE PRODUCT solely for backup or archival purposes. 
Except as expressly provided in this EULA, you may not otherwise 
make copies of the SOFTWARE PRODUCT or the printed materials 
accompanying the SOFTWARE PRODUCT. 
5. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE 
PRODUCT and documentation are provided with RESTRICTED RIGHTS. 
Use, duplication, or disclosure by the Government is subject to 
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in 
Technical Data and Computer Software clause at DFARS 252.227-7013 
or subparagraphs (c)(1) and (2) of the Commercial Computer 
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. 
Manufacturer is Microsoft Corporation/One Microsoft Way/Redmond, 
WA 98052-6399. 
6. EXPORT RESTRICTIONS. You agree that you will not export or re-
export the SOFTWARE PRODUCT, any part thereof, or any process or 
service that is the direct product of the SOFTWARE PRODUCT (the 
foregoing collectively referred to as the "Restricted Components"), to 
any country, person, entity or end user subject to U.S. export 
restrictions. You specifically agree not to export or re-export any of the 
Restricted Components (i) to any country to which the U.S. has 
embargoed or restricted the export of goods or services, which 
currently include, but are not necessarily limited to Cuba, Iran, Iraq, 
Libya, North Korea, Sudan and Syria, or to any national of any such 
country, wherever located, who intends to transmit or transport the 
Restricted Components back to such country; (ii) to any end-user who 
you know or have reason to know will utilize the Restricted 
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Components in the design, development or production of nuclear, 
chemical or biological weapons; or (iii) to any end-user who has been 
prohibited from participating in U.S. export transactions by any federal 
agency of the U.S. government. You warrant and represent that 
neither the BXA nor any other U.S. federal agency has suspended, 
revoked, or denied your export privileges. 
7. NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN 
SUPPORT FOR PROGRAMS WRITTEN IN JAVA. JAVA TECHNOLOGY IS 
NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR 
INTENDED FOR USE OR RESALE AS ON-LINE CONTROL EQUIPMENT IN 
HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, 
SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT 
NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, 
DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH 
THE FAILURE OF JAVA TECHNOLOGY COULD LEAD DIRECTLY TO 
DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR 
ENVIRONMENTAL DAMAGE. 
 
MISCELLANEOUS 
 
If you acquired this product in the United States, this EULA is governed 
by the laws of the State of Washington.  
If you acquired this product in Canada, this EULA is governed by the 
laws of the Province of Ontario, Canada. Each of the parties hereto 
irrevocably attorns to the jurisdiction of the courts of the Province of 
Ontario and further agrees to commence any litigation which may arise 
hereunder in the courts located in the Judicial District of York, Province 
of Ontario.  
If this product was acquired outside the United States, then local law 
may apply. 
Should you have any questions concerning this EULA, or if you desire 
to contact Microsoft for any reason, please contact  
Microsoft, or write: Microsoft Sales Information Center/One Microsoft 
Way/Redmond, WA 98052-6399.  
 
LIMITED WARRANTY 
 
LIMITED WARRANTY. Microsoft warrants that (a) the SOFTWARE 
PRODUCT will perform substantially in accordance with the 
accompanying written materials for a period of ninety (90) days from 
the date of receipt, and (b) any Support Services provided by Microsoft 
shall be substantially as described in applicable written materials 
provided to you by Microsoft, and Microsoft support engineers will 
make commercially reasonable efforts to solve any problem. To the 
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extent allowed by applicable law, implied warranties on the SOFTWARE 
PRODUCT, if any, are limited to ninety (90) days. Some 
states/jurisdictions do not allow limitations on duration of an implied 
warranty, so the above limitation may not apply to you. 
CUSTOMER REMEDIES. Microsoft's and its suppliers' entire liability and 
your exclusive remedy shall be, at Microsoft's option, either (a) return 
of the price paid, if any, or (b) repair or replacement of the SOFTWARE 
PRODUCT that does not meet Microsoft's Limited Warranty and that is 
returned to Microsoft with a copy of your receipt. This Limited 
Warranty is void if failure of the SOFTWARE PRODUCT has resulted 
from accident, abuse, or misapplication. Any replacement SOFTWARE 
PRODUCT will be warranted for the remainder of the original warranty 
period or thirty (30) days, whichever is longer. Outside the United 
States, neither these remedies nor any product support services 
offered by Microsoft are available without proof of purchase from an 
authorized international source. 
NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY 
APPLICABLE LAW, MICROSOFT AND ITS SUPPLIERS DISCLAIM ALL 
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES 
OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, TITLE AND NON-INFRINGEMENT, WITH REGARD TO THE 
SOFTWARE PRODUCT, AND THE PROVISION OF OR FAILURE TO 
PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM 
STATE/JURISDICTION TO STATE/JURISDICTION. 
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY 
APPLICABLE LAW, IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS 
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR 
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT 
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS 
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER 
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO 
USE THE SOFTWARE PRODUCT OR THE FAILURE TO PROVIDE 
SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFT'S 
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE 
LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU 
FOR THE SOFTWARE PRODUCT OR U.S.$5.00; PROVIDED, HOWEVER, 
IF YOU HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES 
AGREEMENT, MICROSOFT'S ENTIRE LIABILITY REGARDING SUPPORT 
SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. 
BECAUSE SOME STATES/JURISDICTIONS DO NOT ALLOW THE 
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EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION 
MAY NOT APPLY TO YOU. 
0495 Part No. 64358



  810 

LICENSE AGREEMENT FOR MindView, Inc.'s 
Thinking in C: Foundations for C++ & Java CD-ROM 
by Chuck Allison 
This CD is provided together with the book "Thinking in C++ 2nd 
edition, Volume 1." 
 
READ THIS AGREEMENT BEFORE USING THIS "Thinking in C: 
Foundations for C++ & Java" (Hereafter called "CD"). BY USING THE 
CD YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF 
THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS AND 
CONDITIONS OF THIS AGREEMENT, IMMEDIATELY RETURN THE 
UNUSED CD FOR A FULL REFUND OF MONIES PAID, IF ANY. 
 
©2000 MindView Inc. All rights reserved. Printed in the U.S. 
 
SOFTWARE REQUIREMENTS 
The purpose of this CD is to provide the Content, not the associated 
software necessary to view the Content. The Content of this CD is in 
HTML for viewing with Microsoft Internet Explorer 4 or newer, and uses 
Microsoft Sound Codecs available in Microsoft's Windows Media Player 
for Windows or the Macintosh. It is your responsibility to correctly 
install the appropriate Microsoft software for your system.  
 
The text, images, and other media included on this CD ("Content") and 
their compilation are licensed to you subject to the terms and 
conditions of this Agreement by MindView Inc., having a place of 
business at 5343 Valle Vista, La Mesa, CA 91941. Your rights to use 
other programs and materials included on the CD are also governed by 
separate agreements distributed with those programs and materials on 
the CD (the "Other Agreements"). In the event of any inconsistency 
between this Agreement and the Other Agreements, this Agreement 
shall govern. By using this CD, you agree to be bound by the terms 
and conditions of this Agreement. MindView Inc. owns title to the 
Content and to all intellectual property rights therein, except insofar as 
it contains materials that are proprietary to third-party suppliers. All 
rights in the Content except those expressly granted to you in this 
Agreement are reserved to MindView Inc. and such suppliers as their 
respective interests may appear. 
 
1. LIMITED LICENSE 
MindView Inc. grants you a limited, nonexclusive, nontransferable 
license to use the Content on a single dedicated computer (excluding 
network servers). This Agreement and your rights hereunder shall 
automatically terminate if you fail to comply with any provisions of this 
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Agreement or any of the Other Agreements. Upon such termination, 
you agree to destroy the CD and all copies of the CD, whether lawful 
or not, that are in your possession or under your control.  
 
2. ADDITIONAL RESTRICTIONS 
 
a. You shall not (and shall not permit other persons or entities to) 
directly or indirectly, by electronic or other means, reproduce (except 
for archival purposes as permitted by law), publish, distribute, rent, 
lease, sell, sublicense, assign, or otherwise transfer the Content or any 
part thereof. 
 
b. You shall not (and shall not permit other persons or entities to) use 
the Content or any part thereof for any commercial purpose or merge, 
modify, create derivative works of, or translate the Content. 
 
c. You shall not (and shall not permit other persons or entities to) 
obscure MindView's or its suppliers copyright, trademark, or other 
proprietary notices or legends from any portion of the Content or any 
related materials. 
 
3. PERMISSIONS 

a. Except as noted in the Contents of the CD, you must treat this 
software just like a book. However, you may copy it onto a computer 
to be used and you may make archival copies of the software for the 
sole purpose of backing up the software and protecting your 
investment from loss. By saying, "just like a book," MindView, Inc. 
means, for example, that this software may be used by any number of 
people and may be freely moved from one computer location to 
another, so long as there is no possibility of its being used at one 
location or on one computer while it is being used at another. Just as a 
book cannot be read by two different people in two different places at 
the same time, neither can the software be used by two different 
people in two different places at the same time. 

b. You may show or demonstrate the un-modified Content in a live 
presentation, live seminar, or live performance as long as you attribute 
all material of the Content to MindView, Inc. 

c. Other permissions and grants of rights for use of the CD must be 
obtained directly from MindView, Inc. at http://www.MindView.net. 
(Bulk copies of the CD may also be purchased at this site.)  
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DISCLAIMER OF WARRANTY 
 
The Content and CD are provided "AS IS" without warranty of any 
kind, either express or implied, including, without limitation, any 
warranty of merchantability and fitness for a particular purpose. The 
entire risk as to the results and performance of the CD and Content is 
assumed by you. MindView Inc. and its suppliers assume no 
responsibility for defects in the CD, the accuracy of the Content, or 
omissions in the CD or the Content. MindView Inc. and its suppliers do 
not warrant, guarantee, or make any representations regarding the 
use, or the results of the use, of the product in terms of correctness, 
accuracy, reliability, currentness, or otherwise, or that the Content will 
meet your needs, or that operation of the CD will be uninterrupted or 
error-free, or that any defects in the CD or Content will be corrected. 
MindView Inc. and its suppliers shall not be liable for any loss, 
damages, or costs arising from the use of the CD or the interpretation 
of the Content. Some states do not allow exclusion or limitation of 
implied warranties or limitation of liability for incidental or 
consequential damages, so all of the above limitations or exclusions 
may not apply to you. 
 
In no event shall MindView Inc. or its suppliers' total liability to you for 
all damages, losses, and causes of action (whether in contract, tort, or 
otherwise) exceed the amount paid by you for the CD. 

MindView, Inc., and Prentice-Hall, Inc. specifically disclaim the implied 
warrantees of merchantability and fitness for a particular purpose. No 
oral or written information or advice given by MindView, Inc., Prentice-
Hall, Inc., their dealers, distributors, agents or employees shall create 
a warrantee. You may have other rights, which vary from state to 
state. 

Neither MindView, Inc., Bruce Eckel, Chuck Allison, Prentice Hall, nor 
anyone else who has been involved in the creation, production or 
delivery of the product shall be liable for any direct, indirect, 
consequential, or incidental damages (including damages for loss of 
business profits, business interruption, loss of business information, 
and the like) arising out of the use of or inability to use the product 
even if MindView, Inc., has been advised of the possibility of such 
damages. Because some states do not allow the exclusion or limitation 
of liability for consequential or incidental damages, the above 
limitation may not apply to you. 
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This CD is provided as a supplement to the book "Thinking in C++ 2nd 
edition." The sole responsibility of Prentice-Hall will be to provide a 
replacement CD in the event that the one that came with the book is 
defective. This replacement warrantee shall be in effect for a period of 
sixty days from the purchase date. MindView, Inc. does not bear any 
additional responsibility for the CD. 

NO TECHNICAL SUPPORT IS PROVIDED WITH THIS CD ROM 

The following are trademarks of their respective companies in the U.S. 
and may be protected as trademarks in other countries: Sun and the 
Sun Logo, Sun Microsystems, Java, all Java-based names and logos 
and the Java Coffee Cup are trademarks of Sun Microsystems; Internet 
Explorer, the Windows Media Player, DOS, Windows 95, and Windows 
NT are trademarks of Microsoft. 
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Thinking in C: Foundations for Java & C++ 

Multimedia Seminar-on-CD ROM  
©2000 MindView, Inc. All rights reserved.  
WARNING: BEFORE OPENING THE DISC PACKAGE, CAREFULLY 

READ THE TERMS AND CONDITIONS OF THE LICENSE 

AGREEMENT  & WARANTEE LIMITATION ON THE PREVIOUS 

PAGES. 

The CD ROM packaged with this book is a multimedia seminar 
consisting of synchronized slides and audio lectures. The goal of 
this seminar is to introduce you to the aspects of C that are 
necessary for you to move on to C++ or Java, leaving out the 
unpleasant parts that C programmers must deal with on a day-to-
day basis but that the C++ and Java languages steer you away from. 
The CD also contains this book in HTML form along with the source 
code for the book. 

This CD ROM will work with Windows (with a sound system) and 
the Macintosh. However, you must:  

1. Install the most recent version of Microsoft’s Internet Explorer. 
Because of the features provided on the CD, it will NOT work 
with Netscape Navigator. The Internet Explorer software 
for both the Macintosh and Windows 9X/NT is 
included on the CD. 

2. Install Microsoft’s Windows Media Player. Unfortunately this is 
only allowed to be distributed directly from Microsoft’s Web 
site, so it is NOT included on the CD. You will need to go to 
http://www.microsoft.com/windows/mediaplayer and 
follow the instructions or links there to download and install the 
Media Player for your particular platform (you may need to find 
and follow an extra link for the Macintosh version). Please note 
that Microsoft sometimes changes the location of Web pages on 
their site and in that case you’ll need to use their searching 
capability to find the media player. 

At this point you should be able to play the lectures on the CD. 
Using the Internet Explorer Web browser, open the file 
Install.html that you’ll find on the CD. This will introduce you to 
the CD and provide further instructions about the use of the CD. 


