

Winner, Software Development Magazine’s

1996 Jolt Award for Best Book of the Year

“This book is a tremendous achievement. You owe it to yourself to
have a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I’ve
seen to date.”

Al Stevens

Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also
an excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock

Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and
Thinking in C++ is his best collection of ideas yet. If you want clear
answers to difficult questions about C++, buy this outstanding
book.”

Gary Entsminger

Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance.
The entire effort is woven in a fabric that includes Eckel’s own
philosophy of object and program design. A must for every C++
developer’s bookshelf, Thinking in C++ is the one C++ book you
must have if you’re doing serious development with C++.”

Richard Hale Shaw

Contributing Editor, PC Magazine

Comments from Readers:
Wonderful book … Great stuff! Andrew Schulman, Doctor Dobbs Journal

An absolute, unqualified must. One of the most-used, most trusted books on my

shelf.” TUG Lines

This is stuff a programmer can really use. IEEE Computer

A refreshing departure. PJ Plauger, Embedded Systems Programming

magazine

…Eckel succeeds … it’s so readable. Unix World

Should definitely be your first buy. C Gazette

A fantastic reference for C++! Michael Brandt, Senior Analyst/Programmer,

Sydney, Australia

On our project at HRB Systems we call your book “The Answer Book”. It is our

C++ Bible for the project. Curt Snyder, HRB Systems

Your book is really great, and I can’t thank you enough for making it available for
free on the web. It’s one of the most thorough and useful references for C++ I’ve

seen. Russell Davis

... the only book out there that even comes close to being actually readable when
trying to learn the ropes of C++ (and the basics of good object oriented

programming in general). Gunther Schulz, KawaiiSoft

I love the examples in your book. There’s stuff there that I never would have

thought of (and some things that I didn’t know you could do)! Rich Herrick,

Senior Associate Software Engineer, Lockheed-Martin Federal Systems,
Owego, NY

It’s an amazing book. Any questions I have I refer to this online book. Helped in

every case. I’m simply happy to have access to a book of this caliber. Wes Kells,

Comp Eng. Student, SLC Kingston.

You are an invaluable resource and I greatly appreciate your books, email list
etc... It seems every project I have worked on has been successful because of your

insights. Justin Voshell

This is the book I have been looking for on C++. Thomas A. Fink, Managing

Director, Trepp, LLC

Your books are authoritative yet easy to read. To my colleagues I call you the

K&R of C++. Mark Orlassino, Senior Design Engineer, Harmon

Industries, Inc., Hauppauge, NY

When I first started learning C++, your book “Thinking in C++” was my shining
guide light in a dark tunnel. It has been my endeavor to improve my C++ skills

whenever possible, and to that effect, “Thinking in C++” has given me the strong

foundation for my continuous improvement. Peter Tran, Senior Systems

Analyst (IM), Compaq Computer Corporation

This book is the best general reference in my on-going quest to master C++. Most
books explain some topics thoroughly but are deficient in others. “Thinking in
C++” 2/E does not pass the buck to another book. When I have questions it has

answers. Thomas Michel

I have a whole mountain of books and none of them make sense nor do they
explain things properly. I have been dying for a good template and STL book.
Then I decided to read your material and I was amazed. What you did was show
how to write C++ with templates and STL without bogging down with details.
What you did was what I expected of the C++ community, the next generation of
C++ authors. As an author I AM IMPRESSED at your writing and explanation
skills. You covered topics that nobody has properly covered before. Your
approach is one from a person who has actually sat down and went through the
material in detail. And then you questioned the sanity of the situation and what
would be the problem areas. On my bookshelf, it will definitely be one of the

necessary books, right beside Petzold. Christian Gross, consultant/mentor

cgross@eusoft.com

I think your book is very, very, VERY good. I have compared it to others in the
bookstore, and have found that your book actually teaches me basic C++
fundamentals while I learn the STL... a very nice experience to learn about both
at once, hand-in-hand. I think your book is laid out very well, and explains things

in an easy-to-understand fashion. Jeff Meininger, Software Developer,

boxybutgood.com

Your book is the best by far of any I’ve seen. Please get it right so that we can all
have an excellent and “reliable” reference work! And please hurry! We are

desperate for a work of this quality! Steve Strickland, Live Minds (a Puzzle

business)

 (On Usenet) Unlike most other C++ authors, Eckel has made a career of teaching
C++ and Java classes ONLY. He’s had the benefit of a GREAT deal of novice
feedback, and the books reflect that. His books are not just about writing in
C++/Java, but understanding the intent of the languages and the mindset that
goes with thinking in them. Eckel’s also the best technical writer I’ve read since
Jeff Duntemann. Very clear and easy to read. Don’t be put off by the apparent

large size of his books. Either can be read in *less* than 21 days. :-} Randy

Crawford, MRJ Technology Solutions, Fairfax VA

Your work is greatly appreciated and I thank you for helping me understand both

C++ and Java better. Barry Wallin, Math/Computer Science Teacher,

Rosemount High School, Rosemount, MN

I would like to thank you for your book “Thinking in C++” which is, with no

doubt, the best book I ever read about this subject. Riccardo Tarli - SW

Engineer - R&D TXT Ingegneria Informatica - Italy

I have been reading both of your books, Thinking In Java and Thinking In C++.

Each of these books is easily the best in its category. Ranakarprasad H. Tiwari,

Mumbai, India

… the “Debugging Hints” section is so valuable, I’m tempted to print it and keep
it with me at all times. I think this section should be a mandatory part of any

introductory class after the first one or two programming problems. Fred

Ballard, Synectics Inc.

Your book is really a treasure trove of C++ knowledge. I feel like you give a good

overview and then explain the nuts and bolts. Raymond Pickles, Antenna

Section, Radar Division, U.S. Naval Research Laboratory, Washington
DC

As an Internal Medicine Specialist and Computer Scientist I spend a great deal of
time trying to extract information from books and journals. My experience is that
a good author is one who makes difficult concepts accessible, a great one makes it
look almost easy. On this score you are certainly one of my top three technical

writers. Keep up the good work. Dr. Declan O’Kane, Leicester, England

For my second-level C++ course, “Thinking in C++” is my constant reference and
companion, and I urge my students to consult it regularly. I refer to the chapter
on Operator Overloading constantly. The examples/code alone are worth the cost
of the book many times over. So many books and development environments are
predicated on the assumption that the only application for a programming
language is for a Windows environment; it’s great to find and use a book which
concentrates on C++ so we can prepare our students for careers in fields like
embedded systems, networking, etc., which require real depth of understanding.
Robert Chase, Professor, Sweet Briar College

I think it’s a fantastic intro to C++, especially for longtime dabblers like me – I

often know “how,” but rarely “why,” and TIC2 is a godsend. Tony Likhite,

System Administrator/DBA, Together Networks

After reading the first 80 pages of this book, I have a better understanding of oop
then I've gotten out of the ton of books I've accumulated on the subject. Thanks...
Rick Schneewind

Thinking
In

C++
Second Edition

Bruce Eckel

President, MindView Inc.

Prentice Hall
Upper Saddle River, New Jersey 07458
http://www.prenhall.com

Publisher: Alan Apt
Production Editor: Scott Disanno
Executive Managing Editor: Vince O'Brien
Vice President and Editorial Director: Marcia Horton
Vice President of Production and Manufacturing: David W. Riccardi
Project Manager: Ana Terry
Book Design, Cover Design and Cover Line Art:
 Daniel Will-Harris, daniel@will-harris.com
Cover Watercolor: Bruce Eckel
Copy Editor: Stephanie English
Production Coordinator: Lori Bulwin
Editorial Assistant: Toni Holm
Marketing Managers: Jennie Burger, Bryan Gambrel

©2000 by Bruce Eckel, MindView, Inc.
Published by Prentice Hall Inc.
Pearson Higher Education
Upper Saddle River, New Jersey 07632

The information in this book is distributed on an “as is” basis, without warranty. While
every precaution has been taken in the preparation of this book, neither the author nor the
publisher shall have any liability to any person or entitle with respect to any liability, loss
or damage caused or alleged to be caused directly or indirectly by instructions contained in
this book or by the computer software or hardware products described herein.

All rights reserved. No part of this book may be reproduced in any form or by any
electronic or mechanical means including information storage and retrieval systems
without permission in writing from the publisher or author, except by a reviewer who may
quote brief passages in a review. Any of the names used in the examples and text of this
book are fictional; any relationship to persons living or dead or to fictional characters in
other works is purely coincidental.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-979809-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Public

C++ Seminars
Check www.BruceEckel.com
for in-depth details and the date
and location of the next:

Hands-On C++ Seminar
�� Based on this book

�� Get a solid grounding in Standard C++ fundamentals

�� Includes in-class programming exercises

�� Personal attention during exercises

Intermediate C++ Seminar
�� Based on Volume 2 of this book (downloadable at

www.BruceEckel.com)

�� In-depth coverage of the Standard C++ Library

�� Strings, containers, iterators, algorithms

�� In-depth templates & exception handling

Advanced C++ Topics
�� Based on advanced topics in Volume 2 of this book

�� Design patterns

�� Building robust systems

�� Creating testing & debugging frameworks

Subscribe to the free newsletter

to be automatically informed

of upcoming seminars

Also visit www.BrucEckel.com for:

��Consulting Services

��Exercise solutions for this book

Seminars-on-CD-ROM

If you like the Thinking in C

Seminar-on-CD packaged with

this book, then you’ll also like:

ruce Eckel’s
ands-On C++ Seminar

Multimedia CD ROM
t’s like coming to the seminar!

vailable at www.BruceEckel.com
Overhead slides and synchronized audio recorded by Bruce Eckel

All the lectures from the Hands-On C++ Seminar

Based on this book

Get a solid grounding in Standard C++ Fundamentals

Just play it to see and hear the lectures!

Lectures are indexed so you can rapidly locate the discussion
of any subject

Details and sample lecture can be found on the Web site

ee www.BruceEckel.com
or other Seminars-on-CD ROM

The Intermediate C++ Seminar
Advanced C++ Topics

Dedication

To my parents, my sister, and my brother

What’s inside...

Preface 1

What’s new in
the second edition 2

What’s in Volume 2
of this book......................... 3
How to get Volume 2............ 3

Prerequisites............ 3
Learning C++ 4
Goals 5
Chapters 7
Exercises............... 12

Exercise solutions12
Source code........... 12
Language
standards 14

Language support15
The book’s
CD ROM 15
CD ROMs, seminars,
and consulting 16
Errors 16
About the cover...... 17
Book design and
production............. 18
Acknowledgements . 19

1: Introduction to
Objects 21

The progress of
abstraction............. 22
An object has an
interface................ 25
The hidden
implementation 28
Reusing the
implementation 29
Inheritance: reusing
the interface 31

Is-a vs. is-like-a
relationships...................... 35

Interchangeable
objects with
polymorphism 37
Creating and
destroying objects... 41
Exception handling:
dealing with errors .. 43
Analysis
and design 44

Phase 0: Make a plan.......... 47
Phase 1: What are
we making?....................... 48
Phase 2: How will
we build it? 52
Phase 3: Build the core 56
Phase 4: Iterate
the use cases 57

Phase 5: Evolution58
Plans pay off60

Extreme
programming 61

Write tests first...................61
Pair programming63

Why C++
succeeds 64

A better C..........................65
You’re already on
the learning curve...............65
Efficiency...........................66
Systems are easier to
express and understand.......66
Maximal leverage
with libraries67
Source-code reuse
with templates67
Error handling67
Programming in the large.....68

Strategies for
transition............... 68

Guidelines..........................69
Management obstacles71

Summary 73

2: Making & Using
Objects 75

The process of
language
translation 76

Interpreters77
Compilers77
The compilation process.......79

Tools for separate
compilation............ 80

Declarations vs. definitions...81
Linking87
Using libraries88

Your first
C++ program 90

Using the iostreams class.....90
Namespaces.......................91
Fundamentals of
program structure...............93
"Hello, world!"94
Running the compiler95

More about
iostreams 96

Character array
concatenation 96
Reading input 97
Calling other programs........ 98

Introducing
strings................... 98
Reading and
writing files 100
Introducing
vector 102
Summary............. 108
Exercises 109

3: The C in C++ 111

Creating
functions 112

Function return values 115
Using the C
function library 116
Creating your own
libraries with the librarian.. 117

Controlling
execution............. 117

True and false 117
if-else............................. 118
while 119
do-while 120
for 121
The break and
continue keywords 122
switch............................. 123
Using and misusing goto ... 125
Recursion........................ 126

Introduction to
operators............. 127

Precedence...................... 127
Auto increment
and decrement 128

Introduction to
data types 129

Basic built-in types........... 129
bool, true, & false 131
Specifiers........................ 132
Introduction to pointers 133

Modifying the
outside object137
Introduction to
C++ references140
Pointers and references
as modifiers141

Scoping................143
Defining variables
on the fly.........................145

Specifying storage
allocation147

Global variables................147
Local variables149
static149
extern151
Constants153
volatile155

Operators and
their use156

Assignment......................156
Mathematical operators156
Relational operators158
Logical operators158
Bitwise operators159
Shift operators160
Unary operators................163
The ternary operator164
The comma operator165
Common pitfalls
when using operators166
Casting operators166
C++ explicit casts.............167
sizeof – an operator
by itself172
The asm keyword173
Explicit operators..............173

Composite type
creation174

Aliasing names
with typedef.....................174
Combining variables
with struct175
Clarifying programs
with enum179
Saving memory
with union181
Arrays182

Debugging hints193
Debugging flags................194
Turning variables and
expressions into strings196
The C assert() macro........197

Function
addresses 198

Defining a
function pointer 198
Complicated declarations
& definitions 199
Using a function pointer 200
Arrays of pointers
to functions 201

Make: managing
separate
compilation 202

Make activities................. 204
Makefiles in this book 207
An example makefile 208

Summary............. 210
Exercises 210

4: Data Abstraction 217

A tiny C-like
library 219

Dynamic
storage allocation............. 223
Bad guesses 227

What's wrong?...... 229
The basic object.... 230
What's an object? . 238
Abstract
data typing 239
Object details 240
Header file
etiquette.............. 241

Importance of
header files 242
The multiple-declaration
problem.......................... 244
The preprocessor directives
#define, #ifdef,
and #endif 245
A standard for header files 246
Namespaces in headers 247
Using headers in projects .. 248

Nested structures.. 248
Global scope resolution 253

Summary............. 253

Exercises..............254

5: Hiding the
Implementation 259

Setting limits260
C++ access
control261

protected.........................263
Friends.................263

Nested friends266
Is it pure?........................269

Object layout269
The class..............270

Modifying Stash to use
access control273
Modifying Stack to use
access control274

Handle classes275
Hiding the
implementation276
Reducing recompilation......276

Summary279
Exercises..............280

6: Initialization &
Cleanup 283

Guaranteed
initialization with the
constructor285
Guaranteed cleanup
with the
destructor287
Elimination of the
definition block......289

for loops..........................291
Storage allocation292

Stash with
constructors and
destructors294
Stack with constructors
& destructors298

Aggregate
initialization 301
Default
constructors 304
Summary............. 305
Exercises 306

7: Function Overloading
& Default
Arguments 309

More name
decoration 311

Overloading on
return values................... 312
Type-safe linkage............. 313

Overloading
example 314
unions................. 318
Default
arguments 321

Placeholder arguments...... 323
Choosing overloading
vs. default
arguments 324
Summary............. 329
Exercises 330

8: Constants 333

Value substitution . 334
const in header files 335
Safety consts................... 336
Aggregates...................... 337
Differences with C 338

Pointers............... 340
Pointer to const 340
const pointer 341
Assignment and
type checking 343

Function arguments &
return values........ 344

Passing by const value...... 344

Returning by const value ...345
Passing and returning
addresses349

Classes352
const in classes353
Compile-time constants
in classes.........................356
const objects &
member functions.............359

volatile.................365
Summary367
Exercises..............367

9: Inline Functions 371

Preprocessor
pitfalls372

Macros and access376
Inline functions377

Inlines inside classes378
Access functions379

Stash & Stack
with inlines385
Inlines &
the compiler390

Limitations.......................390
Forward references391
Hidden activities in
constructors &
destructors392

Reducing clutter393
More preprocessor
features395

Token pasting396
Improved error
checking396
Summary400
Exercises..............400

10: Name Control 405

Static elements
from C406

static variables
inside functions406
Controlling linkage412

Other storage
class specifiers................. 414

Namespaces......... 414
Creating a namespace 415
Using a namespace 417
The use of namespaces..... 422

Static members
in C++ 423

Defining storage for
static data members......... 424
Nested and local classes.... 428
static member functions.... 429

Static initialization
dependency 432

What to do 434
Alternate linkage
specifications........ 442
Summary............. 443
Exercises 443

11: References & the
Copy-Constructor 449

Pointers in C++ 450
References
in C++ 451

References in functions 452
Argument-passing
guidelines 455

The copy-
constructor 455

Passing & returning
by value.......................... 455
Copy-construction 462
Default copy-constructor ... 468
Alternatives to copy-
construction 471

Pointers
to members 473

Functions 475
Summary............. 478
Exercises 479

12: Operator
Overloading 485

Warning &
reassurance486
Syntax487
Overloadable
operators488

Unary operators................489
Binary operators493
Arguments &
return values....................505
Unusual operators.............508
Operators you
can’t overload517

Non-member
operators518

Basic guidelines520
Overloading
assignment...........521

Behavior of operator=522
Automatic type
conversion............533

Constructor conversion534
Operator conversion..........535
Type conversion example...538
Pitfalls in automatic
type conversion539

Summary542
Exercises..............542

13: Dynamic
Object Creation 547

Object creation......549
C’s approach to the heap ...550
operator new....................552
operator delete.................553
A simple example553
Memory manager
overhead554

Early examples
redesigned555

delete void* is
probably a bug555
Cleanup responsibility
with pointers557

Stash for pointers 558
new & delete
for arrays............. 563

Making a pointer
more like an array............ 564

Running out
of storage 565
Overloading
new & delete 566

Overloading global
new & delete 568
Overloading
new & delete for a class 570
Overloading
new & delete for arrays..... 573
Constructor calls 576
placement new & delete 577

Summary............. 580
Exercises 580

14: Inheritance &
Composition 583

Composition
syntax................. 584
Inheritance
syntax................. 586
The constructor
initializer list 588

Member object
initialization..................... 589
Built-in types in the
initializer list.................... 589

Combining composition
& inheritance........ 591

Order of constructor &
destructor calls 592

Name hiding......... 595
Functions that
don’t automatically
inherit 600

Inheritance and static
member functions 604

Choosing composition
vs. inheritance604

Subtyping606
private inheritance609

protected610
protected inheritance611

Operator overloading
& inheritance612
Multiple
inheritance613
Incremental
development.........614
Upcasting615

Why “upcasting?”..............617
Upcasting and the
copy-constructor...............617
Composition vs.
inheritance (revisited)620
Pointer & reference
upcasting.........................622
A crisis622

Summary623
Exercises..............623

15: Polymorphism &
Virtual Functions 627

Evolution of C++
programmers628
Upcasting629
The problem631

Function call binding631
virtual functions632

Extensibility633
How C++ implements
late binding636

Storing type information637
Picturing virtual functions...639
Under the hood642
Installing the vpointer643
Objects are different644

Why virtual
functions?.............645

Abstract base classes
and pure virtual
functions 646

Pure virtual definitions 651
Inheritance and
the VTABLE 652

Object slicing................... 655
Overloading &
overriding 658

Variant return type........... 660
virtual functions &
constructors 662

Order of constructor calls .. 663
Behavior of virtual functions
inside constructors 664

Destructors and
virtual destructors. 665

Pure virtual destructors..... 668
Virtuals in destructors....... 670
Creating an
object-based hierarchy 671

Operator
overloading 675
Downcasting 678
Summary............. 681
Exercises 682

16: Introduction to
Templates 689

Containers 690
The need for containers 692

Overview
of templates......... 693

The template solution 696
Template syntax ... 697

Non-inline
function definitions 699
IntStack as a template...... 701
Constants in templates 703

Stack and Stash
as templates 705

Templatized pointer Stash . 707
Turning ownership

on and off.............713
Holding objects
by value716
Introducing
iterators719

Stack with iterators...........728
PStash with iterators732

Why iterators?738
Function templates............742

Summary743
Exercises..............744

A: Coding Style 747

B: Programming
Guidelines 759

C: Recommended
Reading 775

C.........................776
General C++.........776

My own list of books..........777
Depth &
dark corners778
Analysis & design ..779

Index 783

Preface
Like any human language, C++ provides a way to

express concepts. If successful, this medium of

expression will be significantly easier and more flexible

than the alternatives as problems grow larger and more

complex.

2 Thinking in C++ www.BruceEckel.com

You can’t just look at C++ as a collection of features; some of the
features make no sense in isolation. You can only use the sum of the
parts if you are thinking about design, not simply coding. And to
understand C++ this way, you must understand the problems with
C and with programming in general. This book discusses
programming problems, why they are problems, and the approach
C++ has taken to solve such problems. Thus, the set of features I
explain in each chapter will be based on the way that I see a
particular type of problem being solved with the language. In this
way I hope to move you, a little at a time, from understanding C to
the point where the C++ mindset becomes your native tongue.

Throughout, I’ll be taking the attitude that you want to build a
model in your head that allows you to understand the language all
the way down to the bare metal; if you encounter a puzzle, you’ll be
able to feed it to your model and deduce the answer. I will try to
convey to you the insights that have rearranged my brain to make
me start “thinking in C++.”

What’s new in the second edition
This book is a thorough rewrite of the first edition to reflect all of
the changes introduced in C++ by the finalization of the C++
Standard, and also to reflect what I’ve learned since writing the first
edition. The entire text present in the first edition has been
examined and rewritten, sometimes removing old examples, often
changing existing examples and adding new ones, and adding many
new exercises. Significant rearrangement and re-ordering of the
material took place to reflect the availability of better tools and my
improved understanding of how people learn C++. A new chapter
was added which is a rapid introduction to the C concepts and basic
C++ features for those who don’t have the C background to tackle
the rest of the book. The CD ROM bound into the back of the book
contains a seminar that is an even gentler introduction to the C
concepts necessary to understand C++ (or Java). It was created by
Chuck Allison for my company (MindView, Inc.), and it’s called
“Thinking in C: Foundations for Java and C++.” It introduces you to
the aspects of C that are necessary for you to move on to C++ or
Java, leaving out the nasty bits that C programmers must deal with

Preface 3

on a day-to-day basis but that the C++ and Java languages steer you
away from (or even eliminate, in the case of Java).

So the short answer to the question “what’s different in the 2nd
edition?” is: what isn’t brand new has been rewritten, sometimes to
the point where you wouldn’t recognize the original examples and
material.

What’s in Volume 2 of this book
The completion of the C++ Standard also added a number of
important new libraries, such as string and the containers and
algorithms in the Standard C++ Library, as well as new complexity
in templates. These and other more advanced topics have been
relegated to Volume 2 of this book, including issues such as
multiple inheritance, exception handling, design patterns, and
topics about building and debugging stable systems.

How to get Volume 2
Just like the book you currently hold, Thinking in C++, Volume 2 is
downloadable in its entirety from my Web site at
www.BruceEckel.com. You can find information on the Web site
about the expected print date of Volume 2.

The Web site also contains the source code for both of the books,
along with updates and information about other seminars-on-CD
ROM that MindView, Inc. offers, public seminars, and in-house
training, consulting, mentoring, and walkthroughs.

Prerequisites
In the first edition of this book, I decided to assume that someone
else had taught you C and that you have at least a reading level of
comfort with it. My primary focus was on simplifying what I found
difficult: the C++ language. In this edition I have added a chapter
that is a rapid introduction to C, along with the Thinking in C
seminar-on-CD, but I am still assuming that you already have some
kind of programming experience. In addition, just as you learn

4 Thinking in C++ www.BruceEckel.com

many new words intuitively by seeing them in context in a novel, it’s
possible to learn a great deal about C from the context in which it is
used in the rest of the book.

Learning C++
I clawed my way into C++ from exactly the same position I expect
many of the readers of this book are in: as a programmer with a
very no-nonsense, nuts-and-bolts attitude about programming.
Worse, my background and experience was in hardware-level
embedded programming, in which C has often been considered a
high-level language and an inefficient overkill for pushing bits
around. I discovered later that I wasn’t even a very good C
programmer, hiding my ignorance of structures, malloc() and
free(), setjmp() and longjmp(), and other “sophisticated”
concepts, scuttling away in shame when the subjects came up in
conversation instead of reaching out for new knowledge.

When I began my struggle to understand C++, the only decent book
was Bjarne Stroustrup’s self-professed “expert’s guide,1” so I was
left to simplify the basic concepts on my own. This resulted in my
first C++ book,2 which was essentially a brain dump of my
experience. That was designed as a reader’s guide to bring
programmers into C and C++ at the same time. Both editions3 of
the book garnered enthusiastic response.

At about the same time that Using C++ came out, I began teaching
the language in seminars and presentations. Teaching C++ (and
later, Java) became my profession; I’ve seen nodding heads, blank
faces, and puzzled expressions in audiences all over the world since
1989. As I began giving in-house training to smaller groups of
people, I discovered something during the exercises. Even those
people who were smiling and nodding were confused about many

1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first
edition).
2 Using C++, Osborne/McGraw-Hill 1989.
3 Using C++ and C++ Inside & Out, Osborne/McGraw-Hill 1993.

Preface 5

issues. I found out, by creating and chairing the C++ and Java
tracks at the Software Development Conference for many years,
that I and other speakers tended to give the typical audience too
many topics, too fast. So eventually, through both variety in the
audience level and the way that I presented the material, I would
end up losing some portion of the audience. Maybe it’s asking too
much, but because I am one of those people resistant to traditional
lecturing (and for most people, I believe, such resistance results
from boredom), I wanted to try to keep everyone up to speed.

For a time, I was creating a number of different presentations in
fairly short order. Thus, I ended up learning by experiment and
iteration (a technique that also works well in C++ program design).
Eventually I developed a course using everything I had learned
from my teaching experience. It tackles the learning problem in
discrete, easy-to-digest steps and for a hands-on seminar (the ideal
learning situation) there are exercises following each of the
presentations. You can find out about my public seminars at
www.BruceEckel.com, and you can also learn about the seminars
that I’ve turned into CD ROMs.

The first edition of this book developed over the course of two years,
and the material in this book has been road-tested in many forms in
many different seminars. The feedback that I’ve gotten from each
seminar has helped me change and refocus the material until I feel
it works well as a teaching medium. But it isn’t just a seminar
handout; I tried to pack as much information as I could within
these pages, and structure it to draw you through onto the next
subject. More than anything, the book is designed to serve the
solitary reader who is struggling with a new programming language.

Goals
My goals in this book are to:

1. Present the material one simple step at a time, so the reader
can easily digest each concept before moving on.

6 Thinking in C++ www.BruceEckel.com

2. Use examples that are as simple and short as possible. This
often prevents me from tackling “real world” problems, but
I’ve found that beginners are usually happier when they can
understand every detail of an example rather than being
impressed by the scope of the problem it solves. Also, there’s
a severe limit to the amount of code that can be absorbed in a
classroom situation. For this I sometimes receive criticism for
using “toy examples,” but I’m willing to accept that in favor of
producing something pedagogically useful.

3. Carefully sequence the presentation of features so that you
aren’t seeing something you haven’t been exposed to. Of
course, this isn’t always possible; in those situations, a brief
introductory description will be given.

4. Give you what I think is important for you to understand
about the language, rather than everything that I know. I
believe there is an “information importance hierarchy,” and
there are some facts that 95 percent of programmers will
never need to know and that would just confuse them and
add to their perception of the complexity of the language. To
take an example from C, if you memorize the operator
precedence table (I never did), you can write clever code. But
if you have to think about it, it will confuse the
reader/maintainer of that code. So forget about precedence,
and use parentheses when things aren’t clear. This same
attitude will be taken with some information in the C++
language, which I think is more important for compiler
writers than for programmers.

5. Keep each section focused enough so the lecture time – and
the time between exercise periods – is reasonable. Not only
does this keep the audience’s minds more active and involved
during a hands-on seminar, it gives the reader a greater sense
of accomplishment.

6. Provide readers with a solid foundation so they can
understand the issues well enough to move on to more
difficult coursework and books (in particular, Volume 2 of
this book).

Preface 7

7. I’ve tried not to use any particular vendor’s version of C++
because, for learning the language, I don’t think that the
details of a particular implementation are as important as the
language itself. Most vendors’ documentation concerning
their own implementation specifics is adequate.

Chapters
C++ is a language in which new and different features are built on
top of an existing syntax. (Because of this, it is referred to as a
hybrid object-oriented programming language.) As more people
pass through the learning curve, we’ve begun to get a feel for the
way programmers move through the stages of the C++ language
features. Because it appears to be the natural progression of the
procedurally-trained mind, I decided to understand and follow this
same path and accelerate the process by posing and answering the
questions that came to me as I learned the language and those
questions that came from audiences as I taught the language.

This course was designed with one thing in mind: to streamline the
process of learning C++. Audience feedback helped me understand
which parts were difficult and needed extra illumination. In the
areas in which I got ambitious and included too many features all at
once, I came to know – through the process of presenting the
material – that if you include a lot of new features, you have to
explain them all, and the student’s confusion is easily compounded.
As a result, I’ve taken a great deal of trouble to introduce the
features as few at a time as possible; ideally, only one major concept
at a time per chapter.

The goal, then, is for each chapter to teach a single concept, or a
small group of associated concepts, in such a way that no additional
features are relied upon. That way you can digest each piece in the
context of your current knowledge before moving on. To accomplish
this, I leave some C features in place for longer than I would prefer.
The benefit is that you will not be confused by seeing all the C++
features used before they are explained, so your introduction to the
language will be gentle and will mirror the way you will assimilate
the features if left to your own devices.

8 Thinking in C++ www.BruceEckel.com

Here is a brief description of the chapters contained in this book:

Chapter 1: Introduction to Objects. When projects became too
big and complicated to easily maintain, the “software crisis” was
born, with programmers saying, “We can’t get projects done, and if
we can, they’re too expensive!” This precipitated a number of
responses, which are discussed in this chapter along with the ideas
of object-oriented programming (OOP) and how it attempts to solve
the software crisis. The chapter walks you through the basic
concepts and features of OOP and also introduces the analysis and
design process. In addition, you’ll learn about the benefits and
concerns of adopting the language and suggestions for moving into
the world of C++.

Chapter 2: Making and Using Objects. This chapter explains
the process of building programs using compilers and libraries. It
introduces the first C++ program in the book and shows how
programs are constructed and compiled. Then some of the basic
libraries of objects available in Standard C++ are introduced. By the
time you finish this chapter you’ll have a good grasp of what it
means to write a C++ program using off-the-shelf object libraries.

Chapter 3: The C in C++. This chapter is a dense overview of the
features in C that are used in C++, as well as a number of basic
features that are available only in C++. It also introduces the
“make” utility that’s common in the software development world
and that is used to build all the examples in this book (the source
code for the book, which is available at www.BruceEckel.com,
contains makefiles for each chapter). Chapter 3 assumes that you
have a solid grounding in some procedural programming language
like Pascal, C, or even some flavors of Basic (as long as you’ve
written plenty of code in that language, especially functions). If you
find this chapter a bit too much, you should first go through the
Thinking in C seminar on the CD that’s bound with this book (and
also available at www.BruceEckel.com).

Chapter 4: Data Abstraction. Most features in C++ revolve
around the ability to create new data types. Not only does this
provide superior code organization, but it lays the groundwork for
more powerful OOP abilities. You’ll see how this idea is facilitated

Preface 9

by the simple act of putting functions inside structures, the details
of how to do it, and what kind of code it creates. You’ll also learn the
best way to organize your code into header files and
implementation files.

Chapter 5: Hiding the Implementation. You can decide that
some of the data and functions in your structure are unavailable to
the user of the new type by making them private. This means that
you can separate the underlying implementation from the interface
that the client programmer sees, and thus allow that
implementation to be easily changed without affecting client code.
The keyword class is also introduced as a fancier way to describe a
new data type, and the meaning of the word “object” is demystified
(it’s a fancy variable).

Chapter 6: Initialization and Cleanup. One of the most
common C errors results from uninitialized variables. The
constructor in C++ allows you to guarantee that variables of your
new data type (“objects of your class”) will always be initialized
properly. If your objects also require some sort of cleanup, you can
guarantee that this cleanup will always happen with the C++
destructor.

Chapter 7: Function Overloading and Default Arguments.
C++ is intended to help you build big, complex projects. While
doing this, you may bring in multiple libraries that use the same
function name, and you may also choose to use the same name with
different meanings within a single library. C++ makes this easy with
function overloading, which allows you to reuse the same function
name as long as the argument lists are different. Default arguments
allow you to call the same function in different ways by
automatically providing default values for some of your arguments.

Chapter 8: Constants. This chapter covers the const and
volatile keywords, which have additional meaning in C++,
especially inside classes. You’ll learn what it means to apply const
to a pointer definition. The chapter also shows how the meaning of
const varies when used inside and outside of classes and how to
create compile-time constants inside classes.

10 Thinking in C++ www.BruceEckel.com

Chapter 9: Inline Functions. Preprocessor macros eliminate
function call overhead, but the preprocessor also eliminates
valuable C++ type checking. The inline function gives you all the
benefits of a preprocessor macro plus all of the benefits of a real
function call. This chapter thoroughly explores the implementation
and use of inline functions.

Chapter 10: Name Control. Creating names is a fundamental
activity in programming, and when a project gets large, the number
of names can be overwhelming. C++ allows you a great deal of
control over names in terms of their creation, visibility, placement
of storage, and linkage. This chapter shows how names are
controlled in C++ using two techniques. First, the static keyword is
used to control visibility and linkage, and its special meaning with
classes is explored. A far more useful technique for controlling
names at the global scope is C++’s namespace feature, which
allows you to break up the global name space into distinct regions.

Chapter 11: References and the Copy-Constructor. C++
pointers work like C pointers with the additional benefit of stronger
C++ type checking. C++ also provides an additional way to handle
addresses: from Algol and Pascal, C++ lifts the reference, which lets
the compiler handle the address manipulation while you use
ordinary notation. You’ll also meet the copy-constructor, which
controls the way objects are passed into and out of functions by
value. Finally, the C++ pointer-to-member is illuminated.

Chapter 12: Operator Overloading. This feature is sometimes
called “syntactic sugar;” it lets you sweeten the syntax for using
your type by allowing operators as well as function calls. In this
chapter you’ll learn that operator overloading is just a different type
of function call and you’ll learn how to write your own, dealing with
the sometimes-confusing uses of arguments, return types, and the
decision of whether to make an operator a member or friend.

Chapter 13: Dynamic Object Creation. How many planes will
an air-traffic system need to manage? How many shapes will a CAD
system require? In the general programming problem, you can’t
know the quantity, lifetime, or type of objects needed by your
running program. In this chapter, you’ll learn how C++’s new and

Preface 11

delete elegantly solve this problem by safely creating objects on the
heap. You’ll also see how new and delete can be overloaded in a
variety of ways so you can control how storage is allocated and
released.

Chapter 14: Inheritance and Composition. Data abstraction
allows you to create new types from scratch, but with composition
and inheritance, you can create new types from existing types. With
composition, you assemble a new type using other types as pieces,
and with inheritance, you create a more specific version of an
existing type. In this chapter you’ll learn the syntax, how to redefine
functions, and the importance of construction and destruction for
inheritance and composition.

Chapter 15: Polymorphism and virtual Functions. On your
own, you might take nine months to discover and understand this
cornerstone of OOP. Through small, simple examples, you’ll see
how to create a family of types with inheritance and manipulate
objects in that family through their common base class. The virtual
keyword allows you to treat all objects in this family generically,
which means that the bulk of your code doesn’t rely on specific type
information. This makes your programs extensible, so building
programs and code maintenance is easier and cheaper.

Chapter 16: Introduction to Templates. Inheritance and
composition allow you to reuse object code, but that doesn’t solve
all of your reuse needs. Templates allow you to reuse source code by
providing the compiler with a way to substitute type names in the
body of a class or function. This supports the use of container class
libraries, which are important tools for the rapid, robust
development of object-oriented programs (the Standard C++
Library includes a significant library of container classes). This
chapter gives you a thorough grounding in this essential subject.

Additional topics (and more advanced subjects) are available in
Volume 2 of this book, which can be downloaded from the Web site
www.BruceEckel.com.

12 Thinking in C++ www.BruceEckel.com

Exercises
I’ve discovered that exercises are exceptionally useful during a
seminar to complete a student’s understanding, so you’ll find a set
at the end of each chapter. The number of exercises has been greatly
increased over the number in the first edition.

Many of the exercises are fairly simple so that they can be finished
in a reasonable amount of time in a classroom situation or lab
section while the instructor observes, making sure all students are
absorbing the material. Some exercises are a bit more challenging
to keep advanced students entertained. The bulk of the exercises are
designed to be solved in a short time and are intended only to test
and polish your knowledge rather than present major challenges
(presumably, you’ll find those on your own – or more likely, they’ll
find you).

Exercise solutions
Solutions to selected exercises can be found in the electronic
document The Thinking in C++ Annotated Solution Guide,
available for a small fee from www.BruceEckel.com.

Source code
The source code for this book is copyrighted freeware, distributed
via the Web site www.BruceEckel.com. The copyright prevents you
from republishing the code in print media without permission, but
you are granted the right to use it in many other situations (see
below).

The code is available in a zipped file, designed to be extracted for
any platform that has a “zip” utility (most do; you can search the
Internet to find a version for your platform if you don’t already have
one installed). In the starting directory where you unpacked the
code you will find the following copyright notice:

//:! :Copyright.txt

Copyright (c) 2000, Bruce Eckel

Source code file from the book "Thinking in C++"

Preface 13

All rights reserved EXCEPT as allowed by the

following statements: You can freely use this file

for your own work (personal or commercial),

including modifications and distribution in

executable form only. Permission is granted to use

this file in classroom situations, including its

use in presentation materials, as long as the book

"Thinking in C++" is cited as the source.

Except in classroom situations, you cannot copy

and distribute this code; instead, the sole

distribution point is http://www.BruceEckel.com

(and official mirror sites) where it is

available for free. You cannot remove this

copyright and notice. You cannot distribute

modified versions of the source code in this

package. You cannot use this file in printed

media without the express permission of the

author. Bruce Eckel makes no representation about

the suitability of this software for any purpose.

It is provided "as is" without express or implied

warranty of any kind, including any implied

warranty of merchantability, fitness for a

particular purpose, or non-infringement. The entire

risk as to the quality and performance of the

software is with you. Bruce Eckel and the

publisher shall not be liable for any damages

suffered by you or any third party as a result of

using or distributing this software. In no event

will Bruce Eckel or the publisher be liable for

any lost revenue, profit, or data, or for direct,

indirect, special, consequential, incidental, or

punitive damages, however caused and regardless of

the theory of liability, arising out of the use of

or inability to use software, even if Bruce Eckel

and the publisher have been advised of the

possibility of such damages. Should the software

prove defective, you assume the cost of all

necessary servicing, repair, or correction. If you

think you've found an error, please submit the

correction using the form you will find at

www.BruceEckel.com. (Please use the same

form for non-code errors found in the book.)

///:~

14 Thinking in C++ www.BruceEckel.com

You may use the code in your projects and in the classroom as long
as the copyright notice is retained.

Language standards
Throughout this book, when referring to conformance to the ISO C
standard, I will generally just say ‘C.’ Only if it is necessary to
distinguish between Standard C and older, pre-Standard versions of
C will I make a distinction.

At this writing the C++ Standards Committee was finished working
on the language. Thus, I will use the term Standard C++ to refer to
the standardized language. If I simply refer to C++ you should
assume I mean “Standard C++.”

There is some confusion over the actual name of the C++ Standards
Committee and the name of the standard itself. Steve Clamage, the
committee chair, clarified this:

There are two C++ standardization committees: The NCITS
(formerly X3) J16 committee and the ISO JTC1/SC22/WG14
committee. ANSI charters NCITS to create technical
committees for developing American national standards.

J16 was chartered in 1989 to create an American standard for
C++. In about 1991 WG14 was chartered to create an
international standard. The J16 project was converted to a
"Type I" (International) project and subordinated to the ISO
standardization effort.

The two committees meet at the same time at the same location,
and the J16 vote constitutes the American vote on WG14. WG14
delegates technical work to J16. WG14 votes on the technical
work of J16.

The C++ standard was originally created as an ISO standard.
ANSI later voted (as recommended by J16) to adopt the ISO
C++ standard as the American standard for C++.

Preface 15

Thus, ‘ISO’ is the correct way to refer to the C++ Standard.

Language support
Your compiler may not support all of the features discussed in this
book, especially if you don’t have the newest version of the
compiler. Implementing a language like C++ is a Herculean task,
and you can expect that the features will appear in pieces rather
than all at once. But if you attempt one of the examples in the book
and get a lot of errors from the compiler, it’s not necessarily a bug
in the code or the compiler; it may simply not be implemented in
your particular compiler yet.

The book’s CD ROM
The primary content of the CD ROM packaged in the back of this
book is a “seminar on CD ROM” titled Thinking in C: Foundations
for Java & C++ by Chuck Allison (published by MindView, Inc.,
and also available in quantities at www.BruceEckel.com). This
contains many hours of audio lectures and slides, and can be viewed
on most computers if you have a CD ROM player and a sound
system.

The goal of Thinking in C is to take you carefully through the
fundamentals of the C language. It focuses on the knowledge
necessary for you to be able to move on to the C++ or Java
languages instead of trying to make you an expert in all the dark
corners of C. (One of the reasons for using a higher-level language
like C++ or Java is precisely so we can avoid many of these dark
corners.) It also contains exercises and guided solutions. Keep in
mind that because Chapter 3 of this book goes beyond the Thinking
in C CD, the CD is not a replacement for that chapter, but should be
used instead as a preparation for this book.

Please note that the CD ROM is browser-based, so you should have
a Web browser installed on your machine before using it.

16 Thinking in C++ www.BruceEckel.com

CD ROMs, seminars,

and consulting
There are seminars-on-CD-ROM planned to cover Volume 1 and
Volume 2 of this book. These comprise many hours of audio
lectures by me that accompany slides that cover selected material
from each chapter in the book. They can be viewed on most
computers if you have a CD ROM player and a sound system. These
CDs may be purchased at www.BruceEckel.com, where you will
find more information and sample lectures.

My company, MindView, Inc., provides public hands-on training
seminars based on the material in this book and also on advanced
topics. Selected material from each chapter represents a lesson,
which is followed by a monitored exercise period so each student
receives personal attention. We also provide on-site training,
consulting, mentoring, and design and code walkthroughs.
Information and sign-up forms for upcoming seminars and other
contact information can be found at www.BruceEckel.com.

I am sometimes available for design consulting, project evaluation
and code walkthroughs. When I first began writing about
computers, my primary motivation was to increase my consulting
activities, because I find consulting to be challenging, educational,
and one of my most enjoyable experiences, professionally. Thus I
will try my best to fit you into my schedule, or to provide you with
one of my associates (who are people that I know well and trust,
and often people who co-develop and teach seminars with me).

Errors
No matter how many tricks a writer uses to detect errors, some
always creep in and these often leap off the page to a fresh reader. If
you discover anything you believe to be an error, please use the
correction form you will find at www.BruceEckel.com. Your help is
appreciated.

Preface 17

About the cover
The first edition of this book had my face on the cover, but I
originally wanted a cover for the second edition that was more of a
work of art like the Thinking in Java cover. For some reason, C++
seems to me to suggest Art Deco with its simple curves and brushed
chrome. I had in mind something like those posters of ships and
airplanes with the long sweeping bodies.

My friend Daniel Will-Harris, (www.Will-Harris.com) whom I first
met in junior high school choir class, went on to become a world-
class designer and writer. He has done virtually all of my designs,
including the cover for the first edition of this book. During the
cover design process, Daniel, unsatisfied with the progress we were
making, kept asking “How does this relate people to computers?”
We were stuck.

On a whim, with no particular outcome in mind, he asked me to put
my face on the scanner. Daniel had one of his graphics programs
(Corel Xara, his favorite) “autotrace” the scan of my face. As he
describes it, “Autotracing is the computer's way to turn a picture
into the kinds of lines and curves it really likes.” Then he played
with it until he had something that looked like a topographic map of
my face, an image that might be the way a computer could see
people.

I took this image and photocopied it onto watercolor paper (some
color copiers can handle thick stock), and then started creating lots
of experiments by adding watercolor to the image. We selected the
ones we liked best, then Daniel scanned them back in and arranged
them into the cover, adding the text and other design elements. The
whole process happened over several months, mostly because of the
time it took me to do the watercolors. But I’ve especially enjoyed it
because I got to participate in the art on the cover, and because it
gave me incentive to do more watercolors (what they say about
practice really is true).

18 Thinking in C++ www.BruceEckel.com

Book design and production
The book’s interior design was created by Daniel Will-Harris, who
used to play with rub-on letters in junior high school while he
awaited the invention of computers and desktop publishing.
However, I produced the camera-ready pages myself, so the
typesetting errors are mine. Microsoft® Word for Windows
Versions 8 and 9 were used to write the book and to create camera-
ready pages, including generating the table of contents and index. (I
created a COM automation server in Python, called from Word VBA
macros, to aid me in index marking.) Python (see
www.Python.org) was used to create some of the tools for checking
the code, and would have been use for the code extraction tool had I
discovered it earlier.

I created the diagrams using Visio® – thanks to Visio Corporation
for creating a useful tool.

The body typeface is Georgia and the headlines are in Verdana. The
final camera-ready version was produced in Adobe® Acrobat 4 and
taken directly to press from that file – thanks very much to Adobe
for creating a tool that allows e-mailing camera-ready documents,
as it enables multiple revisions to be made in a single day rather
than relying on my laser printer and overnight express services.
(We first tried the Acrobat process with Thinking in Java, and I was
able to upload the final version of that book to the printer in the
U.S. from South Africa.)

The HTML version was created by exporting the Word document to
RTF, then using RTF2HTML (see
http://www.sunpack.com/RTF/) to do most of the work of the
HTML conversion. (Thanks to Chris Hector for making such a
useful, and especially reliable, tool.) The resulting files were cleaned
up using a custom Python program that I hacked together, and the
WMFs were converted to GIFs using JASC® PaintShop Pro 6 and its
batch conversion tool (thanks to JASC for solving so many
problems for me with their excellent product). The color syntax
highlighting was added via a Perl script kindly contributed by Zafir
Anjum.

Preface 19

Acknowledgements
First, thanks to everyone on the Internet who submitted corrections
and suggestions; you’ve been tremendously helpful in improving
the quality of this book, and I couldn’t have done it without you.
Special thanks to John Cook.

The ideas and understanding in this book have come from many
sources: friends like Chuck Allison, Andrea Provaglio, Dan Saks,
Scott Meyers, Charles Petzold, and Michael Wilk; pioneers of the
language like Bjarne Stroustrup, Andrew Koenig, and Rob Murray;
members of the C++ Standards Committee like Nathan Myers (who
was particularly helpful and generous with his insights), Bill
Plauger, Reg Charney, Tom Penello, Tom Plum, Sam Druker, and
Uwe Steinmueller; people who have spoken in my C++ track at the
Software Development Conference; and often students in my
seminars, who ask the questions I need to hear in order to make the
material more clear.

A huge thank-you to my friend Gen Kiyooka, whose company
Digigami has provided me with a web server.

My friend Richard Hale Shaw and I have taught C++ together;
Richard’s insights and support have been very helpful (and Kim’s,
too). Thanks also to KoAnn Vikoren, Eric Faurot, Jennifer Jessup,
Tara Arrowood, Marco Pardi, Nicole Freeman, Barbara Hanscome,
Regina Ridley, Alex Dunne, and the rest of the cast and crew at
MFI.

A special thanks to all my teachers and all my students (who are my
teachers as well).

And for favorite writers, my deep appreciation and sympathy for
your efforts: John Irving, Neal Stephenson, Robertson Davies (we
shall miss you), Tom Robbins, William Gibson, Richard Bach,
Carlos Castaneda, and Gene Wolfe.

To Guido van Rossum, for inventing Python and giving it selflessly
to the world. You have enriched my life with your contribution.

20 Thinking in C++ www.BruceEckel.com

Thanks to the people at Prentice Hall: Alan Apt, Ana Terry, Scott
Disanno, Toni Holm, and my electronic copy-editor Stephanie
English. In marketing, Bryan Gambrel and Jennie Burger.

Sonda Donovan helped with the production of the CD Rom. Daniel
Will-Harris (of course) created the silkscreen design that’s on the
Disc itself.

To all the great folks in Crested Butte, thanks for making it a
magical place, especially Al Smith (creator of the wonderful Camp4
Coffee Garden), my neighbors Dave & Erika, Marsha at Heg’s Place
bookstore, Pat & John at the Teocalli Tamale, Sam at the Bakery
Café, and Tiller for his help with audio research. And to all the
terrific people that hang out at Camp4 in and make my mornings
interesting.

The supporting cast of friends includes, but is not limited to, Zack
Urlocker, Andrew Binstock, Neil Rubenking, Kraig Brockschmidt,
Steve Sinofsky, JD Hildebrandt, Brian McElhinney, Brinkley Barr,
Larry O’Brien, Bill Gates at Midnight Engineering Magazine, Larry
Constantine, Lucy Lockwood, Tom Keffer, Dan Putterman, Gene
Wang, Dave Mayer, David Intersimone, Claire Sawyers, the Italians
(Andrea Provaglio, Rossella Gioia, Laura Fallai, Marco & Lella
Cantu, Corrado, Ilsa and Christina Giustozzi), Chris and Laura
Strand (and Parker), the Almquists, Brad Jerbic, Marilyn Cvitanic,
the Mabrys, the Haflingers, the Pollocks, Peter Vinci, the Robbins,
the Moelters, Dave Stoner, Laurie Adams, the Cranstons, Larry
Fogg, Mike and Karen Sequeira, Gary Entsminger and Allison
Brody, Kevin, Sonda, & Ella Donovan, Chester and Shannon
Andersen, Joe Lordi, Dave and Brenda Bartlett, the Rentschlers,
Lynn and Todd, and their families. And of course, Mom and Dad.

 21

1: Introduction to Objects
The genesis of the computer revolution was in a

machine. The genesis of our programming languages

thus tends to look like that machine.

22 Thinking in C++ www.BruceEckel.com

But computers are not so much machines as they are mind
amplification tools (“bicycles for the mind,” as Steve Jobs is fond of
saying) and a different kind of expressive medium. As a result, the
tools are beginning to look less like machines and more like parts of
our minds, and also like other expressive mediums such as writing,
painting, sculpture, animation, and filmmaking. Object-oriented
programming is part of this movement toward using the computer
as an expressive medium.

This chapter will introduce you to the basic concepts of object-
oriented programming (OOP), including an overview of OOP
development methods. This chapter, and this book, assume that
you have had experience in a procedural programming language,
although not necessarily C. If you think you need more preparation
in programming and the syntax of C before tackling this book, you
should work through the “Thinking in C: Foundations for C++ and
Java” training CD ROM, bound in with this book and also available
at www.BruceEckel.com.

This chapter is background and supplementary material. Many
people do not feel comfortable wading into object-oriented
programming without understanding the big picture first. Thus,
there are many concepts that are introduced here to give you a solid
overview of OOP. However, many other people don’t get the big
picture concepts until they’ve seen some of the mechanics first;
these people may become bogged down and lost without some code
to get their hands on. If you’re part of this latter group and are
eager to get to the specifics of the language, feel free to jump past
this chapter – skipping it at this point will not prevent you from
writing programs or learning the language. However, you will want
to come back here eventually to fill in your knowledge so you can
understand why objects are important and how to design with
them.

The progress of abstraction
All programming languages provide abstractions. It can be argued
that the complexity of the problems you’re able to solve is directly
related to the kind and quality of abstraction. By “kind” I mean,
“What is it that you are abstracting?” Assembly language is a small

1: Introduction to Objects 23

abstraction of the underlying machine. Many so-called “imperative”
languages that followed (such as Fortran, BASIC, and C) were
abstractions of assembly language. These languages are big
improvements over assembly language, but their primary
abstraction still requires you to think in terms of the structure of
the computer rather than the structure of the problem you are
trying to solve. The programmer must establish the association
between the machine model (in the “solution space,” which is the
place where you’re modeling that problem, such as a computer) and
the model of the problem that is actually being solved (in the
“problem space,” which is the place where the problem exists). The
effort required to perform this mapping, and the fact that it is
extrinsic to the programming language, produces programs that are
difficult to write and expensive to maintain, and as a side effect
created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem
you’re trying to solve. Early languages such as LISP and APL chose
particular views of the world (“All problems are ultimately lists” or
“All problems are algorithmic”). PROLOG casts all problems into
chains of decisions. Languages have been created for constraint-
based programming and for programming exclusively by
manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches is a good solution to the
particular class of problem they’re designed to solve, but when you
step outside of that domain they become awkward.

The object-oriented approach goes a step farther by providing tools
for the programmer to represent elements in the problem space.
This representation is general enough that the programmer is not
constrained to any particular type of problem. We refer to the
elements in the problem space and their representations in the
solution space as “objects.” (Of course, you will also need other
objects that don’t have problem-space analogs.) The idea is that the
program is allowed to adapt itself to the lingo of the problem by
adding new types of objects, so when you read the code describing
the solution, you’re reading words that also express the problem.
This is a more flexible and powerful language abstraction than what
we’ve had before. Thus, OOP allows you to describe the problem in
terms of the problem, rather than in terms of the computer where

24 Thinking in C++ www.BruceEckel.com

the solution will run. There’s still a connection back to the
computer, though. Each object looks quite a bit like a little
computer; it has a state, and it has operations that you can ask it to
perform. However, this doesn’t seem like such a bad analogy to
objects in the real world; they all have characteristics and
behaviors.

Some language designers have decided that object-oriented
programming by itself is not adequate to easily solve all
programming problems, and advocate the combination of various
approaches into multiparadigm programming languages.1

Alan Kay summarized five basic characteristics of Smalltalk, the
first successful object-oriented language and one of the languages
upon which C++ is based. These characteristics represent a pure
approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy
variable; it stores data, but you can “make requests” to that
object, asking it to perform operations on itself. In theory,
you can take any conceptual component in the problem
you’re trying to solve (dogs, buildings, services, etc.) and
represent it as an object in your program.

2. A program is a bunch of objects telling each
other what to do by sending messages. To make a
request of an object, you “send a message” to that object.
More concretely, you can think of a message as a request to
call a function that belongs to a particular object.

3. Each object has its own memory made up of
other objects. Put another way, you create a new kind of
object by making a package containing existing objects. Thus,
you can build complexity in a program while hiding it behind
the simplicity of objects.

1 See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley
1995).

1: Introduction to Objects 25

4. Every object has a type. Using the parlance, each
object is an instance of a class, in which “class” is
synonymous with “type.” The most important distinguishing
characteristic of a class is “What messages can you send to
it?”

5. All objects of a particular type can receive the

same messages. This is actually a loaded statement, as
you will see later. Because an object of type “circle” is also an
object of type “shape,” a circle is guaranteed to accept shape
messages. This means you can write code that talks to shapes
and automatically handles anything that fits the description
of a shape. This substitutability is one of the most powerful
concepts in OOP.

An object has an interface
Aristotle was probably the first to begin a careful study of the
concept of type; he spoke of “the class of fishes and the class of
birds.” The idea that all objects, while being unique, are also part of
a class of objects that have characteristics and behaviors in common
was used directly in the first object-oriented language, Simula-67,
with its fundamental keyword class that introduces a new type into
a program.

Simula, as its name implies, was created for developing simulations
such as the classic “bank teller problem2.” In this, you have a bunch
of tellers, customers, accounts, transactions, and units of money – a
lot of “objects.” Objects that are identical except for their state
during a program’s execution are grouped together into “classes of
objects” and that’s where the keyword class came from. Creating
abstract data types (classes) is a fundamental concept in object-
oriented programming. Abstract data types work almost exactly like
built-in types: You can create variables of a type (called objects or
instances in object-oriented parlance) and manipulate those
variables (called sending messages or requests; you send a message

2 You can find an interesting implementation of this problem in Volume 2 of this
book, available at www.BruceEckel.com.

26 Thinking in C++ www.BruceEckel.com

and the object figures out what to do with it). The members
(elements) of each class share some commonality: every account
has a balance, every teller can accept a deposit, etc. At the same
time, each member has its own state, each account has a different
balance, each teller has a name. Thus, the tellers, customers,
accounts, transactions, etc., can each be represented with a unique
entity in the computer program. This entity is the object, and each
object belongs to a particular class that defines its characteristics
and behaviors.

So, although what we really do in object-oriented programming is
create new data types, virtually all object-oriented programming
languages use the “class” keyword. When you see the word “type”
think “class” and vice versa3.

Since a class describes a set of objects that have identical
characteristics (data elements) and behaviors (functionality), a class
is really a data type because a floating point number, for example,
also has a set of characteristics and behaviors. The difference is that
a programmer defines a class to fit a problem rather than being
forced to use an existing data type that was designed to represent a
unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming
system welcomes the new classes and gives them all the care and
type-checking that it gives to built-in types.

The object-oriented approach is not limited to building simulations.
Whether or not you agree that any program is a simulation of the
system you’re designing, the use of OOP techniques can easily
reduce a large set of problems to a simple solution.

Once a class is established, you can make as many objects of that
class as you like, and then manipulate those objects as if they are
the elements that exist in the problem you are trying to solve.
Indeed, one of the challenges of object-oriented programming is to
create a one-to-one mapping between the elements in the problem
space and objects in the solution space.

3 Some people make a distinction, stating that type determines the interface while
class is a particular implementation of that interface.

1: Introduction to Objects 27

But how do you get an object to do useful work for you? There must
be a way to make a request of the object so that it will do something,
such as complete a transaction, draw something on the screen or
turn on a switch. And each object can satisfy only certain requests.
The requests you can make of an object are defined by its interface,
and the type is what determines the interface. A simple example
might be a representation of a light bulb:

Light

 on()

 off()

 brighten()

 dim()

Type Name

Interface

Light lt;

lt.on();

The interface establishes what requests you can make for a
particular object. However, there must be code somewhere to
satisfy that request. This, along with the hidden data, comprises the
implementation. From a procedural programming standpoint, it’s
not that complicated. A type has a function associated with each
possible request, and when you make a particular request to an
object, that function is called. This process is usually summarized
by saying that you “send a message” (make a request) to an object,
and the object figures out what to do with that message (it executes
code).

Here, the name of the type/class is Light, the name of this
particular Light object is lt, and the requests that you can make of
a Light object are to turn it on, turn it off, make it brighter or make
it dimmer. You create a Light object by declaring a name (lt) for
that object. To send a message to the object, you state the name of
the object and connect it to the message request with a period (dot).
From the standpoint of the user of a pre-defined class, that’s pretty
much all there is to programming with objects.

The diagram shown above follows the format of the Unified
Modeling Language (UML). Each class is represented by a box,

28 Thinking in C++ www.BruceEckel.com

with the type name in the top portion of the box, any data members
that you care to describe in the middle portion of the box, and the
member functions (the functions that belong to this object, which
receive any messages you send to that object) in the bottom portion
of the box. Often, only the name of the class and the public member
functions are shown in UML design diagrams, and so the middle
portion is not shown. If you’re interested only in the class name,
then the bottom portion doesn’t need to be shown, either.

The hidden implementation
It is helpful to break up the playing field into class creators (those
who create new data types) and client programmers4 (the class
consumers who use the data types in their applications). The goal of
the client programmer is to collect a toolbox full of classes to use for
rapid application development. The goal of the class creator is to
build a class that exposes only what’s necessary to the client
programmer and keeps everything else hidden. Why? Because if it’s
hidden, the client programmer can’t use it, which means that the
class creator can change the hidden portion at will without worrying
about the impact to anyone else. The hidden portion usually
represents the tender insides of an object that could easily be
corrupted by a careless or uninformed client programmer, so hiding
the implementation reduces program bugs. The concept of
implementation hiding cannot be overemphasized.

In any relationship it’s important to have boundaries that are
respected by all parties involved. When you create a library, you
establish a relationship with the client programmer, who is also a
programmer, but one who is putting together an application by
using your library, possibly to build a bigger library.

If all the members of a class are available to everyone, then the
client programmer can do anything with that class and there’s no
way to enforce rules. Even though you might really prefer that the
client programmer not directly manipulate some of the members of

4 I’m indebted to my friend Scott Meyers for this term.

1: Introduction to Objects 29

your class, without access control there’s no way to prevent it.
Everything’s naked to the world.

So the first reason for access control is to keep client programmers’
hands off portions they shouldn’t touch – parts that are necessary
for the internal machinations of the data type but not part of the
interface that users need in order to solve their particular problems.
This is actually a service to users because they can easily see what’s
important to them and what they can ignore.

The second reason for access control is to allow the library designer
to change the internal workings of the class without worrying about
how it will affect the client programmer. For example, you might
implement a particular class in a simple fashion to ease
development, and then later discover that you need to rewrite it in
order to make it run faster. If the interface and implementation are
clearly separated and protected, you can accomplish this easily and
require only a relink by the user.

C++ uses three explicit keywords to set the boundaries in a class:
public, private, and protected. Their use and meaning are quite
straightforward. These access specifiers determine who can use the
definitions that follow. public means the following definitions are
available to everyone. The private keyword, on the other hand,
means that no one can access those definitions except you, the
creator of the type, inside member functions of that type. private is
a brick wall between you and the client programmer. If someone
tries to access a private member, they’ll get a compile-time error.
protected acts just like private, with the exception that an
inheriting class has access to protected members, but not private
members. Inheritance will be introduced shortly.

Reusing the implementation
Once a class has been created and tested, it should (ideally)
represent a useful unit of code. It turns out that this reusability is
not nearly so easy to achieve as many would hope; it takes
experience and insight to produce a good design. But once you have
such a design, it begs to be reused. Code reuse is one of the greatest
advantages that object-oriented programming languages provide.

30 Thinking in C++ www.BruceEckel.com

The simplest way to reuse a class is to just use an object of that class
directly, but you can also place an object of that class inside a new
class. We call this “creating a member object.” Your new class can
be made up of any number and type of other objects, in any
combination that you need to achieve the functionality desired in
your new class. Because you are composing a new class from
existing classes, this concept is called composition (or more
generally, aggregation). Composition is often referred to as a “has-
a” relationship, as in “a car has an engine.”

Car Engine

(The above UML diagram indicates composition with the filled
diamond, which states there is one car. I will typically use a simpler
form: just a line, without the diamond, to indicate an association.5)

Composition comes with a great deal of flexibility. The member
objects of your new class are usually private, making them
inaccessible to the client programmers who are using the class. This
allows you to change those members without disturbing existing
client code. You can also change the member objects at runtime, to
dynamically change the behavior of your program. Inheritance,
which is described next, does not have this flexibility since the
compiler must place compile-time restrictions on classes created
with inheritance.

Because inheritance is so important in object-oriented
programming it is often highly emphasized, and the new
programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overly-complicated
designs. Instead, you should first look to composition when creating
new classes, since it is simpler and more flexible. If you take this
approach, your designs will stay cleaner. Once you’ve had some

5 This is usually enough detail for most diagrams, and you don’t need to get specific
about whether you’re using aggregation or composition.

1: Introduction to Objects 31

experience, it will be reasonably obvious when you need
inheritance.

Inheritance:

reusing the interface
By itself, the idea of an object is a convenient tool. It allows you to
package data and functionality together by concept, so you can
represent an appropriate problem-space idea rather than being
forced to use the idioms of the underlying machine. These concepts
are expressed as fundamental units in the programming language
by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and
then be forced to create a brand new one that might have similar
functionality. It’s nicer if we can take the existing class, clone it, and
then make additions and modifications to the clone. This is
effectively what you get with inheritance, with the exception that if
the original class (called the base or super or parent class) is
changed, the modified “clone” (called the derived or inherited or
sub or child class) also reflects those changes.

Base

Derived

(The arrow in the above UML diagram points from the derived class
to the base class. As you will see, there can be more than one
derived class.)

A type does more than describe the constraints on a set of objects; it
also has a relationship with other types. Two types can have
characteristics and behaviors in common, but one type may contain
more characteristics than another and may also handle more
messages (or handle them differently). Inheritance expresses this

32 Thinking in C++ www.BruceEckel.com

similarity between types using the concept of base types and
derived types. A base type contains all of the characteristics and
behaviors that are shared among the types derived from it. You
create a base type to represent the core of your ideas about some
objects in your system. From the base type, you derive other types
to express the different ways that this core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The
base type is “trash,” and each piece of trash has a weight, a value,
and so on, and can be shredded, melted, or decomposed. From this,
more specific types of trash are derived that may have additional
characteristics (a bottle has a color) or behaviors (an aluminum can
may be crushed, a steel can is magnetic). In addition, some
behaviors may be different (the value of paper depends on its type
and condition). Using inheritance, you can build a type hierarchy
that expresses the problem you’re trying to solve in terms of its
types.

A second example is the classic “shape” example, perhaps used in a
computer-aided design system or game simulation. The base type is
“shape,” and each shape has a size, a color, a position, and so on.
Each shape can be drawn, erased, moved, colored, etc. From this,
specific types of shapes are derived (inherited): circle, square,
triangle, and so on, each of which may have additional
characteristics and behaviors. Certain shapes can be flipped, for
example. Some behaviors may be different, such as when you want
to calculate the area of a shape. The type hierarchy embodies both
the similarities and differences between the shapes.

1: Introduction to Objects 33

Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Circle Square Triangle

Casting the solution in the same terms as the problem is
tremendously beneficial because you don’t need a lot of
intermediate models to get from a description of the problem to a
description of the solution. With objects, the type hierarchy is the
primary model, so you go directly from the description of the
system in the real world to the description of the system in code.
Indeed, one of the difficulties people have with object-oriented
design is that it’s too simple to get from the beginning to the end. A
mind trained to look for complex solutions is often stumped by this
simplicity at first.

When you inherit from an existing type, you create a new type. This
new type contains not only all the members of the existing type
(although the private ones are hidden away and inaccessible), but
more importantly it duplicates the interface of the base class. That
is, all the messages you can send to objects of the base class you can
also send to objects of the derived class. Since we know the type of a
class by the messages we can send to it, this means that the derived
class is the same type as the base class. In the previous example, “a
circle is a shape.” This type equivalence via inheritance is one of the
fundamental gateways in understanding the meaning of object-
oriented programming.

34 Thinking in C++ www.BruceEckel.com

Since both the base class and derived class have the same interface,
there must be some implementation to go along with that interface.
That is, there must be some code to execute when an object receives
a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right
along into the derived class. That means objects of the derived class
have not only the same type, they also have the same behavior,
which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the
original base class. The first is quite straightforward: You simply
add brand new functions to the derived class. These new functions
are not part of the base class interface. This means that the base
class simply didn’t do as much as you wanted it to, so you added
more functions. This simple and primitive use for inheritance is, at
times, the perfect solution to your problem. However, you should
look closely for the possibility that your base class might also need
these additional functions. This process of discovery and iteration
of your design happens regularly in object-oriented programming.

Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Circle Square Triangle

 FlipVertical()

 FlipHorizontal()

Although inheritance may sometimes imply that you are going to
add new functions to the interface, that’s not necessarily true. The
second and more important way to differentiate your new class is to

1: Introduction to Objects 35

change the behavior of an existing base-class function. This is
referred to as overriding that function.

Shape

 draw()

 erase()

 move()

 getColor()

 setColor()

Triangle

 draw()

 erase()

Circle

 draw()

 erase()

Square

 draw()

 erase()

To override a function, you simply create a new definition for the
function in the derived class. You’re saying, “I’m using the same
interface function here, but I want it to do something different for
my new type.”

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should
inheritance override only base-class functions (and not add new
member functions that aren’t in the base class)? This would mean
that the derived type is exactly the same type as the base class since
it has exactly the same interface. As a result, you can exactly
substitute an object of the derived class for an object of the base
class. This can be thought of as pure substitution, and it’s often
referred to as the substitution principle. In a sense, this is the ideal
way to treat inheritance. We often refer to the relationship between
the base class and derived classes in this case as an is-a
relationship, because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a
relationship about the classes and have it make sense.

36 Thinking in C++ www.BruceEckel.com

There are times when you must add new interface elements to a
derived type, thus extending the interface and creating a new type.
The new type can still be substituted for the base type, but the
substitution isn’t perfect because your new functions are not
accessible from the base type. This can be described as an is-like-a
relationship; the new type has the interface of the old type but it
also contains other functions, so you can’t really say it’s exactly the
same. For example, consider an air conditioner. Suppose your
house is wired with all the controls for cooling; that is, it has an
interface that allows you to control cooling. Imagine that the air
conditioner breaks down and you replace it with a heat pump,
which can both heat and cool. The heat pump is-like-an air
conditioner, but it can do more. Because the control system of your
house is designed only to control cooling, it is restricted to
communication with the cooling part of the new object. The
interface of the new object has been extended, and the existing
system doesn’t know about anything except the original interface.

Cooling System

 cool()

Air Conditioner

 cool()

Heat Pump

 cool()

 heat()

Thermostat

 lowerTemperature()

Controls

Of course, once you see this design it becomes clear that the base
class “cooling system” is not general enough, and should be
renamed to “temperature control system” so that it can also include
heating – at which point the substitution principle will work.
However, the diagram above is an example of what can happen in
design and in the real world.

When you see the substitution principle it’s easy to feel like this
approach (pure substitution) is the only way to do things, and in

1: Introduction to Objects 37

fact it is nice if your design works out that way. But you’ll find that
there are times when it’s equally clear that you must add new
functions to the interface of a derived class. With inspection both
cases should be reasonably obvious.

Interchangeable objects

with polymorphism
When dealing with type hierarchies, you often want to treat an
object not as the specific type that it is but instead as its base type.
This allows you to write code that doesn’t depend on specific types.
In the shape example, functions manipulate generic shapes without
respect to whether they’re circles, squares, triangles, and so on. All
shapes can be drawn, erased, and moved, so these functions simply
send a message to a shape object; they don’t worry about how the
object copes with the message.

Such code is unaffected by the addition of new types, and adding
new types is the most common way to extend an object-oriented
program to handle new situations. For example, you can derive a
new subtype of shape called pentagon without modifying the
functions that deal only with generic shapes. This ability to extend a
program easily by deriving new subtypes is important because it
greatly improves designs while reducing the cost of software
maintenance.

There’s a problem, however, with attempting to treat derived-type
objects as their generic base types (circles as shapes, bicycles as
vehicles, cormorants as birds, etc.). If a function is going to tell a
generic shape to draw itself, or a generic vehicle to steer, or a
generic bird to move, the compiler cannot know at compile-time
precisely what piece of code will be executed. That’s the whole point
– when the message is sent, the programmer doesn’t want to know
what piece of code will be executed; the draw function can be
applied equally to a circle, a square, or a triangle, and the object will
execute the proper code depending on its specific type. If you don’t
have to know what piece of code will be executed, then when you
add a new subtype, the code it executes can be different without
requiring changes to the function call. Therefore, the compiler

38 Thinking in C++ www.BruceEckel.com

cannot know precisely what piece of code is executed, so what does
it do? For example, in the following diagram the BirdController
object just works with generic Bird objects, and does not know
what exact type they are. This is convenient from
BirdController’s perspective, because it doesn’t have to write
special code to determine the exact type of Bird it’s working with,
or that Bird’s behavior. So how does it happen that, when move()
is called while ignoring the specific type of Bird, the right behavior
will occur (a Goose runs, flies, or swims, and a Penguin runs or
swims)?

What happens

when move() is

called?

Bird

 move()

Goose

 move()

Penguin

 move()

BirdController

 reLocate()

The answer is the primary twist in object-oriented programming:
The compiler cannot make a function call in the traditional sense.
The function call generated by a non-OOP compiler causes what is
called early binding, a term you may not have heard before because
you’ve never thought about it any other way. It means the compiler
generates a call to a specific function name, and the linker resolves
this call to the absolute address of the code to be executed. In OOP,
the program cannot determine the address of the code until
runtime, so some other scheme is necessary when a message is sent
to a generic object.

To solve the problem, object-oriented languages use the concept of
late binding. When you send a message to an object, the code being
called isn’t determined until runtime. The compiler does ensure
that the function exists and performs type checking on the
arguments and return value (a language in which this isn’t true is
called weakly typed), but it doesn’t know the exact code to execute.

1: Introduction to Objects 39

To perform late binding, the C++ compiler inserts a special bit of
code in lieu of the absolute call. This code calculates the address of
the function body, using information stored in the object (this
process is covered in great detail in Chapter 15). Thus, each object
can behave differently according to the contents of that special bit
of code. When you send a message to an object, the object actually
does figure out what to do with that message.

You state that you want a function to have the flexibility of late-
binding properties using the keyword virtual. You don’t need to
understand the mechanics of virtual to use it, but without it you
can’t do object-oriented programming in C++. In C++, you must
remember to add the virtual keyword because, by default, member
functions are not dynamically bound. Virtual functions allow you to
express the differences in behavior of classes in the same family.
Those differences are what cause polymorphic behavior.

Consider the shape example. The family of classes (all based on the
same uniform interface) was diagrammed earlier in the chapter. To
demonstrate polymorphism, we want to write a single piece of code
that ignores the specific details of type and talks only to the base
class. That code is decoupled from type-specific information, and
thus is simpler to write and easier to understand. And, if a new type
– a Hexagon, for example – is added through inheritance, the
code you write will work just as well for the new type of Shape as it
did on the existing types. Thus, the program is extensible.

If you write a function in C++ (as you will soon learn how to do):

void doStuff(Shape& s) {

 s.erase();

 // ...

 s.draw();

}

This function speaks to any Shape, so it is independent of the
specific type of object that it’s drawing and erasing (the ‘&’ means
“Take the address of the object that’s passed to doStuff(),” but it’s
not important that you understand the details of that right now). If
in some other part of the program we use the doStuff() function:

Circle c;

40 Thinking in C++ www.BruceEckel.com

Triangle t;

Line l;

doStuff(c);

doStuff(t);

doStuff(l);

The calls to doStuff() automatically work right, regardless of the
exact type of the object.

This is actually a pretty amazing trick. Consider the line:

doStuff(c);

What’s happening here is that a Circle is being passed into a
function that’s expecting a Shape. Since a Circle is a Shape it can
be treated as one by doStuff(). That is, any message that
doStuff() can send to a Shape, a Circle can accept. So it is a
completely safe and logical thing to do.

We call this process of treating a derived type as though it were its
base type upcasting. The name cast is used in the sense of casting
into a mold and the up comes from the way the inheritance diagram
is typically arranged, with the base type at the top and the derived
classes fanning out downward. Thus, casting to a base type is
moving up the inheritance diagram: “upcasting.”

Shape

Circle Square Triangle

"Upcasting"

An object-oriented program contains some upcasting somewhere,
because that’s how you decouple yourself from knowing about the
exact type you’re working with. Look at the code in doStuff():

 s.erase();

 // ...

1: Introduction to Objects 41

 s.draw();

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a
Square, do that, etc.” If you write that kind of code, which checks
for all the possible types that a Shape can actually be, it’s messy
and you need to change it every time you add a new kind of Shape.
Here, you just say “You’re a shape, I know you can erase() and
draw() yourself, do it, and take care of the details correctly.”

What’s impressive about the code in doStuff() is that, somehow,
the right thing happens. Calling draw() for Circle causes different
code to be executed than when calling draw() for a Square or a
Line, but when the draw() message is sent to an anonymous
Shape, the correct behavior occurs based on the actual type of the
Shape. This is amazing because, as mentioned earlier, when the
C++ compiler is compiling the code for doStuff(), it cannot know
exactly what types it is dealing with. So ordinarily, you’d expect it to
end up calling the version of erase() and draw() for Shape, and
not for the specific Circle, Square, or Line. And yet the right
thing happens because of polymorphism. The compiler and runtime
system handle the details; all you need to know is that it happens
and more importantly how to design with it. If a member function is
virtual, then when you send a message to an object, the object will
do the right thing, even when upcasting is involved.

Creating and destroying objects
Technically, the domain of OOP is abstract data typing, inheritance,
and polymorphism, but other issues can be at least as important.
This section gives an overview of these issues.

Especially important is the way objects are created and destroyed.
Where is the data for an object and how is the lifetime of that object
controlled? Different programming languages use different
philosophies here. C++ takes the approach that control of efficiency
is the most important issue, so it gives the programmer a choice.
For maximum runtime speed, the storage and lifetime can be
determined while the program is being written, by placing the
objects on the stack or in static storage. The stack is an area in
memory that is used directly by the microprocessor to store data

42 Thinking in C++ www.BruceEckel.com

during program execution. Variables on the stack are sometimes
called automatic or scoped variables. The static storage area is
simply a fixed patch of memory that is allocated before the program
begins to run. Using the stack or static storage area places a priority
on the speed of storage allocation and release, which can be
valuable in some situations. However, you sacrifice flexibility
because you must know the exact quantity, lifetime, and type of
objects while you’re writing the program. If you are trying to solve a
more general problem, such as computer-aided design, warehouse
management, or air-traffic control, this is too restrictive.

The second approach is to create objects dynamically in a pool of
memory called the heap. In this approach you don’t know until
runtime how many objects you need, what their lifetime is, or what
their exact type is. Those decisions are made at the spur of the
moment while the program is running. If you need a new object,
you simply make it on the heap when you need it, using the new
keyword. When you’re finished with the storage, you must release it
using the delete keyword.

Because the storage is managed dynamically at runtime, the
amount of time required to allocate storage on the heap is
significantly longer than the time to create storage on the stack.
(Creating storage on the stack is often a single microprocessor
instruction to move the stack pointer down, and another to move it
back up.) The dynamic approach makes the generally logical
assumption that objects tend to be complicated, so the extra
overhead of finding storage and releasing that storage will not have
an important impact on the creation of an object. In addition, the
greater flexibility is essential to solve general programming
problems.

There’s another issue, however, and that’s the lifetime of an object.
If you create an object on the stack or in static storage, the compiler
determines how long the object lasts and can automatically destroy
it. However, if you create it on the heap, the compiler has no
knowledge of its lifetime. In C++, the programmer must determine
programmatically when to destroy the object, and then perform the
destruction using the delete keyword. As an alternative, the
environment can provide a feature called a garbage collector that

1: Introduction to Objects 43

automatically discovers when an object is no longer in use and
destroys it. Of course, writing programs using a garbage collector is
much more convenient, but it requires that all applications must be
able to tolerate the existence of the garbage collector and the
overhead for garbage collection. This does not meet the design
requirements of the C++ language and so it was not included,
although third-party garbage collectors exist for C++.

Exception handling:

dealing with errors
Ever since the beginning of programming languages, error handling
has been one of the most difficult issues. Because it’s so hard to
design a good error-handling scheme, many languages simply
ignore the issue, passing the problem on to library designers who
come up with halfway measures that can work in many situations
but can easily be circumvented, generally by just ignoring them. A
major problem with most error-handling schemes is that they rely
on programmer vigilance in following an agreed-upon convention
that is not enforced by the language. If programmers are not
vigilant, which often occurs when they are in a hurry, these schemes
can easily be forgotten.

Exception handling wires error handling directly into the
programming language and sometimes even the operating system.
An exception is an object that is “thrown” from the site of the error
and can be “caught” by an appropriate exception handler designed
to handle that particular type of error. It’s as if exception handling
is a different, parallel path of execution that can be taken when
things go wrong. And because it uses a separate execution path, it
doesn’t need to interfere with your normally-executing code. This
makes that code simpler to write since you aren’t constantly forced
to check for errors. In addition, a thrown exception is unlike an
error value that’s returned from a function or a flag that’s set by a
function in order to indicate an error condition – these can be
ignored. An exception cannot be ignored so it’s guaranteed to be
dealt with at some point. Finally, exceptions provide a way to
recover reliably from a bad situation. Instead of just exiting the
program, you are often able to set things right and restore the

44 Thinking in C++ www.BruceEckel.com

execution of a program, which produces much more robust
systems.

It’s worth noting that exception handling isn’t an object-oriented
feature, although in object-oriented languages the exception is
normally represented with an object. Exception handling existed
before object-oriented languages.

Exception handling is only lightly introduced and used in this
Volume; Volume 2 (available from www.BruceEckel.com) has
thorough coverage of exception handling.

Analysis and design
The object-oriented paradigm is a new and different way of thinking
about programming and many folks have trouble at first knowing
how to approach an OOP project. Once you know that everything is
supposed to be an object, and as you learn to think more in an
object-oriented style, you can begin to create “good” designs that
take advantage of all the benefits that OOP has to offer.

A method (often called a methodology) is a set of processes and
heuristics used to break down the complexity of a programming
problem. Many OOP methods have been formulated since the dawn
of object-oriented programming. This section will give you a feel for
what you’re trying to accomplish when using a method.

Especially in OOP, methodology is a field of many experiments, so
it is important to understand what problem the method is trying to
solve before you consider adopting one. This is particularly true
with C++, in which the programming language is intended to
reduce the complexity (compared to C) involved in expressing a
program. This may in fact alleviate the need for ever-more-complex
methodologies. Instead, simpler ones may suffice in C++ for a
much larger class of problems than you could handle using simple
methodologies with procedural languages.

It’s also important to realize that the term “methodology” is often
too grand and promises too much. Whatever you do now when you
design and write a program is a method. It may be your own

1: Introduction to Objects 45

method, and you may not be conscious of doing it, but it is a process
you go through as you create. If it is an effective process, it may
need only a small tune-up to work with C++. If you are not satisfied
with your productivity and the way your programs turn out, you
may want to consider adopting a formal method, or choosing pieces
from among the many formal methods.

While you’re going through the development process, the most
important issue is this: Don’t get lost. It’s easy to do. Most of the
analysis and design methods are intended to solve the largest of
problems. Remember that most projects don’t fit into that category,
so you can usually have successful analysis and design with a
relatively small subset of what a method recommends6. But some
sort of process, no matter how limited, will generally get you on
your way in a much better fashion than simply beginning to code.

It’s also easy to get stuck, to fall into “analysis paralysis,” where you
feel like you can’t move forward because you haven’t nailed down
every little detail at the current stage. Remember, no matter how
much analysis you do, there are some things about a system that
won’t reveal themselves until design time, and more things that
won’t reveal themselves until you’re coding, or not even until a
program is up and running. Because of this, it’s crucial to move
fairly quickly through analysis and design, and to implement a test
of the proposed system.

This point is worth emphasizing. Because of the history we’ve had
with procedural languages, it is commendable that a team will want
to proceed carefully and understand every minute detail before
moving to design and implementation. Certainly, when creating a
DBMS, it pays to understand a customer’s needs thoroughly. But a
DBMS is in a class of problems that is very well-posed and well-
understood; in many such programs, the database structure is the
problem to be tackled. The class of programming problem
discussed in this chapter is of the “wild-card” (my term) variety, in
which the solution isn’t simply re-forming a well-known solution,

6 An excellent example of this is UML Distilled, by Martin Fowler (Addison-Wesley
2000), which reduces the sometimes-overwhelming UML process to a manageable
subset.

46 Thinking in C++ www.BruceEckel.com

but instead involves one or more “wild-card factors” – elements for
which there is no well-understood previous solution, and for which
research is necessary7. Attempting to thoroughly analyze a wild-
card problem before moving into design and implementation
results in analysis paralysis because you don’t have enough
information to solve this kind of problem during the analysis phase.
Solving such a problem requires iteration through the whole cycle,
and that requires risk-taking behavior (which makes sense, because
you’re trying to do something new and the potential rewards are
higher). It may seem like the risk is compounded by “rushing” into
a preliminary implementation, but it can instead reduce the risk in
a wild-card project because you’re finding out early whether a
particular approach to the problem is viable. Product development
is risk management.

It’s often proposed that you “build one to throw away.” With OOP,
you may still throw part of it away, but because code is
encapsulated into classes, during the first iteration you will
inevitably produce some useful class designs and develop some
worthwhile ideas about the system design that do not need to be
thrown away. Thus, the first rapid pass at a problem not only
produces critical information for the next analysis, design, and
implementation iteration, it also creates a code foundation for that
iteration.

That said, if you’re looking at a methodology that contains
tremendous detail and suggests many steps and documents, it’s still
difficult to know when to stop. Keep in mind what you’re trying to
discover:

1. What are the objects? (How do you partition your project into
its component parts?)

2. What are their interfaces? (What messages do you need to be
able to send to each object?)

7 My rule of thumb for estimating such projects: If there’s more than one wild card,
don’t even try to plan how long it’s going to take or how much it will cost until you’ve
created a working prototype. There are too many degrees of freedom.

1: Introduction to Objects 47

If you come up with nothing more than the objects and their
interfaces, then you can write a program. For various reasons you
might need more descriptions and documents than this, but you
can’t get away with any less.

The process can be undertaken in five phases, and a phase 0 that is
just the initial commitment to using some kind of structure.

Phase 0: Make a plan
You must first decide what steps you’re going to have in your
process. It sounds simple (in fact, all of this sounds simple) and yet
people often don’t make this decision before they start coding. If
your plan is “let’s jump in and start coding,” fine. (Sometimes that’s
appropriate when you have a well-understood problem.) At least
agree that this is the plan.

You might also decide at this phase that some additional process
structure is necessary, but not the whole nine yards.
Understandably enough, some programmers like to work in
“vacation mode” in which no structure is imposed on the process of
developing their work; “It will be done when it’s done.” This can be
appealing for awhile, but I’ve found that having a few milestones
along the way helps to focus and galvanize your efforts around
those milestones instead of being stuck with the single goal of
“finish the project.” In addition, it divides the project into more
bite-sized pieces and makes it seem less threatening (plus the
milestones offer more opportunities for celebration).

When I began to study story structure (so that I will someday write
a novel) I was initially resistant to the idea of structure, feeling that
when I wrote I simply let it flow onto the page. But I later realized
that when I write about computers the structure is clear enough so
that I don’t think much about it. But I still structure my work, albeit
only semi-consciously in my head. So even if you think that your
plan is to just start coding, you still somehow go through the
subsequent phases while asking and answering certain questions.

The mission statement
Any system you build, no matter how complicated, has a
fundamental purpose, the business that it’s in, the basic need that it

48 Thinking in C++ www.BruceEckel.com

satisfies. If you can look past the user interface, the hardware- or
system-specific details, the coding algorithms and the efficiency
problems, you will eventually find the core of its being, simple and
straightforward. Like the so-called high concept from a Hollywood
movie, you can describe it in one or two sentences. This pure
description is the starting point.

The high concept is quite important because it sets the tone for your
project; it’s a mission statement. You won’t necessarily get it right
the first time (you may be in a later phase of the project before it
becomes completely clear), but keep trying until it feels right. For
example, in an air-traffic control system you may start out with a
high concept focused on the system that you’re building: “The tower
program keeps track of the aircraft.” But consider what happens
when you shrink the system to a very small airfield; perhaps there’s
only a human controller or none at all. A more useful model won’t
concern the solution you’re creating as much as it describes the
problem: “Aircraft arrive, unload, service and reload, and depart.”

Phase 1: What are we making?
In the previous generation of program design (called procedural
design), this is called “creating the requirements analysis and
system specification.” These, of course, were places to get lost;
intimidatingly-named documents that could become big projects in
their own right. Their intention was good, however. The
requirements analysis says “Make a list of the guidelines we will use
to know when the job is done and the customer is satisfied.” The
system specification says “Here’s a description of what the program
will do (not how) to satisfy the requirements.” The requirements
analysis is really a contract between you and the customer (even if
the customer works within your company or is some other object or
system). The system specification is a top-level exploration into the
problem and in some sense a discovery of whether it can be done
and how long it will take. Since both of these will require consensus
among people (and because they will usually change over time), I
think it’s best to keep them as bare as possible – ideally, to lists and
basic diagrams – to save time. You might have other constraints
that require you to expand them into bigger documents, but by
keeping the initial document small and concise, it can be created in

1: Introduction to Objects 49

a few sessions of group brainstorming with a leader who
dynamically creates the description. This not only solicits input
from everyone, it also fosters initial buy-in and agreement by
everyone on the team. Perhaps most importantly, it can kick off a
project with a lot of enthusiasm.

It’s necessary to stay focused on the heart of what you’re trying to
accomplish in this phase: determine what the system is supposed to
do. The most valuable tool for this is a collection of what are called
“use cases.” Use cases identify key features in the system that will
reveal some of the fundamental classes you’ll be using. These are
essentially descriptive answers to questions like8:

�� "Who will use this system?"

�� "What can those actors do with the system?"

�� "How does this actor do that with this system?"

�� "How else might this work if someone else were doing this,
or if the same actor had a different objective?" (to reveal
variations)

�� "What problems might happen while doing this with the
system?" (to reveal exceptions)

If you are designing an auto-teller, for example, the use case for a
particular aspect of the functionality of the system is able to
describe what the auto-teller does in every possible situation. Each
of these “situations” is referred to as a scenario, and a use case can
be considered a collection of scenarios. You can think of a scenario
as a question that starts with: “What does the system do if…?” For
example, “What does the auto-teller do if a customer has just
deposited a check within 24 hours and there’s not enough in the
account without the check to provide the desired withdrawal?”

Use case diagrams are intentionally simple to prevent you from
getting bogged down in system implementation details
prematurely:

8 Thanks for help from James H Jarrett.

50 Thinking in C++ www.BruceEckel.com

Customer

Uses

Transfer

Between

Accounts

Teller

Bank

Make

Withdrawal

Get Account

Balance

Make

Deposit

ATM

Each stick person represents an “actor,” which is typically a human
or some other kind of free agent. (These can even be other
computer systems, as is the case with “ATM.”) The box represents
the boundary of your system. The ellipses represent the use cases,
which are descriptions of valuable work that can be performed with
the system. The lines between the actors and the use cases
represent the interactions.

It doesn’t matter how the system is actually implemented, as long as
it looks like this to the user.

A use case does not need to be terribly complex, even if the
underlying system is complex. It is only intended to show the
system as it appears to the user. For example:

Gardener

Maintain

Growing

Temperature

Greenhouse

The use cases produce the requirements specifications by
determining all the interactions that the user may have with the
system. You try to discover a full set of use cases for your system,

1: Introduction to Objects 51

and once you’ve done that you have the core of what the system is
supposed to do. The nice thing about focusing on use cases is that
they always bring you back to the essentials and keep you from
drifting off into issues that aren’t critical for getting the job done.
That is, if you have a full set of use cases you can describe your
system and move onto the next phase. You probably won’t get it all
figured out perfectly on the first try, but that’s OK. Everything will
reveal itself in time, and if you demand a perfect system
specification at this point you’ll get stuck.

If you get stuck, you can kick-start this phase by using a rough
approximation tool: describe the system in a few paragraphs and
then look for nouns and verbs. The nouns can suggest actors,
context of the use case (e.g. “lobby”), or artifacts manipulated in the
use case. Verbs can suggest interactions between actors and use
cases, and specify steps within the use case. You’ll also discover that
nouns and verbs produce objects and messages during the design
phase (and note that use cases describe interactions between
subsystems, so the “noun and verb” technique can be used only as a
brainstorming tool as it does not generate use cases) 9.

The boundary between a use case and an actor can point out the
existence of a user interface, but it does not define such a user
interface. For a process of defining and creating user interfaces, see
Software for Use by Larry Constantine and Lucy Lockwood,
(Addison Wesley Longman, 1999) or go to www.ForUse.com.

Although it’s a black art, at this point some kind of basic scheduling
is important. You now have an overview of what you’re building so
you’ll probably be able to get some idea of how long it will take. A
lot of factors come into play here. If you estimate a long schedule
then the company might decide not to build it (and thus use their
resources on something more reasonable – that’s a good thing). Or
a manager might have already decided how long the project should
take and will try to influence your estimate. But it’s best to have an
honest schedule from the beginning and deal with the tough

9 More information on use cases can be found in Applying Use Cases by Schneider &
Winters (Addison-Wesley 1998) and Use Case Driven Object Modeling with UML by
Rosenberg (Addison-Wesley 1999).

52 Thinking in C++ www.BruceEckel.com

decisions early. There have been a lot of attempts to come up with
accurate scheduling techniques (like techniques to predict the stock
market), but probably the best approach is to rely on your
experience and intuition. Get a gut feeling for how long it will really
take, then double that and add 10 percent. Your gut feeling is
probably correct; you can get something working in that time. The
“doubling” will turn that into something decent, and the 10 percent
will deal with the final polishing and details10. However you want to
explain it, and regardless of the moans and manipulations that
happen when you reveal such a schedule, it just seems to work out
that way.

Phase 2: How will we build it?
In this phase you must come up with a design that describes what
the classes look like and how they will interact. An excellent
technique in determining classes and interactions is the Class-
Responsibility-Collaboration (CRC) card. Part of the value of this
tool is that it’s so low-tech: you start out with a set of blank 3” by 5”
cards, and you write on them. Each card represents a single class,
and on the card you write:

1. The name of the class. It’s important that this name capture
the essence of what the class does, so that it makes sense at a
glance.

2. The “responsibilities” of the class: what it should do. This can
typically be summarized by just stating the names of the
member functions (since those names should be descriptive
in a good design), but it does not preclude other notes. If you
need to seed the process, look at the problem from a lazy
programmer’s standpoint: What objects would you like to
magically appear to solve your problem?

10 My personal take on this has changed lately. Doubling and adding 10 percent will
give you a reasonably accurate estimate (assuming there are not too many wild-card
factors), but you still have to work quite diligently to finish in that time. If you want
time to really make it elegant and to enjoy yourself in the process, the correct
multiplier is more like three or four times, I believe.

1: Introduction to Objects 53

3. The “collaborations” of the class: what other classes does it
interact with? “Interact” is an intentionally broad term; it
could mean aggregation or simply that some other object
exists that will perform services for an object of the class.
Collaborations should also consider the audience for this
class. For example, if you create a class Firecracker, who is
going to observe it, a Chemist or a Spectator? The former
will want to know what chemicals go into the construction,
and the latter will respond to the colors and shapes released
when it explodes.

You may feel like the cards should be bigger because of all the
information you’d like to get on them, but they are intentionally
small, not only to keep your classes small but also to keep you from
getting into too much detail too early. If you can’t fit all you need to
know about a class on a small card, the class is too complex (either
you’re getting too detailed, or you should create more than one
class). The ideal class should be understood at a glance. The idea of
CRC cards is to assist you in coming up with a first cut of the design
so that you can get the big picture and then refine your design.

One of the great benefits of CRC cards is in communication. It’s
best done real-time, in a group, without computers. Each person
takes responsibility for several classes (which at first have no names
or other information). You run a live simulation by solving one
scenario at a time, deciding which messages are sent to the various
objects to satisfy each scenario. As you go through this process, you
discover the classes that you need along with their responsibilities
and collaborations, and you fill out the cards as you do this. When
you’ve moved through all the use cases, you should have a fairly
complete first cut of your design.

Before I began using CRC cards, the most successful consulting
experiences I had when coming up with an initial design involved
standing in front of a team, who hadn’t built an OOP project before,
and drawing objects on a whiteboard. We talked about how the
objects should communicate with each other, and erased some of
them and replaced them with other objects. Effectively, I was
managing all the “CRC cards” on the whiteboard. The team (who
knew what the project was supposed to do) actually created the
design; they “owned” the design rather than having it given to them.

54 Thinking in C++ www.BruceEckel.com

All I was doing was guiding the process by asking the right
questions, trying out the assumptions, and taking the feedback from
the team to modify those assumptions. The true beauty of the
process was that the team learned how to do object-oriented design
not by reviewing abstract examples, but by working on the one
design that was most interesting to them at that moment: theirs.

Once you’ve come up with a set of CRC cards, you may want to
create a more formal description of your design using UML11. You
don’t need to use UML, but it can be helpful, especially if you want
to put up a diagram on the wall for everyone to ponder, which is a
good idea. An alternative to UML is a textual description of the
objects and their interfaces, or, depending on your programming
language, the code itself12.

UML also provides an additional diagramming notation for
describing the dynamic model of your system. This is helpful in
situations in which the state transitions of a system or subsystem
are dominant enough that they need their own diagrams (such as in
a control system). You may also need to describe the data
structures, for systems or subsystems in which data is a dominant
factor (such as a database).

You’ll know you’re done with phase 2 when you have described the
objects and their interfaces. Well, most of them – there are usually
a few that slip through the cracks and don’t make themselves
known until phase 3. But that’s OK. All you are concerned with is
that you eventually discover all of your objects. It’s nice to discover
them early in the process but OOP provides enough structure so
that it’s not so bad if you discover them later. In fact, the design of
an object tends to happen in five stages, throughout the process of
program development.

Five stages of object design
The design life of an object is not limited to the time when you’re
writing the program. Instead, the design of an object appears over a
sequence of stages. It’s helpful to have this perspective because you

11 For starters, I recommend the aforementioned UML Distilled.
12 Python (www.Python.org) is often used as “executable pseudocode.”

1: Introduction to Objects 55

stop expecting perfection right away; instead, you realize that the
understanding of what an object does and what it should look like
happens over time. This view also applies to the design of various
types of programs; the pattern for a particular type of program
emerges through struggling again and again with that problem
(Design Patterns are covered in Volume 2). Objects, too, have their
patterns that emerge through understanding, use, and reuse.

1. Object discovery. This stage occurs during the initial
analysis of a program. Objects may be discovered by looking for
external factors and boundaries, duplication of elements in the
system, and the smallest conceptual units. Some objects are obvious
if you already have a set of class libraries. Commonality between
classes suggesting base classes and inheritance may appear right
away, or later in the design process.

2. Object assembly. As you’re building an object you’ll
discover the need for new members that didn’t appear during
discovery. The internal needs of the object may require other
classes to support it.

3. System construction. Once again, more requirements for
an object may appear at this later stage. As you learn, you evolve
your objects. The need for communication and interconnection with
other objects in the system may change the needs of your classes or
require new classes. For example, you may discover the need for
facilitator or helper classes, such as a linked list, that contain little
or no state information and simply help other classes function.

4. System extension. As you add new features to a system you
may discover that your previous design doesn’t support easy system
extension. With this new information, you can restructure parts of
the system, possibly adding new classes or class hierarchies.

5. Object reuse. This is the real stress test for a class. If
someone tries to reuse it in an entirely new situation, they’ll
probably discover some shortcomings. As you change a class to
adapt to more new programs, the general principles of the class will
become clearer, until you have a truly reusable type. However, don’t
expect most objects from a system design to be reusable – it is

56 Thinking in C++ www.BruceEckel.com

perfectly acceptable for the bulk of your objects to be system-
specific. Reusable types tend to be less common, and they must
solve more general problems in order to be reusable.

Guidelines for object development
These stages suggest some guidelines when thinking about
developing your classes:

1. Let a specific problem generate a class, then let the class grow
and mature during the solution of other problems.

2. Remember, discovering the classes you need (and their
interfaces) is the majority of the system design. If you already
had those classes, this would be an easy project.

3. Don’t force yourself to know everything at the beginning;
learn as you go. This will happen anyway.

4. Start programming; get something working so you can prove
or disprove your design. Don’t fear that you’ll end up with
procedural-style spaghetti code – classes partition the
problem and help control anarchy and entropy. Bad classes
do not break good classes.

5. Always keep it simple. Little clean objects with obvious utility
are better than big complicated interfaces. When decision
points come up, use an Occam’s Razor approach: Consider
the choices and select the one that is simplest, because simple
classes are almost always best. Start small and simple, and
you can expand the class interface when you understand it
better, but as time goes on, it’s difficult to remove elements
from a class.

Phase 3: Build the core
This is the initial conversion from the rough design into a compiling
and executing body of code that can be tested, and especially that
will prove or disprove your architecture. This is not a one-pass
process, but rather the beginning of a series of steps that will
iteratively build the system, as you’ll see in phase 4.

1: Introduction to Objects 57

Your goal is to find the core of your system architecture that needs
to be implemented in order to generate a running system, no matter
how incomplete that system is in this initial pass. You’re creating a
framework that you can build upon with further iterations. You’re
also performing the first of many system integrations and tests, and
giving the stakeholders feedback about what their system will look
like and how it is progressing. Ideally, you are also exposing some
of the critical risks. You’ll probably also discover changes and
improvements that can be made to your original architecture –
things you would not have learned without implementing the
system.

Part of building the system is the reality check that you get from
testing against your requirements analysis and system specification
(in whatever form they exist). Make sure that your tests verify the
requirements and use cases. When the core of the system is stable,
you’re ready to move on and add more functionality.

Phase 4: Iterate the use cases
Once the core framework is running, each feature set you add is a
small project in itself. You add a feature set during an iteration, a
reasonably short period of development.

How big is an iteration? Ideally, each iteration lasts one to three
weeks (this can vary based on the implementation language). At the
end of that period, you have an integrated, tested system with more
functionality than it had before. But what’s particularly interesting
is the basis for the iteration: a single use case. Each use case is a
package of related functionality that you build into the system all at
once, during one iteration. Not only does this give you a better idea
of what the scope of a use case should be, but it also gives more
validation to the idea of a use case, since the concept isn’t discarded
after analysis and design, but instead it is a fundamental unit of
development throughout the software-building process.

You stop iterating when you achieve target functionality or an
external deadline arrives and the customer can be satisfied with the
current version. (Remember, software is a subscription business.)
Because the process is iterative, you have many opportunities to
ship a product instead of a single endpoint; open-source projects

58 Thinking in C++ www.BruceEckel.com

work exclusively in an iterative, high-feedback environment, which
is precisely what makes them successful.

An iterative development process is valuable for many reasons. You
can reveal and resolve critical risks early, the customers have ample
opportunity to change their minds, programmer satisfaction is
higher, and the project can be steered with more precision. But an
additional important benefit is the feedback to the stakeholders,
who can see by the current state of the product exactly where
everything lies. This may reduce or eliminate the need for mind-
numbing status meetings and increase the confidence and support
from the stakeholders.

Phase 5: Evolution
This is the point in the development cycle that has traditionally
been called “maintenance,” a catch-all term that can mean
everything from “getting it to work the way it was really supposed to
in the first place” to “adding features that the customer forgot to
mention” to the more traditional “fixing the bugs that show up” and
“adding new features as the need arises.” So many misconceptions
have been applied to the term “maintenance” that it has taken on a
slightly deceiving quality, partly because it suggests that you’ve
actually built a pristine program and all you need to do is change
parts, oil it, and keep it from rusting. Perhaps there’s a better term
to describe what’s going on.

I’ll use the term evolution13. That is, “You won’t get it right the first
time, so give yourself the latitude to learn and to go back and make
changes.” You might need to make a lot of changes as you learn and
understand the problem more deeply. The elegance you’ll produce if
you evolve until you get it right will pay off, both in the short and
the long term. Evolution is where your program goes from good to
great, and where those issues that you didn’t really understand in
the first pass become clear. It’s also where your classes can evolve
from single-project usage to reusable resources.

13 At least one aspect of evolution is covered in Martin Fowler’s book Refactoring:
improving the design of existing code (Addison-Wesley 1999). Be forewarned that
this book uses Java examples exclusively.

1: Introduction to Objects 59

What it means to “get it right” isn’t just that the program works
according to the requirements and the use cases. It also means that
the internal structure of the code makes sense to you, and feels like
it fits together well, with no awkward syntax, oversized objects, or
ungainly exposed bits of code. In addition, you must have some
sense that the program structure will survive the changes that it will
inevitably go through during its lifetime, and that those changes can
be made easily and cleanly. This is no small feat. You must not only
understand what you’re building, but also how the program will
evolve (what I call the vector of change14). Fortunately, object-
oriented programming languages are particularly adept at
supporting this kind of continuing modification – the boundaries
created by the objects are what tend to keep the structure from
breaking down. They also allow you to make changes – ones that
would seem drastic in a procedural program – without causing
earthquakes throughout your code. In fact, support for evolution
might be the most important benefit of OOP.

With evolution, you create something that at least approximates
what you think you’re building, and then you kick the tires,
compare it to your requirements and see where it falls short. Then
you can go back and fix it by redesigning and re-implementing the
portions of the program that didn’t work right15. You might actually
need to solve the problem, or an aspect of the problem, several
times before you hit on the right solution. (A study of Design
Patterns, described in Volume 2, is usually helpful here.)

Evolution also occurs when you build a system, see that it matches
your requirements, and then discover it wasn’t actually what you
wanted. When you see the system in operation, you find that you
really wanted to solve a different problem. If you think this kind of
evolution is going to happen, then you owe it to yourself to build

14 This term is explored in the Design Patterns chapter in Volume 2.
15 This is something like “rapid prototyping,” where you were supposed to build a
quick-and-dirty version so that you could learn about the system, and then throw
away your prototype and build it right. The trouble with rapid prototyping is that
people didn’t throw away the prototype, but instead built upon it. Combined with the
lack of structure in procedural programming, this often produced messy systems that
were expensive to maintain.

60 Thinking in C++ www.BruceEckel.com

your first version as quickly as possible so you can find out if it is
indeed what you want.

Perhaps the most important thing to remember is that by default –
by definition, really – if you modify a class then its super- and
subclasses will still function. You need not fear modification
(especially if you have a built-in set of unit tests to verify the
correctness of your modifications). Modification won’t necessarily
break the program, and any change in the outcome will be limited
to subclasses and/or specific collaborators of the class you change.

Plans pay off
Of course you wouldn’t build a house without a lot of carefully-
drawn plans. If you build a deck or a dog house, your plans won’t be
so elaborate but you’ll probably still start with some kind of
sketches to guide you on your way. Software development has gone
to extremes. For a long time, people didn’t have much structure in
their development, but then big projects began failing. In reaction,
we ended up with methodologies that had an intimidating amount
of structure and detail, primarily intended for those big projects.
These methodologies were too scary to use – it looked like you’d
spend all your time writing documents and no time programming.
(This was often the case.) I hope that what I’ve shown you here
suggests a middle path – a sliding scale. Use an approach that fits
your needs (and your personality). No matter how minimal you
choose to make it, some kind of plan will make a big improvement
in your project as opposed to no plan at all. Remember that, by
most estimates, over 50 percent of projects fail (some estimates go
up to 70 percent!).

By following a plan – preferably one that is simple and brief – and
coming up with design structure before coding, you’ll discover that
things fall together far more easily than if you dive in and start
hacking, and you’ll also realize a great deal of satisfaction. It’s my
experience that coming up with an elegant solution is deeply
satisfying at an entirely different level; it feels closer to art than
technology. And elegance always pays off; it’s not a frivolous
pursuit. Not only does it give you a program that’s easier to build

1: Introduction to Objects 61

and debug, but it’s also easier to understand and maintain, and
that’s where the financial value lies.

Extreme programming
I have studied analysis and design techniques, on and off, since I
was in graduate school. The concept of Extreme Programming
(XP) is the most radical, and delightful, that I’ve seen. You can find
it chronicled in Extreme Programming Explained by Kent Beck
(Addison-Wesley 2000) and on the Web at
www.xprogramming.com.

XP is both a philosophy about programming work and a set of
guidelines to do it. Some of these guidelines are reflected in other
recent methodologies, but the two most important and distinct
contributions, in my opinion, are “write tests first” and “pair
programming.” Although he argues strongly for the whole process,
Beck points out that if you adopt only these two practices you’ll
greatly improve your productivity and reliability.

Write tests first
Testing has traditionally been relegated to the last part of a project,
after you’ve “gotten everything working, but just to be sure.” It’s
implicitly had a low priority, and people who specialize in it have
not been given a lot of status and have often even been cordoned off
in a basement, away from the “real programmers.” Test teams have
responded in kind, going so far as to wear black clothing and
cackling with glee whenever they broke something (to be honest,
I’ve had this feeling myself when breaking C++ compilers).

XP completely revolutionizes the concept of testing by giving it
equal (or even greater) priority than the code. In fact, you write the
tests before you write the code that’s being tested, and the tests stay
with the code forever. The tests must be executed successfully every
time you do an integration of the project (which is often, sometimes
more than once a day).

Writing tests first has two extremely important effects.

62 Thinking in C++ www.BruceEckel.com

First, it forces a clear definition of the interface of a class. I’ve often
suggested that people “imagine the perfect class to solve a
particular problem” as a tool when trying to design the system. The
XP testing strategy goes further than that – it specifies exactly what
the class must look like, to the consumer of that class, and exactly
how the class must behave. In no uncertain terms. You can write all
the prose, or create all the diagrams you want describing how a
class should behave and what it looks like, but nothing is as real as a
set of tests. The former is a wish list, but the tests are a contract that
is enforced by the compiler and the running program. It’s hard to
imagine a more concrete description of a class than the tests.

While creating the tests, you are forced to completely think out the
class and will often discover needed functionality that might be
missed during the thought experiments of UML diagrams, CRC
cards, use cases, etc.

The second important effect of writing the tests first comes from
running the tests every time you do a build of your software. This
activity gives you the other half of the testing that’s performed by
the compiler. If you look at the evolution of programming languages
from this perspective, you’ll see that the real improvements in the
technology have actually revolved around testing. Assembly
language checked only for syntax, but C imposed some semantic
restrictions, and these prevented you from making certain types of
mistakes. OOP languages impose even more semantic restrictions,
which if you think about it are actually forms of testing. “Is this data
type being used properly? Is this function being called properly?”
are the kinds of tests that are being performed by the compiler or
run-time system. We’ve seen the results of having these tests built
into the language: people have been able to write more complex
systems, and get them to work, with much less time and effort. I’ve
puzzled over why this is, but now I realize it’s the tests: you do
something wrong, and the safety net of the built-in tests tells you
there’s a problem and points you to where it is.

But the built-in testing afforded by the design of the language can
only go so far. At some point, you must step in and add the rest of
the tests that produce a full suite (in cooperation with the compiler
and run-time system) that verifies all of your program. And, just

1: Introduction to Objects 63

like having a compiler watching over your shoulder, wouldn’t you
want these tests helping you right from the beginning? That’s why
you write them first, and run them automatically with every build of
your system. Your tests become an extension of the safety net
provided by the language.

One of the things that I’ve discovered about the use of more and
more powerful programming languages is that I am emboldened to
try more brazen experiments, because I know that the language will
keep me from wasting my time chasing bugs. The XP test scheme
does the same thing for your entire project. Because you know your
tests will always catch any problems that you introduce (and you
regularly add any new tests as you think of them), you can make big
changes when you need to without worrying that you’ll throw the
whole project into complete disarray. This is incredibly powerful.

Pair programming
Pair programming goes against the rugged individualism that we’ve
been indoctrinated into from the beginning, through school (where
we succeed or fail on our own, and working with our neighbors is
considered “cheating”) and media, especially Hollywood movies in
which the hero is usually fighting against mindless conformity16.
Programmers, too, are considered paragons of individuality –
“cowboy coders” as Larry Constantine likes to say. And yet XP,
which is itself battling against conventional thinking, says that code
should be written with two people per workstation. And that this
should be done in an area with a group of workstations, without the
barriers that the facilities design people are so fond of. In fact, Beck
says that the first task of converting to XP is to arrive with
screwdrivers and Allen wrenches and take apart everything that
gets in the way.17 (This will require a manager who can deflect the
ire of the facilities department.)

16 Although this may be a more American perspective, the stories of Hollywood reach
everywhere.
17 Including (especially) the PA system. I once worked in a company that insisted on
broadcasting every phone call that arrived for every executive, and it constantly
interrupted our productivity (but the managers couldn’t begin to conceive of stifling

64 Thinking in C++ www.BruceEckel.com

The value of pair programming is that one person is actually doing
the coding while the other is thinking about it. The thinker keeps
the big picture in mind, not only the picture of the problem at hand,
but the guidelines of XP. If two people are working, it’s less likely
that one of them will get away with saying, “I don’t want to write the
tests first,” for example. And if the coder gets stuck, they can swap
places. If both of them get stuck, their musings may be overheard
by someone else in the work area who can contribute. Working in
pairs keeps things flowing and on track. Probably more important,
it makes programming a lot more social and fun.

I’ve begun using pair programming during the exercise periods in
some of my seminars and it seems to significantly improve
everyone’s experience.

Why C++ succeeds
Part of the reason C++ has been so successful is that the goal was
not just to turn C into an OOP language (although it started that
way), but also to solve many other problems facing developers
today, especially those who have large investments in C.
Traditionally, OOP languages have suffered from the attitude that
you should abandon everything you know and start from scratch
with a new set of concepts and a new syntax, arguing that it’s better
in the long run to lose all the old baggage that comes with
procedural languages. This may be true, in the long run. But in the
short run, a lot of that baggage was valuable. The most valuable
elements may not be the existing code base (which, given adequate
tools, could be translated), but instead the existing mind base. If
you’re a functioning C programmer and must drop everything you
know about C in order to adopt a new language, you immediately
become much less productive for many months, until your mind fits
around the new paradigm. Whereas if you can leverage off of your
existing C knowledge and expand on it, you can continue to be
productive with what you already know while moving into the world
of object-oriented programming. As everyone has his or her own

such an important service as the PA). Finally, when no one was looking I started
snipping speaker wires.

1: Introduction to Objects 65

mental model of programming, this move is messy enough as it is
without the added expense of starting with a new language model
from square one. So the reason for the success of C++, in a nutshell,
is economic: It still costs to move to OOP, but C++ may cost less18.

The goal of C++ is improved productivity. This productivity comes
in many ways, but the language is designed to aid you as much as
possible, while hindering you as little as possible with arbitrary
rules or any requirement that you use a particular set of features.
C++ is designed to be practical; C++ language design decisions
were based on providing the maximum benefits to the programmer
(at least, from the world view of C).

A better C
You get an instant win even if you continue to write C code because
C++ has closed many holes in the C language and provides better
type checking and compile-time analysis. You’re forced to declare
functions so that the compiler can check their use. The need for the
preprocessor has virtually been eliminated for value substitution
and macros, which removes a set of difficult-to-find bugs. C++ has a
feature called references that allows more convenient handling of
addresses for function arguments and return values. The handling
of names is improved through a feature called function
overloading, which allows you to use the same name for different
functions. A feature called namespaces also improves the control of
names. There are numerous smaller features that improve the
safety of C.

You’re already on the learning curve
The problem with learning a new language is productivity. No
company can afford to suddenly lose a productive software engineer
because he or she is learning a new language. C++ is an extension to
C, not a complete new syntax and programming model. It allows
you to continue creating useful code, applying the features

18 I say “may” because, due to the complexity of C++, it might actually be cheaper to
move to Java. But the decision of which language to choose has many factors, and in
this book I’ll assume that you’ve chosen C++.

66 Thinking in C++ www.BruceEckel.com

gradually as you learn and understand them. This may be one of the
most important reasons for the success of C++.

In addition, all of your existing C code is still viable in C++, but
because the C++ compiler is pickier, you’ll often find hidden C
errors when recompiling the code in C++.

Efficiency
Sometimes it is appropriate to trade execution speed for
programmer productivity. A financial model, for example, may be
useful for only a short period of time, so it’s more important to
create the model rapidly than to execute it rapidly. However, most
applications require some degree of efficiency, so C++ always errs
on the side of greater efficiency. Because C programmers tend to be
very efficiency-conscious, this is also a way to ensure that they
won’t be able to argue that the language is too fat and slow. A
number of features in C++ are intended to allow you to tune for
performance when the generated code isn’t efficient enough.

Not only do you have the same low-level control as in C (and the
ability to directly write assembly language within a C++ program),
but anecdotal evidence suggests that the program speed for an
object-oriented C++ program tends to be within ±10% of a program
written in C, and often much closer19. The design produced for an
OOP program may actually be more efficient than the C
counterpart.

Systems are easier

to express and understand
Classes designed to fit the problem tend to express it better. This
means that when you write the code, you’re describing your
solution in the terms of the problem space (“Put the grommet in the
bin”) rather than the terms of the computer, which is the solution
space (“Set the bit in the chip that means that the relay will close”).

19 However, look at Dan Saks’ columns in the C/C++ User’s Journal for some
important investigations into C++ library performance.

1: Introduction to Objects 67

You deal with higher-level concepts and can do much more with a
single line of code.

The other benefit of this ease of expression is maintenance, which
(if reports can be believed) takes a huge portion of the cost over a
program’s lifetime. If a program is easier to understand, then it’s
easier to maintain. This can also reduce the cost of creating and
maintaining the documentation.

Maximal leverage with libraries
The fastest way to create a program is to use code that’s already
written: a library. A major goal in C++ is to make library use easier.
This is accomplished by casting libraries into new data types
(classes), so that bringing in a library means adding new types to
the language. Because the C++ compiler takes care of how the
library is used – guaranteeing proper initialization and cleanup,
and ensuring that functions are called properly – you can focus on
what you want the library to do, not how you have to do it.

Because names can be sequestered to portions of your program via
C++ namespaces, you can use as many libraries as you want
without the kinds of name clashes you’d run into with C.

Source-code reuse with templates
There is a significant class of types that require source-code
modification in order to reuse them effectively. The template
feature in C++ performs the source code modification
automatically, making it an especially powerful tool for reusing
library code. A type that you design using templates will work
effortlessly with many other types. Templates are especially nice
because they hide the complexity of this kind of code reuse from the
client programmer.

Error handling
Error handling in C is a notorious problem, and one that is often
ignored – finger-crossing is usually involved. If you’re building a
large, complex program, there’s nothing worse than having an error
buried somewhere with no clue as to where it came from. C++

68 Thinking in C++ www.BruceEckel.com

exception handling (introduced in this Volume, and fully covered in
Volume 2, which is downloadable from www.BruceEckel.com) is a
way to guarantee that an error is noticed and that something
happens as a result.

Programming in the large
Many traditional languages have built-in limitations to program
size and complexity. BASIC, for example, can be great for pulling
together quick solutions for certain classes of problems, but if the
program gets more than a few pages long or ventures out of the
normal problem domain of that language, it’s like trying to swim
through an ever-more viscous fluid. C, too, has these limitations.
For example, when a program gets beyond perhaps 50,000 lines of
code, name collisions start to become a problem – effectively, you
run out of function and variable names. Another particularly bad
problem is the little holes in the C language – errors buried in a
large program can be extremely difficult to find.

There’s no clear line that tells you when your language is failing
you, and even if there were, you’d ignore it. You don’t say, “My
BASIC program just got too big; I’ll have to rewrite it in C!” Instead,
you try to shoehorn a few more lines in to add that one new feature.
So the extra costs come creeping up on you.

C++ is designed to aid programming in the large, that is, to erase
those creeping-complexity boundaries between a small program
and a large one. You certainly don’t need to use OOP, templates,
namespaces, and exception handling when you’re writing a hello-
world style utility program, but those features are there when you
need them. And the compiler is aggressive about ferreting out bug-
producing errors for small and large programs alike.

Strategies for transition
If you buy into OOP, your next question is probably, “How can I get
my manager/colleagues/department/peers to start using objects?”
Think about how you – one independent programmer – would go
about learning to use a new language and a new programming
paradigm. You’ve done it before. First comes education and

1: Introduction to Objects 69

examples; then comes a trial project to give you a feel for the basics
without doing anything too confusing. Then comes a “real world”
project that actually does something useful. Throughout your first
projects you continue your education by reading, asking questions
of experts, and trading hints with friends. This is the approach
many experienced programmers suggest for the switch from C to
C++. Switching an entire company will of course introduce certain
group dynamics, but it will help at each step to remember how one
person would do it.

Guidelines
Here are some guidelines to consider when making the transition to
OOP and C++:

1. Training
The first step is some form of education. Remember the company’s
investment in plain C code, and try not to throw everything into
disarray for six to nine months while everyone puzzles over how
multiple inheritance works. Pick a small group for indoctrination,
preferably one composed of people who are curious, work well
together, and can function as their own support network while
they’re learning C++.

An alternative approach that is sometimes suggested is the
education of all company levels at once, including overview courses
for strategic managers as well as design and programming courses
for project builders. This is especially good for smaller companies
making fundamental shifts in the way they do things, or at the
division level of larger companies. Because the cost is higher,
however, some may choose to start with project-level training, do a
pilot project (possibly with an outside mentor), and let the project
team become the teachers for the rest of the company.

2. Low-risk project
Try a low-risk project first and allow for mistakes. Once you’ve
gained some experience, you can either seed other projects from
members of this first team or use the team members as an OOP
technical support staff. This first project may not work right the
first time, so it should not be mission-critical for the company. It

70 Thinking in C++ www.BruceEckel.com

should be simple, self-contained, and instructive; this means that it
should involve creating classes that will be meaningful to the other
programmers in the company when they get their turn to learn
C++.

3. Model from success
Seek out examples of good object-oriented design before starting
from scratch. There’s a good probability that someone has solved
your problem already, and if they haven’t solved it exactly you can
probably apply what you’ve learned about abstraction to modify an
existing design to fit your needs. This is the general concept of
design patterns, covered in Volume 2.

4. Use existing class libraries
The primary economic motivation for switching to OOP is the easy
use of existing code in the form of class libraries (in particular, the
Standard C++ libraries, which are covered in depth in Volume two
of this book). The shortest application development cycle will result
when you don’t have to write anything but main(), creating and
using objects from off-the-shelf libraries. However, some new
programmers don’t understand this, are unaware of existing class
libraries, or, through fascination with the language, desire to write
classes that may already exist. Your success with OOP and C++ will
be optimized if you make an effort to seek out and reuse other
people’s code early in the transition process.

5. Don’t rewrite existing code in C++
Although compiling your C code with a C++ compiler usually
produces (sometimes tremendous) benefits by finding problems in
the old code, it is not usually the best use of your time to take
existing, functional code and rewrite it in C++. (If you must turn it
into objects, you can “wrap” the C code in C++ classes.) There are
incremental benefits, especially if the code is slated for reuse. But
chances are you aren’t going to see the dramatic increases in
productivity that you hope for in your first few projects unless that
project is a new one. C++ and OOP shine best when taking a project
from concept to reality.

1: Introduction to Objects 71

Management obstacles
If you’re a manager, your job is to acquire resources for your team,
to overcome barriers to your team’s success, and in general to try to
provide the most productive and enjoyable environment so your
team is most likely to perform those miracles that are always being
asked of you. Moving to C++ falls in all three of these categories,
and it would be wonderful if it didn’t cost you anything as well.
Although moving to C++ may be cheaper – depending on your
constraints20 – than the OOP alternatives for a team of C
programmers (and probably for programmers in other procedural
languages), it isn’t free, and there are obstacles you should be aware
of before trying to sell the move to C++ within your company and
embarking on the move itself.

Startup costs
The cost of moving to C++ is more than just the acquisition of C++
compilers (the GNU C++ compiler, one of the very best, is free).
Your medium- and long-term costs will be minimized if you invest
in training (and possibly mentoring for your first project) and also if
you identify and purchase class libraries that solve your problem
rather than trying to build those libraries yourself. These are hard-
money costs that must be factored into a realistic proposal. In
addition, there are the hidden costs in loss of productivity while
learning a new language and possibly a new programming
environment. Training and mentoring can certainly minimize these,
but team members must overcome their own struggles to
understand the new technology. During this process they will make
more mistakes (this is a feature, because acknowledged mistakes
are the fastest path to learning) and be less productive. Even then,
with some types of programming problems, the right classes, and
the right development environment, it’s possible to be more
productive while you’re learning C++ (even considering that you’re
making more mistakes and writing fewer lines of code per day) than
if you’d stayed with C.

20 Because of its productivity improvements, the Java language should also be
considered here.

72 Thinking in C++ www.BruceEckel.com

Performance issues
A common question is, “Doesn’t OOP automatically make my
programs a lot bigger and slower?” The answer is, “It depends.”
Most traditional OOP languages were designed with
experimentation and rapid prototyping in mind rather than lean-
and-mean operation. Thus, they virtually guaranteed a significant
increase in size and decrease in speed. C++, however, is designed
with production programming in mind. When your focus is on
rapid prototyping, you can throw together components as fast as
possible while ignoring efficiency issues. If you’re using any third
party libraries, these are usually already optimized by their vendors;
in any case it’s not an issue while you’re in rapid-development
mode. When you have a system that you like, if it’s small and fast
enough, then you’re done. If not, you begin tuning with a profiling
tool, looking first for speedups that can be done with simple
applications of built-in C++ features. If that doesn’t help, you look
for modifications that can be made in the underlying
implementation so no code that uses a particular class needs to be
changed. Only if nothing else solves the problem do you need to
change the design. The fact that performance is so critical in that
portion of the design is an indicator that it must be part of the
primary design criteria. You have the benefit of finding this out
early using rapid development.

As mentioned earlier, the number that is most often given for the
difference in size and speed between C and C++ is ±10%, and often
much closer to par. You might even get a significant improvement
in size and speed when using C++ rather than C because the design
you make for C++ could be quite different from the one you’d make
for C.

The evidence for size and speed comparisons between C and C++
tends to be anecdotal and is likely to remain so. Regardless of the
number of people who suggest that a company try the same project
using C and C++, no company is likely to waste money that way
unless it’s very big and interested in such research projects. Even
then, it seems like the money could be better spent. Almost
universally, programmers who have moved from C (or some other
procedural language) to C++ (or some other OOP language) have
had the personal experience of a great acceleration in their

1: Introduction to Objects 73

programming productivity, and that’s the most compelling
argument you can find.

Common design errors
When starting your team into OOP and C++, programmers will
typically go through a series of common design errors. This often
happens because of too little feedback from experts during the
design and implementation of early projects, because no experts
have been developed within the company and there may be
resistance to retaining consultants. It’s easy to feel that you
understand OOP too early in the cycle and go off on a bad tangent.
Something that’s obvious to someone experienced with the
language may be a subject of great internal debate for a novice.
Much of this trauma can be skipped by using an experienced
outside expert for training and mentoring.

On the other hand, the fact that it is easy to make these design
errors points to C++’s main drawback: its backward compatibility
with C (of course, that’s also its main strength). To accomplish the
feat of being able to compile C code, the language had to make some
compromises, which have resulted in a number of “dark corners.”
These are a reality, and comprise much of the learning curve for the
language. In this book and the subsequent volume (and in other
books; see Appendix C), I try to reveal most of the pitfalls you are
likely to encounter when working with C++. You should always be
aware that there are some holes in the safety net.

Summary
This chapter attempts to give you a feel for the broad issues of
object-oriented programming and C++, including why OOP is
different, and why C++ in particular is different, concepts of OOP
methodologies, and finally the kinds of issues you will encounter
when moving your own company to OOP and C++.

OOP and C++ may not be for everyone. It’s important to evaluate
your own needs and decide whether C++ will optimally satisfy those
needs, or if you might be better off with another programming
system (including the one you’re currently using). If you know that
your needs will be very specialized for the foreseeable future and if

74 Thinking in C++ www.BruceEckel.com

you have specific constraints that may not be satisfied by C++, then
you owe it to yourself to investigate the alternatives21. Even if you
eventually choose C++ as your language, you’ll at least understand
what the options were and have a clear vision of why you took that
direction.

You know what a procedural program looks like: data definitions
and function calls. To find the meaning of such a program you have
to work a little, looking through the function calls and low-level
concepts to create a model in your mind. This is the reason we need
intermediate representations when designing procedural programs
– by themselves, these programs tend to be confusing because the
terms of expression are oriented more toward the computer than to
the problem you’re solving.

Because C++ adds many new concepts to the C language, your
natural assumption may be that the main() in a C++ program will
be far more complicated than for the equivalent C program. Here,
you’ll be pleasantly surprised: A well-written C++ program is
generally far simpler and much easier to understand than the
equivalent C program. What you’ll see are the definitions of the
objects that represent concepts in your problem space (rather than
the issues of the computer representation) and messages sent to
those objects to represent the activities in that space. One of the
delights of object-oriented programming is that, with a well-
designed program, it’s easy to understand the code by reading it.
Usually there’s a lot less code, as well, because many of your
problems will be solved by reusing existing library code.

21 In particular, I recommend looking at Java (http://java.sun.com) and Python
(http://www.Python.org).

 75

2: Making & Using Objects
This chapter will introduce enough C++ syntax and

program construction concepts to allow you to write

and run some simple object-oriented programs. In the

subsequent chapter we will cover the basic syntax of C

and C++ in detail.

76 Thinking in C++ www.BruceEckel.com

By reading this chapter first, you’ll get the basic flavor of what it is
like to program with objects in C++, and you’ll also discover some
of the reasons for the enthusiasm surrounding this language. This
should be enough to carry you through Chapter 3, which can be a
bit exhausting since it contains most of the details of the C
language.

The user-defined data type, or class, is what distinguishes C++ from
traditional procedural languages. A class is a new data type that you
or someone else creates to solve a particular kind of problem. Once
a class is created, anyone can use it without knowing the specifics of
how it works, or even how classes are built. This chapter treats
classes as if they are just another built-in data type available for use
in programs.

Classes that someone else has created are typically packaged into a
library. This chapter uses several of the class libraries that come
with all C++ implementations. An especially important standard
library is iostreams, which (among other things) allow you to read
from files and the keyboard, and to write to files and the display.
You’ll also see the very handy string class, and the vector
container from the Standard C++ Library. By the end of the
chapter, you’ll see how easy it is to use a pre-defined library of
classes.

In order to create your first program you must understand the tools
used to build applications.

The process of language translation
All computer languages are translated from something that tends to
be easy for a human to understand (source code) into something
that is executed on a computer (machine instructions).
Traditionally, translators fall into two classes: interpreters and
compilers.

2: Making & Using Objects 77

Interpreters
An interpreter translates source code into activities (which may
comprise groups of machine instructions) and immediately
executes those activities. BASIC, for example, has been a popular
interpreted language. Traditional BASIC interpreters translate and
execute one line at a time, and then forget that the line has been
translated. This makes them slow, since they must re-translate any
repeated code. BASIC has also been compiled, for speed. More
modern interpreters, such as those for the Python language,
translate the entire program into an intermediate language that is
then executed by a much faster interpreter1.

Interpreters have many advantages. The transition from writing
code to executing code is almost immediate, and the source code is
always available so the interpreter can be much more specific when
an error occurs. The benefits often cited for interpreters are ease of
interaction and rapid development (but not necessarily execution)
of programs.

Interpreted languages often have severe limitations when building
large projects (Python seems to be an exception to this). The
interpreter (or a reduced version) must always be in memory to
execute the code, and even the fastest interpreter may introduce
unacceptable speed restrictions. Most interpreters require that the
complete source code be brought into the interpreter all at once.
Not only does this introduce a space limitation, it can also cause
more difficult bugs if the language doesn’t provide facilities to
localize the effect of different pieces of code.

Compilers
A compiler translates source code directly into assembly language
or machine instructions. The eventual end product is a file or files
containing machine code. This is an involved process, and usually

1 The boundary between compilers and interpreters can tend to become a bit fuzzy,
especially with Python, which has many of the features and power of a compiled
language but the quick turnaround of an interpreted language.

78 Thinking in C++ www.BruceEckel.com

takes several steps. The transition from writing code to executing
code is significantly longer with a compiler.

Depending on the acumen of the compiler writer, programs
generated by a compiler tend to require much less space to run, and
they run much more quickly. Although size and speed are probably
the most often cited reasons for using a compiler, in many
situations they aren’t the most important reasons. Some languages
(such as C) are designed to allow pieces of a program to be
compiled independently. These pieces are eventually combined into
a final executable program by a tool called the linker. This process
is called separate compilation.

Separate compilation has many benefits. A program that, taken all
at once, would exceed the limits of the compiler or the compiling
environment can be compiled in pieces. Programs can be built and
tested one piece at a time. Once a piece is working, it can be saved
and treated as a building block. Collections of tested and working
pieces can be combined into libraries for use by other
programmers. As each piece is created, the complexity of the other
pieces is hidden. All these features support the creation of large
programs2.

Compiler debugging features have improved significantly over time.
Early compilers only generated machine code, and the programmer
inserted print statements to see what was going on. This is not
always effective. Modern compilers can insert information about
the source code into the executable program. This information is
used by powerful source-level debuggers to show exactly what is
happening in a program by tracing its progress through the source
code.

Some compilers tackle the compilation-speed problem by
performing in-memory compilation. Most compilers work with
files, reading and writing them in each step of the compilation
process. In-memory compilers keep the compiler program in RAM.
For small programs, this can seem as responsive as an interpreter.

2 Python is again an exception, since it also provides separate compilation.

2: Making & Using Objects 79

The compilation process
To program in C and C++, you need to understand the steps and
tools in the compilation process. Some languages (C and C++, in
particular) start compilation by running a preprocessor on the
source code. The preprocessor is a simple program that replaces
patterns in the source code with other patterns the programmer has
defined (using preprocessor directives). Preprocessor directives are
used to save typing and to increase the readability of the code.
(Later in the book, you’ll learn how the design of C++ is meant to
discourage much of the use of the preprocessor, since it can cause
subtle bugs.) The pre-processed code is often written to an
intermediate file.

Compilers usually do their work in two passes. The first pass parses
the pre-processed code. The compiler breaks the source code into
small units and organizes it into a structure called a tree. In the
expression “A + B” the elements ‘A’, ‘+,’ and ‘B’ are leaves on the
parse tree.

A global optimizer is sometimes used between the first and second
passes to produce smaller, faster code.

In the second pass, the code generator walks through the parse tree
and generates either assembly language code or machine code for
the nodes of the tree. If the code generator creates assembly code,
the assembler must then be run. The end result in both cases is an
object module (a file that typically has an extension of .o or .obj). A
peephole optimizer is sometimes used in the second pass to look for
pieces of code containing redundant assembly-language statements.

The use of the word “object” to describe chunks of machine code is
an unfortunate artifact. The word came into use before object-
oriented programming was in general use. “Object” is used in the
same sense as “goal” when discussing compilation, while in object-
oriented programming it means “a thing with boundaries.”

The linker combines a list of object modules into an executable
program that can be loaded and run by the operating system. When
a function in one object module makes a reference to a function or

80 Thinking in C++ www.BruceEckel.com

variable in another object module, the linker resolves these
references; it makes sure that all the external functions and data
you claimed existed during compilation do exist. The linker also
adds a special object module to perform start-up activities.

The linker can search through special files called libraries in order
to resolve all its references. A library contains a collection of object
modules in a single file. A library is created and maintained by a
program called a librarian.

Static type checking
The compiler performs type checking during the first pass. Type
checking tests for the proper use of arguments in functions and
prevents many kinds of programming errors. Since type checking
occurs during compilation instead of when the program is running,
it is called static type checking.

Some object-oriented languages (notably Java) perform some type
checking at runtime (dynamic type checking). If combined with
static type checking, dynamic type checking is more powerful than
static type checking alone. However, it also adds overhead to
program execution.

C++ uses static type checking because the language cannot assume
any particular runtime support for bad operations. Static type
checking notifies the programmer about misuses of types during
compilation, and thus maximizes execution speed. As you learn
C++, you will see that most of the language design decisions favor
the same kind of high-speed, production-oriented programming the
C language is famous for.

You can disable static type checking in C++. You can also do your
own dynamic type checking – you just need to write the code.

Tools for separate compilation
Separate compilation is particularly important when building large
projects. In C and C++, a program can be created in small,
manageable, independently tested pieces. The most fundamental

2: Making & Using Objects 81

tool for breaking a program up into pieces is the ability to create
named subroutines or subprograms. In C and C++, a subprogram is
called a function, and functions are the pieces of code that can be
placed in different files, enabling separate compilation. Put another
way, the function is the atomic unit of code, since you cannot have
part of a function in one file and another part in a different file; the
entire function must be placed in a single file (although files can
and do contain more than one function).

When you call a function, you typically pass it some arguments,
which are values you’d like the function to work with during its
execution. When the function is finished, you typically get back a
return value, a value that the function hands back to you as a result.
It’s also possible to write functions that take no arguments and
return no values.

To create a program with multiple files, functions in one file must
access functions and data in other files. When compiling a file, the C
or C++ compiler must know about the functions and data in the
other files, in particular their names and proper usage. The
compiler ensures that functions and data are used correctly. This
process of “telling the compiler” the names of external functions
and data and what they should look like is called declaration. Once
you declare a function or variable, the compiler knows how to check
to make sure it is used properly.

Declarations vs. definitions
It’s important to understand the difference between declarations
and definitions because these terms will be used precisely
throughout the book. Essentially all C and C++ programs require
declarations. Before you can write your first program, you need to
understand the proper way to write a declaration.

A declaration introduces a name – an identifier – to the compiler.
It tells the compiler “This function or this variable exists
somewhere, and here is what it should look like.” A definition, on
the other hand, says: “Make this variable here” or “Make this
function here.” It allocates storage for the name. This meaning
works whether you’re talking about a variable or a function; in

82 Thinking in C++ www.BruceEckel.com

either case, at the point of definition the compiler allocates storage.
For a variable, the compiler determines how big that variable is and
causes space to be generated in memory to hold the data for that
variable. For a function, the compiler generates code, which ends
up occupying storage in memory.

You can declare a variable or a function in many different places,
but there must be only one definition in C and C++ (this is
sometimes called the ODR: one-definition rule). When the linker is
uniting all the object modules, it will usually complain if it finds
more than one definition for the same function or variable.

A definition can also be a declaration. If the compiler hasn’t seen
the name x before and you define int x;, the compiler sees the
name as a declaration and allocates storage for it all at once.

Function declaration syntax
A function declaration in C and C++ gives the function name, the
argument types passed to the function, and the return value of the
function. For example, here is a declaration for a function called
func1() that takes two integer arguments (integers are denoted in
C/C++ with the keyword int) and returns an integer:

int func1(int,int);

The first keyword you see is the return value all by itself: int. The
arguments are enclosed in parentheses after the function name in
the order they are used. The semicolon indicates the end of a
statement; in this case, it tells the compiler “that’s all – there is no
function definition here!”

C and C++ declarations attempt to mimic the form of the item’s use.
For example, if a is another integer the above function might be
used this way:

a = func1(2,3);

Since func1() returns an integer, the C or C++ compiler will check
the use of func1() to make sure that a can accept the return value
and that the arguments are appropriate.

2: Making & Using Objects 83

Arguments in function declarations may have names. The compiler
ignores the names but they can be helpful as mnemonic devices for
the user. For example, we can declare func1() in a different
fashion that has the same meaning:

int func1(int length, int width);

A gotcha
There is a significant difference between C and C++ for functions
with empty argument lists. In C, the declaration:

int func2();

means “a function with any number and type of argument.” This
prevents type-checking, so in C++ it means “a function with no
arguments.”

Function definitions
Function definitions look like function declarations except that they
have bodies. A body is a collection of statements enclosed in braces.
Braces denote the beginning and ending of a block of code. To give
func1() a definition that is an empty body (a body containing no
code), write:

int func1(int length, int width) { }

Notice that in the function definition, the braces replace the
semicolon. Since braces surround a statement or group of
statements, you don’t need a semicolon. Notice also that the
arguments in the function definition must have names if you want
to use the arguments in the function body (since they are never
used here, they are optional).

Variable declaration syntax
The meaning attributed to the phrase “variable declaration” has
historically been confusing and contradictory, and it’s important
that you understand the correct definition so you can read code
properly. A variable declaration tells the compiler what a variable
looks like. It says, “I know you haven’t seen this name before, but I
promise it exists someplace, and it’s a variable of X type.”

84 Thinking in C++ www.BruceEckel.com

In a function declaration, you give a type (the return value), the
function name, the argument list, and a semicolon. That’s enough
for the compiler to figure out that it’s a declaration and what the
function should look like. By inference, a variable declaration might
be a type followed by a name. For example:

int a;

could declare the variable a as an integer, using the logic above.
Here’s the conflict: there is enough information in the code above
for the compiler to create space for an integer called a, and that’s
what happens. To resolve this dilemma, a keyword was necessary
for C and C++ to say “This is only a declaration; it’s defined
elsewhere.” The keyword is extern. It can mean the definition is
external to the file, or that the definition occurs later in the file.

Declaring a variable without defining it means using the extern
keyword before a description of the variable, like this:

extern int a;

extern can also apply to function declarations. For func1(), it
looks like this:

extern int func1(int length, int width);

This statement is equivalent to the previous func1() declarations.
Since there is no function body, the compiler must treat it as a
function declaration rather than a function definition. The extern
keyword is thus superfluous and optional for function declarations.
It is probably unfortunate that the designers of C did not require
the use of extern for function declarations; it would have been
more consistent and less confusing (but would have required more
typing, which probably explains the decision).

Here are some more examples of declarations:

//: C02:Declare.cpp

// Declaration & definition examples

extern int i; // Declaration without definition

extern float f(float); // Function declaration

2: Making & Using Objects 85

float b; // Declaration & definition

float f(float a) { // Definition

 return a + 1.0;

}

int i; // Definition

int h(int x) { // Declaration & definition

 return x + 1;

}

int main() {

 b = 1.0;

 i = 2;

 f(b);

 h(i);

} ///:~

In the function declarations, the argument identifiers are optional.
In the definitions, they are required (the identifiers are required
only in C, not C++).

Including headers
Most libraries contain significant numbers of functions and
variables. To save work and ensure consistency when making the
external declarations for these items, C and C++ use a device called
the header file. A header file is a file containing the external
declarations for a library; it conventionally has a file name
extension of ‘h’, such as headerfile.h. (You may also see some
older code using different extensions, such as .hxx or .hpp, but
this is becoming rare.)

The programmer who creates the library provides the header file.
To declare the functions and external variables in the library, the
user simply includes the header file. To include a header file, use
the #include preprocessor directive. This tells the preprocessor to
open the named header file and insert its contents where the
#include statement appears. A #include may name a file in two
ways: in angle brackets (< >) or in double quotes.

File names in angle brackets, such as:

#include <header>

86 Thinking in C++ www.BruceEckel.com

cause the preprocessor to search for the file in a way that is
particular to your implementation, but typically there’s some kind
of “include search path” that you specify in your environment or on
the compiler command line. The mechanism for setting the search
path varies between machines, operating systems, and C++
implementations, and may require some investigation on your part.

File names in double quotes, such as:

#include "local.h"

tell the preprocessor to search for the file in (according to the
specification) an “implementation-defined way.” What this typically
means is to search for the file relative to the current directory. If the
file is not found, then the include directive is reprocessed as if it had
angle brackets instead of quotes.

To include the iostream header file, you write:

#include <iostream>

The preprocessor will find the iostream header file (often in a
subdirectory called “include”) and insert it.

Standard C++ include format
As C++ evolved, different compiler vendors chose different
extensions for file names. In addition, various operating systems
have different restrictions on file names, in particular on name
length. These issues caused source code portability problems. To
smooth over these rough edges, the standard uses a format that
allows file names longer than the notorious eight characters and
eliminates the extension. For example, instead of the old style of
including iostream.h, which looks like this:

#include <iostream.h>

you can now write:

#include <iostream>

The translator can implement the include statements in a way that
suits the needs of that particular compiler and operating system, if

2: Making & Using Objects 87

necessary truncating the name and adding an extension. Of course,
you can also copy the headers given you by your compiler vendor to
ones without extensions if you want to use this style before a vendor
has provided support for it.

The libraries that have been inherited from C are still available with
the traditional ‘.h’ extension. However, you can also use them with
the more modern C++ include style by prepending a “c” before the
name. Thus:

#include <stdio.h>

#include <stdlib.h>

become:

#include <cstdio>

#include <cstdlib>

And so on, for all the Standard C headers. This provides a nice
distinction to the reader indicating when you’re using C versus C++
libraries.

The effect of the new include format is not identical to the old:
using the .h gives you the older, non-template version, and omitting
the .h gives you the new templatized version. You’ll usually have
problems if you try to intermix the two forms in a single program.

Linking
The linker collects object modules (which often use file name
extensions like .o or .obj), generated by the compiler, into an
executable program the operating system can load and run. It is the
last phase of the compilation process.

Linker characteristics vary from system to system. In general, you
just tell the linker the names of the object modules and libraries you
want linked together, and the name of the executable, and it goes to
work. Some systems require you to invoke the linker yourself. With
most C++ packages you invoke the linker through the C++
compiler. In many situations, the linker is invoked for you invisibly.

88 Thinking in C++ www.BruceEckel.com

Some older linkers won’t search object files and libraries more than
once, and they search through the list you give them from left to
right. This means that the order of object files and libraries can be
important. If you have a mysterious problem that doesn’t show up
until link time, one possibility is the order in which the files are
given to the linker.

Using libraries
Now that you know the basic terminology, you can understand how
to use a library. To use a library:

1. Include the library’s header file.

2. Use the functions and variables in the library.

3. Link the library into the executable program.

These steps also apply when the object modules aren’t combined
into a library. Including a header file and linking the object modules
are the basic steps for separate compilation in both C and C++.

How the linker searches a library
When you make an external reference to a function or variable in C
or C++, the linker, upon encountering this reference, can do one of
two things. If it has not already encountered the definition for the
function or variable, it adds the identifier to its list of “unresolved
references.” If the linker has already encountered the definition, the
reference is resolved.

If the linker cannot find the definition in the list of object modules,
it searches the libraries. Libraries have some sort of indexing so the
linker doesn’t need to look through all the object modules in the
library – it just looks in the index. When the linker finds a
definition in a library, the entire object module, not just the
function definition, is linked into the executable program. Note that
the whole library isn’t linked, just the object module in the library
that contains the definition you want (otherwise programs would be
unnecessarily large). If you want to minimize executable program
size, you might consider putting a single function in each source

2: Making & Using Objects 89

code file when you build your own libraries. This requires more
editing3, but it can be helpful to the user.

Because the linker searches files in the order you give them, you can
pre-empt the use of a library function by inserting a file with your
own function, using the same function name, into the list before the
library name appears. Since the linker will resolve any references to
this function by using your function before it searches the library,
your function is used instead of the library function. Note that this
can also be a bug, and the kind of thing C++ namespaces prevent.

Secret additions
When a C or C++ executable program is created, certain items are
secretly linked in. One of these is the startup module, which
contains initialization routines that must be run any time a C or
C++ program begins to execute. These routines set up the stack and
initialize certain variables in the program.

The linker always searches the standard library for the compiled
versions of any “standard” functions called in the program. Because
the standard library is always searched, you can use anything in
that library by simply including the appropriate header file in your
program; you don’t have to tell it to search the standard library. The
iostream functions, for example, are in the Standard C++ library.
To use them, you just include the <iostream> header file.

If you are using an add-on library, you must explicitly add the
library name to the list of files handed to the linker.

Using plain C libraries
Just because you are writing code in C++, you are not prevented
from using C library functions. In fact, the entire C library is
included by default into Standard C++. There has been a
tremendous amount of work done for you in these functions, so
they can save you a lot of time.

3 I would recommend using Perl or Python to automate this task as part of your
library-packaging process (see www.Perl.org or www.Python.org).

90 Thinking in C++ www.BruceEckel.com

This book will use Standard C++ (and thus also Standard C) library
functions when convenient, but only standard library functions will
be used, to ensure the portability of programs. In the few cases in
which library functions must be used that are not in the C++
standard, all attempts will be made to use POSIX-compliant
functions. POSIX is a standard based on a Unix standardization
effort that includes functions that go beyond the scope of the C++
library. You can generally expect to find POSIX functions on Unix
(in particular, Linux) platforms, and often under DOS/Windows.
For example, if you’re using multithreading you are better off using
the POSIX thread library because your code will then be easier to
understand, port and maintain (and the POSIX thread library will
usually just use the underlying thread facilities of the operating
system, if these are provided).

Your first C++ program
You now know almost enough of the basics to create and compile a
program. The program will use the Standard C++ iostream classes.
These read from and write to files and “standard” input and output
(which normally comes from and goes to the console, but may be
redirected to files or devices). In this simple program, a stream
object will be used to print a message on the screen.

Using the iostreams class
To declare the functions and external data in the iostreams class,
include the header file with the statement

#include <iostream>

The first program uses the concept of standard output, which
means “a general-purpose place to send output.” You will see other
examples using standard output in different ways, but here it will
just go to the console. The iostream package automatically defines a
variable (an object) called cout that accepts all data bound for
standard output.

To send data to standard output, you use the operator <<. C
programmers know this operator as the “bitwise left shift,” which

2: Making & Using Objects 91

will be described in the next chapter. Suffice it to say that a bitwise
left shift has nothing to do with output. However, C++ allows
operators to be overloaded. When you overload an operator, you
give it a new meaning when that operator is used with an object of a
particular type. With iostream objects, the operator << means
“send to.” For example:

cout << "howdy!";

sends the string “howdy!” to the object called cout (which is short
for “console output”).

That’s enough operator overloading to get you started. Chapter 12
covers operator overloading in detail.

Namespaces
As mentioned in Chapter 1, one of the problems encountered in the
C language is that you “run out of names” for functions and
identifiers when your programs reach a certain size. Of course, you
don’t really run out of names; it does, however, become harder to
think of new ones after awhile. More importantly, when a program
reaches a certain size it’s typically broken up into pieces, each of
which is built and maintained by a different person or group. Since
C effectively has a single arena where all the identifier and function
names live, this means that all the developers must be careful not to
accidentally use the same names in situations where they can
conflict. This rapidly becomes tedious, time-wasting, and,
ultimately, expensive.

Standard C++ has a mechanism to prevent this collision: the
namespace keyword. Each set of C++ definitions in a library or
program is “wrapped” in a namespace, and if some other definition
has an identical name, but is in a different namespace, then there is
no collision.

Namespaces are a convenient and helpful tool, but their presence
means that you must be aware of them before you can write any
programs. If you simply include a header file and use some
functions or objects from that header, you’ll probably get strange-

92 Thinking in C++ www.BruceEckel.com

sounding errors when you try to compile the program, to the effect
that the compiler cannot find any of the declarations for the items
that you just included in the header file! After you see this message
a few times you’ll become familiar with its meaning (which is “You
included the header file but all the declarations are within a
namespace and you didn’t tell the compiler that you wanted to use
the declarations in that namespace”).

There’s a keyword that allows you to say “I want to use the
declarations and/or definitions in this namespace.” This keyword,
appropriately enough, is using. All of the Standard C++ libraries
are wrapped in a single namespace, which is std (for “standard”).
As this book uses the standard libraries almost exclusively, you’ll
see the following using directive in almost every program:

using namespace std;

This means that you want to expose all the elements from the
namespace called std. After this statement, you don’t have to worry
that your particular library component is inside a namespace, since
the using directive makes that namespace available throughout the
file where the using directive was written.

Exposing all the elements from a namespace after someone has
gone to the trouble to hide them may seem a bit counterproductive,
and in fact you should be careful about thoughtlessly doing this (as
you’ll learn later in the book). However, the using directive exposes
only those names for the current file, so it is not quite as drastic as it
first sounds. (But think twice about doing it in a header file – that is
reckless.)

There’s a relationship between namespaces and the way header files
are included. Before the modern header file inclusion was
standardized (without the trailing ‘.h’, as in <iostream>), the
typical way to include a header file was with the ‘.h’, such as
<iostream.h>. At that time, namespaces were not part of the
language either. So to provide backward compatibility with existing
code, if you say

#include <iostream.h>

2: Making & Using Objects 93

it means

#include <iostream>

using namespace std;

However, in this book the standard include format will be used
(without the ‘.h’) and so the using directive must be explicit.

For now, that’s all you need to know about namespaces, but in
Chapter 10 the subject is covered much more thoroughly.

Fundamentals of program structure
A C or C++ program is a collection of variables, function
definitions, and function calls. When the program starts, it executes
initialization code and calls a special function, “main().” You put
the primary code for the program here.

As mentioned earlier, a function definition consists of a return type
(which must be specified in C++), a function name, an argument
list in parentheses, and the function code contained in braces. Here
is a sample function definition:

int function() {

 // Function code here (this is a comment)

}

The function above has an empty argument list and a body that
contains only a comment.

There can be many sets of braces within a function definition, but
there must always be at least one set surrounding the function
body. Since main() is a function, it must follow these rules. In
C++, main() always has return type of int.

C and C++ are free form languages. With few exceptions, the
compiler ignores newlines and white space, so it must have some
way to determine the end of a statement. Statements are delimited
by semicolons.

94 Thinking in C++ www.BruceEckel.com

C comments start with /* and end with */. They can include
newlines. C++ uses C-style comments and has an additional type of
comment: //. The // starts a comment that terminates with a
newline. It is more convenient than /* */ for one-line comments,
and is used extensively in this book.

"Hello, world!"
And now, finally, the first program:

//: C02:Hello.cpp

// Saying Hello with C++

#include <iostream> // Stream declarations

using namespace std;

int main() {

 cout << "Hello, World! I am "

 << 8 << " Today!" << endl;

} ///:~

The cout object is handed a series of arguments via the ‘<<’
operators. It prints out these arguments in left-to-right order. The
special iostream function endl outputs the line and a newline. With
iostreams, you can string together a series of arguments like this,
which makes the class easy to use.

In C, text inside double quotes is traditionally called a “string.”
However, the Standard C++ library has a powerful class called
string for manipulating text, and so I shall use the more precise
term character array for text inside double quotes.

The compiler creates storage for character arrays and stores the
ASCII equivalent for each character in this storage. The compiler
automatically terminates this array of characters with an extra piece
of storage containing the value 0 to indicate the end of the character
array.

Inside a character array, you can insert special characters by using
escape sequences. These consist of a backslash (\) followed by a
special code. For example \n means newline. Your compiler manual

2: Making & Using Objects 95

or local C guide gives a complete set of escape sequences; others
include \t (tab), \ (backslash), and \b (backspace).

Notice that the statement can continue over multiple lines, and that
the entire statement terminates with a semicolon

Character array arguments and constant numbers are mixed
together in the above cout statement. Because the operator << is
overloaded with a variety of meanings when used with cout, you
can send cout a variety of different arguments and it will “figure
out what to do with the message.”

Throughout this book you’ll notice that the first line of each file will
be a comment that starts with the characters that start a comment
(typically //), followed by a colon, and the last line of the listing will
end with a comment followed by ‘/:~’. This is a technique I use to
allow easy extraction of information from code files (the program to
do this can be found in volume two of this book, at
www.BruceEckel.com). The first line also has the name and
location of the file, so it can be referred to in text and in other files,
and so you can easily locate it in the source code for this book
(which is downloadable from www.BruceEckel.com).

Running the compiler
After downloading and unpacking the book’s source code, find the
program in the subdirectory CO2. Invoke the compiler with
Hello.cpp as the argument. For simple, one-file programs like this
one, most compilers will take you all the way through the process.
For example, to use the GNU C++ compiler (which is freely
available on the Internet), you write:

g++ Hello.cpp

Other compilers will have a similar syntax; consult your compiler’s
documentation for details.

96 Thinking in C++ www.BruceEckel.com

More about iostreams
So far you have seen only the most rudimentary aspect of the
iostreams class. The output formatting available with iostreams also
includes features such as number formatting in decimal, octal, and
hexadecimal. Here’s another example of the use of iostreams:

//: C02:Stream2.cpp

// More streams features

#include <iostream>

using namespace std;

int main() {

 // Specifying formats with manipulators:

 cout << "a number in decimal: "

 << dec << 15 << endl;

 cout << "in octal: " << oct << 15 << endl;

 cout << "in hex: " << hex << 15 << endl;

 cout << "a floating-point number: "

 << 3.14159 << endl;

 cout << "non-printing char (escape): "

 << char(27) << endl;

} ///:~

This example shows the iostreams class printing numbers in
decimal, octal, and hexadecimal using iostream manipulators
(which don’t print anything, but change the state of the output
stream). The formatting of floating-point numbers is determined
automatically by the compiler. In addition, any character can be
sent to a stream object using a cast to a char (a char is a data type
that holds single characters). This cast looks like a function call:
char(), along with the character’s ASCII value. In the program
above, the char(27) sends an “escape” to cout.

Character array concatenation
An important feature of the C preprocessor is character array
concatenation. This feature is used in some of the examples in this
book. If two quoted character arrays are adjacent, and no
punctuation is between them, the compiler will paste the character
arrays together into a single character array. This is particularly
useful when code listings have width restrictions:

2: Making & Using Objects 97

//: C02:Concat.cpp

// Character array Concatenation

#include <iostream>

using namespace std;

int main() {

 cout << "This is far too long to put on a "

 "single line but it can be broken up with "

 "no ill effects\nas long as there is no "

 "punctuation separating adjacent character "

 "arrays.\n";

} ///:~

At first, the code above can look like an error because there’s no
familiar semicolon at the end of each line. Remember that C and
C++ are free-form languages, and although you’ll usually see a
semicolon at the end of each line, the actual requirement is for a
semicolon at the end of each statement, and it’s possible for a
statement to continue over several lines.

Reading input
The iostreams classes provide the ability to read input. The object
used for standard input is cin (for “console input”). cin normally
expects input from the console, but this input can be redirected
from other sources. An example of redirection is shown later in this
chapter.

The iostreams operator used with cin is >>. This operator waits for
the same kind of input as its argument. For example, if you give it
an integer argument, it waits for an integer from the console. Here’s
an example:

//: C02:Numconv.cpp

// Converts decimal to octal and hex

#include <iostream>

using namespace std;

int main() {

 int number;

 cout << "Enter a decimal number: ";

 cin >> number;

 cout << "value in octal = 0"

98 Thinking in C++ www.BruceEckel.com

 << oct << number << endl;

 cout << "value in hex = 0x"

 << hex << number << endl;

} ///:~

This program converts a number typed in by the user into octal and
hexadecimal representations.

Calling other programs
While the typical way to use a program that reads from standard
input and writes to standard output is within a Unix shell script or
DOS batch file, any program can be called from inside a C or C++
program using the Standard C system() function, which is
declared in the header file <cstdlib>:

//: C02:CallHello.cpp

// Call another program

#include <cstdlib> // Declare "system()"

using namespace std;

int main() {

 system("Hello");

} ///:~

To use the system() function, you give it a character array that
you would normally type at the operating system command prompt.
This can also include command-line arguments, and the character
array can be one that you fabricate at run time (instead of just using
a static character array as shown above). The command executes
and control returns to the program.

This program shows you how easy it is to use plain C library
functions in C++; just include the header file and call the function.
This upward compatibility from C to C++ is a big advantage if you
are learning the language starting from a background in C.

Introducing strings
While a character array can be fairly useful, it is quite limited. It’s
simply a group of characters in memory, but if you want to do

2: Making & Using Objects 99

anything with it you must manage all the little details. For example,
the size of a quoted character array is fixed at compile time. If you
have a character array and you want to add some more characters
to it, you’ll need to understand quite a lot (including dynamic
memory management, character array copying, and concatenation)
before you can get your wish. This is exactly the kind of thing we’d
like to have an object do for us.

The Standard C++ string class is designed to take care of (and
hide) all the low-level manipulations of character arrays that were
previously required of the C programmer. These manipulations
have been a constant source of time-wasting and errors since the
inception of the C language. So, although an entire chapter is
devoted to the string class in Volume 2 of this book, the string is
so important and it makes life so much easier that it will be
introduced here and used in much of the early part of the book.

To use strings you include the C++ header file <string>. The
string class is in the namespace std so a using directive is
necessary. Because of operator overloading, the syntax for using
strings is quite intuitive:

//: C02:HelloStrings.cpp

// The basics of the Standard C++ string class

#include <string>

#include <iostream>

using namespace std;

int main() {

 string s1, s2; // Empty strings

 string s3 = "Hello, World."; // Initialized

 string s4("I am"); // Also initialized

 s2 = "Today"; // Assigning to a string

 s1 = s3 + " " + s4; // Combining strings

 s1 += " 8 "; // Appending to a string

 cout << s1 + s2 + "!" << endl;

} ///:~

The first two strings, s1 and s2, start out empty, while s3 and s4
show two equivalent ways to initialize string objects from
character arrays (you can just as easily initialize string objects
from other string objects).

100 Thinking in C++ www.BruceEckel.com

You can assign to any string object using ‘=’. This replaces the
previous contents of the string with whatever is on the right-hand
side, and you don’t have to worry about what happens to the
previous contents – that’s handled automatically for you. To
combine strings you simply use the ‘+’ operator, which also allows
you to combine character arrays with strings. If you want to
append either a string or a character array to another string, you
can use the operator ‘+=’. Finally, note that iostreams already know
what to do with strings, so you can just send a string (or an
expression that produces a string, which happens with s1 + s2 +
"!") directly to cout in order to print it.

Reading and writing files
In C, the process of opening and manipulating files requires a lot of
language background to prepare you for the complexity of the
operations. However, the C++ iostream library provides a simple
way to manipulate files, and so this functionality can be introduced
much earlier than it would be in C.

To open files for reading and writing, you must include
<fstream>. Although this will automatically include
<iostream>, it’s generally prudent to explicitly include
<iostream> if you’re planning to use cin, cout, etc.

To open a file for reading, you create an ifstream object, which
then behaves like cin. To open a file for writing, you create an
ofstream object, which then behaves like cout. Once you’ve
opened the file, you can read from it or write to it just as you would
with any other iostream object. It’s that simple (which is, of course,
the whole point).

One of the most useful functions in the iostream library is
getline(), which allows you to read one line (terminated by a
newline) into a string object4. The first argument is the ifstream

4 There are actually a number of variants of getline(), which will be discussed
thoroughly in the iostreams chapter in Volume 2.

2: Making & Using Objects 101

object you’re reading from and the second argument is the string
object. When the function call is finished, the string object will
contain the line.

Here’s a simple example, which copies the contents of one file into
another:

//: C02:Scopy.cpp

// Copy one file to another, a line at a time

#include <string>

#include <fstream>

using namespace std;

int main() {

 ifstream in("Scopy.cpp"); // Open for reading

 ofstream out("Scopy2.cpp"); // Open for writing

 string s;

 while(getline(in, s)) // Discards newline char

 out << s << "\n"; // ... must add it back

} ///:~

To open the files, you just hand the ifstream and ofstream
objects the file names you want to create, as seen above.

There is a new concept introduced here, which is the while loop.
Although this will be explained in detail in the next chapter, the
basic idea is that the expression in parentheses following the while
controls the execution of the subsequent statement (which can also
be multiple statements, wrapped inside curly braces). As long as the
expression in parentheses (in this case, getline(in, s)) produces a
“true” result, then the statement controlled by the while will
continue to execute. It turns out that getline() will return a value
that can be interpreted as “true” if another line has been read
successfully, and “false” upon reaching the end of the input. Thus,
the above while loop reads every line in the input file and sends
each line to the output file.

getline() reads in the characters of each line until it discovers a
newline (the termination character can be changed, but that won’t
be an issue until the iostreams chapter in Volume 2). However, it
discards the newline and doesn’t store it in the resulting string

102 Thinking in C++ www.BruceEckel.com

object. Thus, if we want the copied file to look just like the source
file, we must add the newline back in, as shown.

Another interesting example is to copy the entire file into a single
string object:

//: C02:FillString.cpp

// Read an entire file into a single string

#include <string>

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 ifstream in("FillString.cpp");

 string s, line;

 while(getline(in, line))

 s += line + "\n";

 cout << s;

} ///:~

Because of the dynamic nature of strings, you don’t have to worry
about how much storage to allocate for a string; you can just keep
adding things and the string will keep expanding to hold whatever
you put into it.

One of the nice things about putting an entire file into a string is
that the string class has many functions for searching and
manipulation that would then allow you to modify the file as a
single string. However, this has its limitations. For one thing, it is
often convenient to treat a file as a collection of lines instead of just
a big blob of text. For example, if you want to add line numbering
it’s much easier if you have each line as a separate string object. To
accomplish this, we’ll need another approach.

Introducing vector
With strings, we can fill up a string object without knowing how
much storage we’re going to need. The problem with reading lines
from a file into individual string objects is that you don’t know up
front how many strings you’re going to need – you only know after

2: Making & Using Objects 103

you’ve read the entire file. To solve this problem, we need some sort
of holder that will automatically expand to contain as many string
objects as we care to put into it.

In fact, why limit ourselves to holding string objects? It turns out
that this kind of problem – not knowing how many of something
you have while you’re writing a program – happens a lot. And this
“container” object sounds like it would be more useful if it would
hold any kind of object at all! Fortunately, the Standard C++
Library has a ready-made solution: the standard container classes.
The container classes are one of the real powerhouses of Standard
C++.

There is often a bit of confusion between the containers and
algorithms in the Standard C++ Library, and the entity known as
the STL. The Standard Template Library was the name Alex
Stepanov (who was working at Hewlett-Packard at the time) used
when he presented his library to the C++ Standards Committee at
the meeting in San Diego, California in Spring 1994. The name
stuck, especially after HP decided to make it available for public
downloads. Meanwhile, the committee integrated it into the
Standard C++ Library, making a large number of changes. STL's
development continues at Silicon Graphics (SGI; see
http://www.sgi.com/Technology/STL). The SGI STL diverges
from the Standard C++ Library on many subtle points. So although
it's a popular misconception, the C++ Standard does not “include”
the STL. It can be a bit confusing since the containers and
algorithms in the Standard C++ Library have the same root (and
usually the same names) as the SGI STL. In this book, I will say
“The Standard C++ Library” or “The Standard Library containers,”
or something similar and will avoid the term “STL.”

Even though the implementation of the Standard C++ Library
containers and algorithms uses some advanced concepts and the
full coverage takes two large chapters in Volume 2 of this book, this
library can also be potent without knowing a lot about it. It’s so
useful that the most basic of the standard containers, the vector, is
introduced in this early chapter and used throughout the book.
You’ll find that you can do a tremendous amount just by using the
basics of vector and not worrying about the underlying

104 Thinking in C++ www.BruceEckel.com

implementation (again, an important goal of OOP). Since you’ll
learn much more about this and the other containers when you
reach the Standard Library chapters in Volume 2, it seems
forgivable if the programs that use vector in the early portion of
the book aren’t exactly what an experienced C++ programmer
would do. You’ll find that in most cases, the usage shown here is
adequate.

The vector class is a template, which means that it can be
efficiently applied to different types. That is, we can create a vector
of shapes, a vector of cats, a vector of strings, etc. Basically,
with a template you can create a “class of anything.” To tell the
compiler what it is that the class will work with (in this case, what
the vector will hold), you put the name of the desired type in
“angle brackets,” which means ‘<’ and ‘>’. So a vector of string
would be denoted vector<string>. When you do this, you end up
with a customized vector that will hold only string objects, and
you’ll get an error message from the compiler if you try to put
anything else into it.

Since vector expresses the concept of a “container,” there must be
a way to put things into the container and get things back out of the
container. To add a brand-new element on the end of a vector, you
use the member function push_back(). (Remember that, since
it’s a member function, you use a ‘.’ to call it for a particular object.)
The reason the name of this member function might seem a bit
verbose – push_back() instead of something simpler like “put” –
is because there are other containers and other member functions
for putting new elements into containers. For example, there is an
insert() member function to put something in the middle of a
container. vector supports this but its use is more complicated and
we won’t need to explore it until Volume 2 of the book. There’s also
a push_front() (not part of vector) to put things at the
beginning. There are many more member functions in vector and
many more containers in the Standard C++ Library, but you’ll be
surprised at how much you can do just knowing about a few simple
features.

So you can put new elements into a vector with push_back(),
but how do you get these elements back out again? This solution is

2: Making & Using Objects 105

more clever and elegant – operator overloading is used to make the
vector look like an array. The array (which will be described more
fully in the next chapter) is a data type that is available in virtually
every programming language so you should already be somewhat
familiar with it. Arrays are aggregates, which mean they consist of
a number of elements clumped together. The distinguishing
characteristic of an array is that these elements are the same size
and are arranged to be one right after the other. Most importantly,
these elements can be selected by “indexing,” which means you can
say “I want element number n” and that element will be produced,
usually quickly. Although there are exceptions in programming
languages, the indexing is normally achieved using square brackets,
so if you have an array a and you want to produce element five, you
say a[4] (note that indexing always starts at zero).

This very compact and powerful indexing notation is incorporated
into the vector using operator overloading, just like ‘<<’ and ‘>>’
were incorporated into iostreams. Again, you don’t need to know
how the overloading was implemented – that’s saved for a later
chapter – but it’s helpful if you’re aware that there’s some magic
going on under the covers in order to make the [] work with
vector.

With that in mind, you can now see a program that uses vector. To
use a vector, you include the header file <vector>:

//: C02:Fillvector.cpp

// Copy an entire file into a vector of string

#include <string>

#include <iostream>

#include <fstream>

#include <vector>

using namespace std;

int main() {

 vector<string> v;

 ifstream in("Fillvector.cpp");

 string line;

 while(getline(in, line))

 v.push_back(line); // Add the line to the end

 // Add line numbers:

106 Thinking in C++ www.BruceEckel.com

 for(int i = 0; i < v.size(); i++)

 cout << i << ": " << v[i] << endl;

} ///:~

Much of this program is similar to the previous one; a file is opened
and lines are read into string objects one at a time. However, these
string objects are pushed onto the back of the vector v. Once the
while loop completes, the entire file is resident in memory, inside
v.

The next statement in the program is called a for loop. It is similar
to a while loop except that it adds some extra control. After the
for, there is a “control expression” inside of parentheses, just like
the while loop. However, this control expression is in three parts: a
part which initializes, one that tests to see if we should exit the loop,
and one that changes something, typically to step through a
sequence of items. This program shows the for loop in the way
you’ll see it most commonly used: the initialization part int i = 0
creates an integer i to use as a loop counter and gives it an initial
value of zero. The testing portion says that to stay in the loop, i
should be less than the number of elements in the vector v. (This is
produced using the member function size(), which I just sort of
slipped in here, but you must admit it has a fairly obvious
meaning.) The final portion uses a shorthand for C and C++, the
“auto-increment” operator, to add one to the value of i. Effectively,
i++ says “get the value of i, add one to it, and put the result back
into i. Thus, the total effect of the for loop is to take a variable i and
march it through the values from zero to one less than the size of
the vector. For each value of i, the cout statement is executed and
this builds a line that consists of the value of i (magically converted
to a character array by cout), a colon and a space, the line from the
file, and a newline provided by endl. When you compile and run it
you’ll see the effect is to add line numbers to the file.

Because of the way that the ‘>>’ operator works with iostreams, you
can easily modify the program above so that it breaks up the input
into whitespace-separated words instead of lines:

//: C02:GetWords.cpp

// Break a file into whitespace-separated words

#include <string>

2: Making & Using Objects 107

#include <iostream>

#include <fstream>

#include <vector>

using namespace std;

int main() {

 vector<string> words;

 ifstream in("GetWords.cpp");

 string word;

 while(in >> word)

 words.push_back(word);

 for(int i = 0; i < words.size(); i++)

 cout << words[i] << endl;

} ///:~

The expression

while(in >> word)

is what gets the input one “word” at a time, and when this
expression evaluates to “false” it means the end of the file has been
reached. Of course, delimiting words by whitespace is quite crude,
but it makes for a simple example. Later in the book you’ll see more
sophisticated examples that let you break up input just about any
way you’d like.

To demonstrate how easy it is to use a vector with any type, here’s
an example that creates a vector<int>:

//: C02:Intvector.cpp

// Creating a vector that holds integers

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v;

 for(int i = 0; i < 10; i++)

 v.push_back(i);

 for(int i = 0; i < v.size(); i++)

 cout << v[i] << ", ";

 cout << endl;

 for(int i = 0; i < v.size(); i++)

 v[i] = v[i] * 10; // Assignment

108 Thinking in C++ www.BruceEckel.com

 for(int i = 0; i < v.size(); i++)

 cout << v[i] << ", ";

 cout << endl;

} ///:~

To create a vector that holds a different type, you just put that type
in as the template argument (the argument in angle brackets).
Templates and well-designed template libraries are intended to be
exactly this easy to use.

This example goes on to demonstrate another essential feature of
vector. In the expression

v[i] = v[i] * 10;

you can see that the vector is not limited to only putting things in
and getting things out. You also have the ability to assign (and thus
to change) to any element of a vector, also through the use of the
square-brackets indexing operator. This means that vector is a
general-purpose, flexible “scratchpad” for working with collections
of objects, and we will definitely make use of it in coming chapters.

Summary
The intent of this chapter is to show you how easy object-oriented
programming can be – if someone else has gone to the work of
defining the objects for you. In that case, you include a header file,
create the objects, and send messages to them. If the types you are
using are powerful and well-designed, then you won’t have to do
much work and your resulting program will also be powerful.

In the process of showing the ease of OOP when using library
classes, this chapter also introduced some of the most basic and
useful types in the Standard C++ library: the family of iostreams (in
particular, those that read from and write to the console and files),
the string class, and the vector template. You’ve seen how
straightforward it is to use these and can now probably imagine
many things you can accomplish with them, but there’s actually a

2: Making & Using Objects 109

lot more that they’re capable of5. Even though we’ll only be using a
limited subset of the functionality of these tools in the early part of
the book, they nonetheless provide a large step up from the
primitiveness of learning a low-level language like C. and while
learning the low-level aspects of C is educational, it’s also time
consuming. In the end, you’ll be much more productive if you’ve got
objects to manage the low-level issues. After all, the whole point of
OOP is to hide the details so you can “paint with a bigger brush.”

However, as high-level as OOP tries to be, there are some
fundamental aspects of C that you can’t avoid knowing, and these
will be covered in the next chapter.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from http://www.BruceEckel.com

1. Modify Hello.cpp so that it prints out your name and
age (or shoe size, or your dog’s age, if that makes you feel
better). Compile and run the program.

2. Using Stream2.cpp and Numconv.cpp as guidelines,
create a program that asks for the radius of a circle and
prints the area of that circle. You can just use the ‘*’
operator to square the radius. Do not try to print out the
value as octal or hex (these only work with integral
types).

3. Create a program that opens a file and counts the
whitespace-separated words in that file.

4. Create a program that counts the occurrence of a
particular word in a file (use the string class’ operator
‘==’ to find the word).

5. Change Fillvector.cpp so that it prints the lines
(backwards) from last to first.

5 If you’re particularly eager to see all the things that can be done with these and other
Standard library components, see Volume 2 of this book at www.BruceEckel.com,
and also www.dinkumware.com.

110 Thinking in C++ www.BruceEckel.com

6. Change Fillvector.cpp so that it concatenates all the
elements in the vector into a single string before
printing it out, but don’t try to add line numbering.

7. Display a file a line at a time, waiting for the user to press
the “Enter” key after each line.

8. Create a vector<float> and put 25 floating-point
numbers into it using a for loop. Display the vector.

9. Create three vector<float> objects and fill the first two
as in the previous exercise. Write a for loop that adds
each corresponding element in the first two vectors and
puts the result in the corresponding element of the third
vector. Display all three vectors.

10. Create a vector<float> and put 25 numbers into it as in
the previous exercises. Now square each number and put
the result back into the same location in the vector.
Display the vector before and after the multiplication.

 111

3: The C in C++
Since C++ is based on C, you must be familiar with the

syntax of C in order to program in C++, just as you

must be reasonably fluent in algebra in order to tackle

calculus.

112 Thinking in C++ www.BruceEckel.com

If you’ve never seen C before, this chapter will give you a decent
background in the style of C used in C++. If you are familiar with
the style of C described in the first edition of Kernighan & Ritchie
(often called K&R C), you will find some new and different features
in C++ as well as in Standard C. If you are familiar with Standard C,
you should skim through this chapter looking for features that are
particular to C++. Note that there are some fundamental C++
features introduced here, which are basic ideas that are akin to the
features in C or often modifications to the way that C does things.
The more sophisticated C++ features will not be introduced until
later chapters.

This chapter is a fairly fast coverage of C constructs and
introduction to some basic C++ constructs, with the understanding
that you’ve had some experience programming in another language.
A more gentle introduction to C is found in the CD ROM packaged
in the back of this book, titled Thinking in C: Foundations for Java
& C++ by Chuck Allison (published by MindView, Inc., and also
available at www.MindView.net). This is a seminar on a CD ROM
with the goal of taking you carefully through the fundamentals of
the C language. It focuses on the knowledge necessary for you to be
able to move on to the C++ or Java languages rather than trying to
make you an expert in all the dark corners of C (one of the reasons
for using a higher-level language like C++ or Java is precisely so we
can avoid many of these dark corners). It also contains exercises
and guided solutions. Keep in mind that because this chapter goes
beyond the Thinking in C CD, the CD is not a replacement for this
chapter, but should be used instead as a preparation for this
chapter and for the book.

Creating functions
In old (pre-Standard) C, you could call a function with any number
or type of arguments and the compiler wouldn’t complain.
Everything seemed fine until you ran the program. You got
mysterious results (or worse, the program crashed) with no hints as
to why. The lack of help with argument passing and the enigmatic

3: The C in C++ 113

bugs that resulted is probably one reason why C was dubbed a
“high-level assembly language.” Pre-Standard C programmers just
adapted to it.

Standard C and C++ use a feature called function prototyping.
With function prototyping, you must use a description of the types
of arguments when declaring and defining a function. This
description is the “prototype.” When the function is called, the
compiler uses the prototype to ensure that the proper arguments
are passed in and that the return value is treated correctly. If the
programmer makes a mistake when calling the function, the
compiler catches the mistake.

Essentially, you learned about function prototyping (without
naming it as such) in the previous chapter, since the form of
function declaration in C++ requires proper prototyping. In a
function prototype, the argument list contains the types of
arguments that must be passed to the function and (optionally for
the declaration) identifiers for the arguments. The order and type of
the arguments must match in the declaration, definition, and
function call. Here’s an example of a function prototype in a
declaration:

int translate(float x, float y, float z);

You do not use the same form when declaring variables in function
prototypes as you do in ordinary variable definitions. That is, you
cannot say: float x, y, z. You must indicate the type of each
argument. In a function declaration, the following form is also
acceptable:

int translate(float, float, float);

Since the compiler doesn’t do anything but check for types when the
function is called, the identifiers are only included for clarity when
someone is reading the code.

In the function definition, names are required because the
arguments are referenced inside the function:

int translate(float x, float y, float z) {

114 Thinking in C++ www.BruceEckel.com

 x = y = z;

 // ...

}

It turns out this rule applies only to C. In C++, an argument may be
unnamed in the argument list of the function definition. Since it is
unnamed, you cannot use it in the function body, of course.
Unnamed arguments are allowed to give the programmer a way to
“reserve space in the argument list.” Whoever uses the function
must still call the function with the proper arguments. However, the
person creating the function can then use the argument in the
future without forcing modification of code that calls the function.
This option of ignoring an argument in the list is also possible if you
leave the name in, but you will get an annoying warning message
about the value being unused every time you compile the function.
The warning is eliminated if you remove the name.

C and C++ have two other ways to declare an argument list. If you
have an empty argument list, you can declare it as func() in C++,
which tells the compiler there are exactly zero arguments. You
should be aware that this only means an empty argument list in
C++. In C it means “an indeterminate number of arguments (which
is a “hole” in C since it disables type checking in that case). In both
C and C++, the declaration func(void); means an empty argument
list. The void keyword means “nothing” in this case (it can also
mean “no type” in the case of pointers, as you’ll see later in this
chapter).

The other option for argument lists occurs when you don’t know
how many arguments or what type of arguments you will have; this
is called a variable argument list. This “uncertain argument list” is
represented by ellipses (...). Defining a function with a variable
argument list is significantly more complicated than defining a
regular function. You can use a variable argument list for a function
that has a fixed set of arguments if (for some reason) you want to
disable the error checks of function prototyping. Because of this,
you should restrict your use of variable argument lists to C and
avoid them in C++ (in which, as you’ll learn, there are much better
alternatives). Handling variable argument lists is described in the
library section of your local C guide.

3: The C in C++ 115

Function return values
A C++ function prototype must specify the return value type of the
function (in C, if you leave off the return value type it defaults to
int). The return type specification precedes the function name. To
specify that no value is returned, use the void keyword. This will
generate an error if you try to return a value from the function.
Here are some complete function prototypes:

int f1(void); // Returns an int, takes no arguments

int f2(); // Like f1() in C++ but not in Standard C!

float f3(float, int, char, double); // Returns a float

void f4(void); // Takes no arguments, returns nothing

To return a value from a function, you use the return statement.
return exits the function back to the point right after the function
call. If return has an argument, that argument becomes the return
value of the function. If a function says that it will return a
particular type, then each return statement must return that type.
You can have more than one return statement in a function
definition:

//: C03:Return.cpp

// Use of "return"

#include <iostream>

using namespace std;

char cfunc(int i) {

 if(i == 0)

 return 'a';

 if(i == 1)

 return 'g';

 if(i == 5)

 return 'z';

 return 'c';

}

int main() {

 cout << "type an integer: ";

 int val;

 cin >> val;

 cout << cfunc(val) << endl;

} ///:~

116 Thinking in C++ www.BruceEckel.com

In cfunc(), the first if that evaluates to true exits the function via
the return statement. Notice that a function declaration is not
necessary because the function definition appears before it is used
in main(), so the compiler knows about it from that function
definition.

Using the C function library
All the functions in your local C function library are available while
you are programming in C++. You should look hard at the function
library before defining your own function – there’s a good chance
that someone has already solved your problem for you, and
probably given it a lot more thought and debugging.

A word of caution, though: many compilers include a lot of extra
functions that make life even easier and are tempting to use, but are
not part of the Standard C library. If you are certain you will never
want to move the application to another platform (and who is
certain of that?), go ahead –use those functions and make your life
easier. If you want your application to be portable, you should
restrict yourself to Standard library functions. If you must perform
platform-specific activities, try to isolate that code in one spot so it
can be changed easily when porting to another platform. In C++,
platform-specific activities are often encapsulated in a class, which
is the ideal solution.

The formula for using a library function is as follows: first, find the
function in your programming reference (many programming
references will index the function by category as well as
alphabetically). The description of the function should include a
section that demonstrates the syntax of the code. The top of this
section usually has at least one #include line, showing you the
header file containing the function prototype. Duplicate this
#include line in your file so the function is properly declared. Now
you can call the function in the same way it appears in the syntax
section. If you make a mistake, the compiler will discover it by
comparing your function call to the function prototype in the
header and tell you about your error. The linker searches the
Standard library by default, so that’s all you need to do: include the
header file and call the function.

3: The C in C++ 117

Creating your own libraries with the librarian
You can collect your own functions together into a library. Most
programming packages come with a librarian that manages groups
of object modules. Each librarian has its own commands, but the
general idea is this: if you want to create a library, make a header
file containing the function prototypes for all the functions in your
library. Put this header file somewhere in the preprocessor’s search
path, either in the local directory (so it can be found by #include
"header") or in the include directory (so it can be found by
#include <header>). Now take all the object modules and hand
them to the librarian along with a name for the finished library
(most librarians require a common extension, such as .lib or .a).
Place the finished library where the other libraries reside so the
linker can find it. When you use your library, you will have to add
something to the command line so the linker knows to search the
library for the functions you call. You must find all the details in
your local manual, since they vary from system to system.

Controlling execution
This section covers the execution control statements in C++. You
must be familiar with these statements before you can read and
write C or C++ code.

C++ uses all of C’s execution control statements. These include if-
else, while, do-while, for, and a selection statement called
switch. C++ also allows the infamous goto, which will be avoided
in this book.

True and false
All conditional statements use the truth or falsehood of a
conditional expression to determine the execution path. An
example of a conditional expression is A == B. This uses the
conditional operator == to see if the variable A is equivalent to the
variable B. The expression produces a Boolean true or false (these
are keywords only in C++; in C an expression is “true” if it evaluates

118 Thinking in C++ www.BruceEckel.com

to a nonzero value). Other conditional operators are >, <, >=, etc.
Conditional statements are covered more fully later in this chapter.

if-else
The if-else statement can exist in two forms: with or without the
else. The two forms are:

if(expression)

 statement

or

if(expression)

 statement

else

 statement

The “expression” evaluates to true or false. The “statement”
means either a simple statement terminated by a semicolon or a
compound statement, which is a group of simple statements
enclosed in braces. Any time the word “statement” is used, it always
implies that the statement is simple or compound. Note that this
statement can also be another if, so they can be strung together.

//: C03:Ifthen.cpp

// Demonstration of if and if-else conditionals

#include <iostream>

using namespace std;

int main() {

 int i;

 cout << "type a number and 'Enter'" << endl;

 cin >> i;

 if(i > 5)

 cout << "It's greater than 5" << endl;

 else

 if(i < 5)

 cout << "It's less than 5 " << endl;

 else

 cout << "It's equal to 5 " << endl;

 cout << "type a number and 'Enter'" << endl;

3: The C in C++ 119

 cin >> i;

 if(i < 10)

 if(i > 5) // "if" is just another statement

 cout << "5 < i < 10" << endl;

 else

 cout << "i <= 5" << endl;

 else // Matches "if(i < 10)"

 cout << "i >= 10" << endl;

} ///:~

It is conventional to indent the body of a control flow statement so
the reader may easily determine where it begins and ends1.

while
while, do-while, and for control looping. A statement repeats
until the controlling expression evaluates to false. The form of a
while loop is

while(expression)

 statement

The expression is evaluated once at the beginning of the loop and
again before each further iteration of the statement.

This example stays in the body of the while loop until you type the
secret number or press control-C.

//: C03:Guess.cpp

// Guess a number (demonstrates "while")

#include <iostream>

using namespace std;

int main() {

 int secret = 15;

 int guess = 0;

 // "!=" is the "not-equal" conditional:

 while(guess != secret) { // Compound statement

 cout << "guess the number: ";

1 Note that all conventions seem to end after the agreement that some sort of
indentation take place. The feud between styles of code formatting is unending. See
Appendix A for the description of this book’s coding style.

120 Thinking in C++ www.BruceEckel.com

 cin >> guess;

 }

 cout << "You guessed it!" << endl;

} ///:~

The while’s conditional expression is not restricted to a simple test
as in the example above; it can be as complicated as you like as long
as it produces a true or false result. You will even see code where
the loop has no body, just a bare semicolon:

while(/* Do a lot here */)

 ;

In these cases, the programmer has written the conditional
expression not only to perform the test but also to do the work.

do-while
The form of do-while is

do

 statement

while(expression);

The do-while is different from the while because the statement
always executes at least once, even if the expression evaluates to
false the first time. In a regular while, if the conditional is false the
first time the statement never executes.

If a do-while is used in Guess.cpp, the variable guess does not
need an initial dummy value, since it is initialized by the cin
statement before it is tested:

//: C03:Guess2.cpp

// The guess program using do-while

#include <iostream>

using namespace std;

int main() {

 int secret = 15;

 int guess; // No initialization needed here

 do {

 cout << "guess the number: ";

3: The C in C++ 121

 cin >> guess; // Initialization happens

 } while(guess != secret);

 cout << "You got it!" << endl;

} ///:~

For some reason, most programmers tend to avoid do-while and
just work with while.

for
A for loop performs initialization before the first iteration. Then it
performs conditional testing and, at the end of each iteration, some
form of “stepping.” The form of the for loop is:

for(initialization; conditional; step)

 statement

Any of the expressions initialization, conditional, or step may be
empty. The initialization code executes once at the very beginning.
The conditional is tested before each iteration (if it evaluates to
false at the beginning, the statement never executes). At the end of
each loop, the step executes.

for loops are usually used for “counting” tasks:

//: C03:Charlist.cpp

// Display all the ASCII characters

// Demonstrates "for"

#include <iostream>

using namespace std;

int main() {

 for(int i = 0; i < 128; i = i + 1)

 if (i != 26) // ANSI Terminal Clear screen

 cout << " value: " << i

 << " character: "

 << char(i) // Type conversion

 << endl;

} ///:~

You may notice that the variable i is defined at the point where it is
used, instead of at the beginning of the block denoted by the open
curly brace ‘{’. This is in contrast to traditional procedural

122 Thinking in C++ www.BruceEckel.com

languages (including C), which require that all variables be defined
at the beginning of the block. This will be discussed later in this
chapter.

The break and continue keywords
Inside the body of any of the looping constructs while, do-while,
or for, you can control the flow of the loop using break and
continue. break quits the loop without executing the rest of the
statements in the loop. continue stops the execution of the current
iteration and goes back to the beginning of the loop to begin a new
iteration.

As an example of break and continue, this program is a very
simple menu system:

//: C03:Menu.cpp

// Simple menu program demonstrating

// the use of "break" and "continue"

#include <iostream>

using namespace std;

int main() {

 char c; // To hold response

 while(true) {

 cout << "MAIN MENU:" << endl;

 cout << "l: left, r: right, q: quit -> ";

 cin >> c;

 if(c == 'q')

 break; // Out of "while(1)"

 if(c == 'l') {

 cout << "LEFT MENU:" << endl;

 cout << "select a or b: ";

 cin >> c;

 if(c == 'a') {

 cout << "you chose 'a'" << endl;

 continue; // Back to main menu

 }

 if(c == 'b') {

 cout << "you chose 'b'" << endl;

 continue; // Back to main menu

 }

 else {

3: The C in C++ 123

 cout << "you didn't choose a or b!"

 << endl;

 continue; // Back to main menu

 }

 }

 if(c == 'r') {

 cout << "RIGHT MENU:" << endl;

 cout << "select c or d: ";

 cin >> c;

 if(c == 'c') {

 cout << "you chose 'c'" << endl;

 continue; // Back to main menu

 }

 if(c == 'd') {

 cout << "you chose 'd'" << endl;

 continue; // Back to main menu

 }

 else {

 cout << "you didn't choose c or d!"

 << endl;

 continue; // Back to main menu

 }

 }

 cout << "you must type l or r or q!" << endl;

 }

 cout << "quitting menu..." << endl;

} ///:~

If the user selects ‘q’ in the main menu, the break keyword is used
to quit, otherwise the program just continues to execute
indefinitely. After each of the sub-menu selections, the continue
keyword is used to pop back up to the beginning of the while loop.

The while(true) statement is the equivalent of saying “do this loop
forever.” The break statement allows you to break out of this
infinite while loop when the user types a ‘q.’

switch
A switch statement selects from among pieces of code based on the
value of an integral expression. Its form is:

switch(selector) {

124 Thinking in C++ www.BruceEckel.com

 case integral-value1 : statement; break;

 case integral-value2 : statement; break;

 case integral-value3 : statement; break;

 case integral-value4 : statement; break;

 case integral-value5 : statement; break;

 (...)

 default: statement;

}

Selector is an expression that produces an integral value. The
switch compares the result of selector to each integral value. If it
finds a match, the corresponding statement (simple or compound)
executes. If no match occurs, the default statement executes.

You will notice in the definition above that each case ends with a
break, which causes execution to jump to the end of the switch
body (the closing brace that completes the switch). This is the
conventional way to build a switch statement, but the break is
optional. If it is missing, your case “drops through” to the one after
it. That is, the code for the following case statements execute until
a break is encountered. Although you don’t usually want this kind
of behavior, it can be useful to an experienced programmer.

The switch statement is a clean way to implement multi-way
selection (i.e., selecting from among a number of different
execution paths), but it requires a selector that evaluates to an
integral value at compile-time. If you want to use, for example, a
string object as a selector, it won’t work in a switch statement.
For a string selector, you must instead use a series of if statements
and compare the string inside the conditional.

The menu example shown above provides a particularly nice
example of a switch:

//: C03:Menu2.cpp

// A menu using a switch statement

#include <iostream>

using namespace std;

int main() {

 bool quit = false; // Flag for quitting

 while(quit == false) {

3: The C in C++ 125

 cout << "Select a, b, c or q to quit: ";

 char response;

 cin >> response;

 switch(response) {

 case 'a' : cout << "you chose 'a'" << endl;

 break;

 case 'b' : cout << "you chose 'b'" << endl;

 break;

 case 'c' : cout << "you chose 'c'" << endl;

 break;

 case 'q' : cout << "quitting menu" << endl;

 quit = true;

 break;

 default : cout << "Please use a,b,c or q!"

 << endl;

 }

 }

} ///:~

The quit flag is a bool, short for “Boolean,” which is a type you’ll
find only in C++. It can have only the keyword values true or false.
Selecting ‘q’ sets the quit flag to true. The next time the selector is
evaluated, quit == false returns false so the body of the while
does not execute.

Using and misusing goto
The goto keyword is supported in C++, since it exists in C. Using
goto is often dismissed as poor programming style, and most of the
time it is. Anytime you use goto, look at your code and see if there’s
another way to do it. On rare occasions, you may discover goto can
solve a problem that can’t be solved otherwise, but still, consider it
carefully. Here’s an example that might make a plausible candidate:

//: C03:gotoKeyword.cpp

// The infamous goto is supported in C++

#include <iostream>

using namespace std;

int main() {

 long val = 0;

 for(int i = 1; i < 1000; i++) {

 for(int j = 1; j < 100; j += 10) {

126 Thinking in C++ www.BruceEckel.com

 val = i * j;

 if(val > 47000)

 goto bottom;

 // Break would only go to the outer 'for'

 }

 }

 bottom: // A label

 cout << val << endl;

} ///:~

The alternative would be to set a Boolean that is tested in the outer
for loop, and then do a break from the inner for loop. However, if
you have several levels of for or while this could get awkward.

Recursion
Recursion is an interesting and sometimes useful programming
technique whereby you call the function that you’re in. Of course, if
this is all you do, you’ll keep calling the function you’re in until you
run out of memory, so there must be some way to “bottom out” the
recursive call. In the following example, this “bottoming out” is
accomplished by simply saying that the recursion will go only until
the cat exceeds ‘Z’:2

//: C03:CatsInHats.cpp

// Simple demonstration of recursion

#include <iostream>

using namespace std;

void removeHat(char cat) {

 for(char c = 'A'; c < cat; c++)

 cout << " ";

 if(cat <= 'Z') {

 cout << "cat " << cat << endl;

 removeHat(cat + 1); // Recursive call

 } else

 cout << "VOOM!!!" << endl;

}

int main() {

2 Thanks to Kris C. Matson for suggesting this exercise topic.

3: The C in C++ 127

 removeHat('A');

} ///:~

In removeHat(), you can see that as long as cat is less than ‘Z’,
removeHat() will be called from within removeHat(), thus
effecting the recursion. Each time removeHat() is called, its
argument is one greater than the current cat so the argument keeps
increasing.

Recursion is often used when evaluating some sort of arbitrarily
complex problem, since you aren’t restricted to a particular “size”
for the solution – the function can just keep recursing until it’s
reached the end of the problem.

 Introduction to operators
You can think of operators as a special type of function (you’ll learn
that C++ operator overloading treats operators precisely that way).
An operator takes one or more arguments and produces a new
value. The arguments are in a different form than ordinary function
calls, but the effect is the same.

From your previous programming experience, you should be
reasonably comfortable with the operators that have been used so
far. The concepts of addition (+), subtraction and unary minus (-),
multiplication (*), division (/), and assignment(=) all have
essentially the same meaning in any programming language. The
full set of operators is enumerated later in this chapter.

Precedence
Operator precedence defines the order in which an expression
evaluates when several different operators are present. C and C++
have specific rules to determine the order of evaluation. The easiest
to remember is that multiplication and division happen before
addition and subtraction. After that, if an expression isn’t
transparent to you it probably won’t be for anyone reading the code,
so you should use parentheses to make the order of evaluation
explicit. For example:

128 Thinking in C++ www.BruceEckel.com

A = X + Y - 2/2 + Z;

has a very different meaning from the same statement with a
particular grouping of parentheses:

A = X + (Y - 2)/(2 + Z);

(Try evaluating the result with X = 1, Y = 2, and Z = 3.)

Auto increment and decrement
C, and therefore C++, is full of shortcuts. Shortcuts can make code
much easier to type, and sometimes much harder to read. Perhaps
the C language designers thought it would be easier to understand a
tricky piece of code if your eyes didn’t have to scan as large an area
of print.

One of the nicer shortcuts is the auto-increment and auto-
decrement operators. You often use these to change loop variables,
which control the number of times a loop executes.

The auto-decrement operator is ‘--’ and means “decrease by one
unit.” The auto-increment operator is ‘++’ and means “increase by
one unit.” If A is an int, for example, the expression ++A is
equivalent to (A = A + 1). Auto-increment and auto-decrement
operators produce the value of the variable as a result. If the
operator appears before the variable, (i.e., ++A), the operation is
first performed and the resulting value is produced. If the operator
appears after the variable (i.e. A++), the current value is produced,
and then the operation is performed. For example:

//: C03:AutoIncrement.cpp

// Shows use of auto-increment

// and auto-decrement operators.

#include <iostream>

using namespace std;

int main() {

 int i = 0;

 int j = 0;

 cout << ++i << endl; // Pre-increment

 cout << j++ << endl; // Post-increment

3: The C in C++ 129

 cout << --i << endl; // Pre-decrement

 cout << j-- << endl; // Post decrement

} ///:~

If you’ve been wondering about the name “C++,” now you
understand. It implies “one step beyond C.”

Introduction to data types
Data types define the way you use storage (memory) in the
programs you write. By specifying a data type, you tell the compiler
how to create a particular piece of storage, and also how to
manipulate that storage.

Data types can be built-in or abstract. A built-in data type is one
that the compiler intrinsically understands, one that is wired
directly into the compiler. The types of built-in data are almost
identical in C and C++. In contrast, a user-defined data type is one
that you or another programmer create as a class. These are
commonly referred to as abstract data types. The compiler knows
how to handle built-in types when it starts up; it “learns” how to
handle abstract data types by reading header files containing class
declarations (you’ll learn about this in later chapters).

Basic built-in types
The Standard C specification for built-in types (which C++ inherits)
doesn’t say how many bits each of the built-in types must contain.
Instead, it stipulates the minimum and maximum values that the
built-in type must be able to hold. When a machine is based on
binary, this maximum value can be directly translated into a
minimum number of bits necessary to hold that value. However, if a
machine uses, for example, binary-coded decimal (BCD) to
represent numbers, then the amount of space in the machine
required to hold the maximum numbers for each data type will be
different. The minimum and maximum values that can be stored in
the various data types are defined in the system header files
limits.h and float.h (in C++ you will generally #include
<climits> and <cfloat> instead).

130 Thinking in C++ www.BruceEckel.com

C and C++ have four basic built-in data types, described here for
binary-based machines. A char is for character storage and uses a
minimum of 8 bits (one byte) of storage, although it may be larger.
An int stores an integral number and uses a minimum of two bytes
of storage. The float and double types store floating-point
numbers, usually in IEEE floating-point format. float is for single-
precision floating point and double is for double-precision floating
point.

As mentioned previously, you can define variables anywhere in a
scope, and you can define and initialize them at the same time.
Here’s how to define variables using the four basic data types:

//: C03:Basic.cpp

// Defining the four basic data

// types in C and C++

int main() {

 // Definition without initialization:

 char protein;

 int carbohydrates;

 float fiber;

 double fat;

 // Simultaneous definition & initialization:

 char pizza = 'A', pop = 'Z';

 int dongdings = 100, twinkles = 150,

 heehos = 200;

 float chocolate = 3.14159;

 // Exponential notation:

 double fudge_ripple = 6e-4;

} ///:~

The first part of the program defines variables of the four basic data
types without initializing them. If you don’t initialize a variable, the
Standard says that its contents are undefined (usually, this means
they contain garbage). The second part of the program defines and
initializes variables at the same time (it’s always best, if possible, to
provide an initialization value at the point of definition). Notice the
use of exponential notation in the constant 6e-4, meaning “6 times
10 to the minus fourth power.”

3: The C in C++ 131

bool, true, & false
Before bool became part of Standard C++, everyone tended to use
different techniques in order to produce Boolean-like behavior.
These produced portability problems and could introduce subtle
errors.

The Standard C++ bool type can have two states expressed by the
built-in constants true (which converts to an integral one) and
false (which converts to an integral zero). All three names are
keywords. In addition, some language elements have been adapted:

Element Usage with bool

&& || ! Take bool arguments and
produce bool results.

< > <=
>= == !=

Produce bool results.

if, for,
while, do

Conditional expressions
convert to bool values.

? : First operand converts to
bool value.

Because there’s a lot of existing code that uses an int to represent a
flag, the compiler will implicitly convert from an int to a bool
(nonzero values will produce true while zero values produce
false). Ideally, the compiler will give you a warning as a suggestion
to correct the situation.

An idiom that falls under “poor programming style” is the use of ++
to set a flag to true. This is still allowed, but deprecated, which
means that at some time in the future it will be made illegal. The
problem is that you’re making an implicit type conversion from
bool to int, incrementing the value (perhaps beyond the range of
the normal bool values of zero and one), and then implicitly
converting it back again.

Pointers (which will be introduced later in this chapter) will also be
automatically converted to bool when necessary.

132 Thinking in C++ www.BruceEckel.com

Specifiers
Specifiers modify the meanings of the basic built-in types and
expand them to a much larger set. There are four specifiers: long,
short, signed, and unsigned.

long and short modify the maximum and minimum values that a
data type will hold. A plain int must be at least the size of a short.
The size hierarchy for integral types is: short int, int, long int. All
the sizes could conceivably be the same, as long as they satisfy the
minimum/maximum value requirements. On a machine with a 64-
bit word, for instance, all the data types might be 64 bits.

The size hierarchy for floating point numbers is: float, double,
and long double. “long float” is not a legal type. There are no
short floating-point numbers.

The signed and unsigned specifiers tell the compiler how to use
the sign bit with integral types and characters (floating-point
numbers always contain a sign). An unsigned number does not
keep track of the sign and thus has an extra bit available, so it can
store positive numbers twice as large as the positive numbers that
can be stored in a signed number. signed is the default and is only
necessary with char; char may or may not default to signed. By
specifying signed char, you force the sign bit to be used.

The following example shows the size of the data types in bytes by
using the sizeof operator, introduced later in this chapter:

//: C03:Specify.cpp

// Demonstrates the use of specifiers

#include <iostream>

using namespace std;

int main() {

 char c;

 unsigned char cu;

 int i;

 unsigned int iu;

 short int is;

 short iis; // Same as short int

 unsigned short int isu;

3: The C in C++ 133

 unsigned short iisu;

 long int il;

 long iil; // Same as long int

 unsigned long int ilu;

 unsigned long iilu;

 float f;

 double d;

 long double ld;

 cout

 << "\n char= " << sizeof(c)

 << "\n unsigned char = " << sizeof(cu)

 << "\n int = " << sizeof(i)

 << "\n unsigned int = " << sizeof(iu)

 << "\n short = " << sizeof(is)

 << "\n unsigned short = " << sizeof(isu)

 << "\n long = " << sizeof(il)

 << "\n unsigned long = " << sizeof(ilu)

 << "\n float = " << sizeof(f)

 << "\n double = " << sizeof(d)

 << "\n long double = " << sizeof(ld)

 << endl;

} ///:~

Be aware that the results you get by running this program will
probably be different from one machine/operating system/compiler
to the next, since (as mentioned previously) the only thing that
must be consistent is that each different type hold the minimum
and maximum values specified in the Standard.

When you are modifying an int with short or long, the keyword
int is optional, as shown above.

Introduction to pointers
Whenever you run a program, it is first loaded (typically from disk)
into the computer’s memory. Thus, all elements of your program
are located somewhere in memory. Memory is typically laid out as a
sequential series of memory locations; we usually refer to these
locations as eight-bit bytes but actually the size of each space
depends on the architecture of the particular machine and is usually
called that machine’s word size. Each space can be uniquely
distinguished from all other spaces by its address. For the purposes

134 Thinking in C++ www.BruceEckel.com

of this discussion, we’ll just say that all machines use bytes that
have sequential addresses starting at zero and going up to however
much memory you have in your computer.

Since your program lives in memory while it’s being run, every
element of your program has an address. Suppose we start with a
simple program:

//: C03:YourPets1.cpp

#include <iostream>

using namespace std;

int dog, cat, bird, fish;

void f(int pet) {

 cout << "pet id number: " << pet << endl;

}

int main() {

 int i, j, k;

} ///:~

Each of the elements in this program has a location in storage when
the program is running. Even the function occupies storage. As
you’ll see, it turns out that what an element is and the way you
define it usually determines the area of memory where that element
is placed.

There is an operator in C and C++ that will tell you the address of
an element. This is the ‘&’ operator. All you do is precede the
identifier name with ‘&’ and it will produce the address of that
identifier. YourPets1.cpp can be modified to print out the
addresses of all its elements, like this:

//: C03:YourPets2.cpp

#include <iostream>

using namespace std;

int dog, cat, bird, fish;

void f(int pet) {

 cout << "pet id number: " << pet << endl;

}

3: The C in C++ 135

int main() {

 int i, j, k;

 cout << "f(): " << (long)&f << endl;

 cout << "dog: " << (long)&dog << endl;

 cout << "cat: " << (long)&cat << endl;

 cout << "bird: " << (long)&bird << endl;

 cout << "fish: " << (long)&fish << endl;

 cout << "i: " << (long)&i << endl;

 cout << "j: " << (long)&j << endl;

 cout << "k: " << (long)&k << endl;

} ///:~

The (long) is a cast. It says “Don’t treat this as if it’s normal type,
instead treat it as a long.” The cast isn’t essential, but if it wasn’t
there, the addresses would have been printed out in hexadecimal
instead, so casting to a long makes things a little more readable.

The results of this program will vary depending on your computer,
OS, and all sorts of other factors, but it will always give you some
interesting insights. For a single run on my computer, the results
looked like this:

f(): 4198736

dog: 4323632

cat: 4323636

bird: 4323640

fish: 4323644

i: 6684160

j: 6684156

k: 6684152

You can see how the variables that are defined inside main() are
in a different area than the variables defined outside of main();
you’ll understand why as you learn more about the language. Also,
f() appears to be in its own area; code is typically separated from
data in memory.

Another interesting thing to note is that variables defined one right
after the other appear to be placed contiguously in memory. They
are separated by the number of bytes that are required by their data
type. Here, the only data type used is int, and cat is four bytes away

136 Thinking in C++ www.BruceEckel.com

from dog, bird is four bytes away from cat, etc. So it would appear
that, on this machine, an int is four bytes long.

Other than this interesting experiment showing how memory is
mapped out, what can you do with an address? The most important
thing you can do is store it inside another variable for later use. C
and C++ have a special type of variable that holds an address. This
variable is called a pointer.

The operator that defines a pointer is the same as the one used for
multiplication: ‘*’. The compiler knows that it isn’t multiplication
because of the context in which it is used, as you will see.

When you define a pointer, you must specify the type of variable it
points to. You start out by giving the type name, then instead of
immediately giving an identifier for the variable, you say “Wait, it’s
a pointer” by inserting a star between the type and the identifier. So
a pointer to an int looks like this:

int* ip; // ip points to an int variable

The association of the ‘*’ with the type looks sensible and reads
easily, but it can actually be a bit deceiving. Your inclination might
be to say “intpointer” as if it is a single discrete type. However, with
an int or other basic data type, it’s possible to say:

int a, b, c;

whereas with a pointer, you’d like to say:

int* ipa, ipb, ipc;

C syntax (and by inheritance, C++ syntax) does not allow such
sensible expressions. In the definitions above, only ipa is a pointer,
but ipb and ipc are ordinary ints (you can say that “* binds more
tightly to the identifier”). Consequently, the best results can be
achieved by using only one definition per line; you still get the
sensible syntax without the confusion:

int* ipa;

int* ipb;

int* ipc;

3: The C in C++ 137

Since a general guideline for C++ programming is that you should
always initialize a variable at the point of definition, this form
actually works better. For example, the variables above are not
initialized to any particular value; they hold garbage. It’s much
better to say something like:

int a = 47;

int* ipa = &a;

Now both a and ipa have been initialized, and ipa holds the
address of a.

Once you have an initialized pointer, the most basic thing you can
do with it is to use it to modify the value it points to. To access a
variable through a pointer, you dereference the pointer using the
same operator that you used to define it, like this:

*ipa = 100;

Now a contains the value 100 instead of 47.

These are the basics of pointers: you can hold an address, and you
can use that address to modify the original variable. But the
question still remains: why do you want to modify one variable
using another variable as a proxy?

For this introductory view of pointers, we can put the answer into
two broad categories:

1. To change “outside objects” from within a function. This is
perhaps the most basic use of pointers, and it will be
examined here.

2. To achieve many other clever programming techniques,
which you’ll learn about in portions of the rest of the book.

Modifying the outside object
Ordinarily, when you pass an argument to a function, a copy of that
argument is made inside the function. This is referred to as pass-

138 Thinking in C++ www.BruceEckel.com

by-value. You can see the effect of pass-by-value in the following
program:

//: C03:PassByValue.cpp

#include <iostream>

using namespace std;

void f(int a) {

 cout << "a = " << a << endl;

 a = 5;

 cout << "a = " << a << endl;

}

int main() {

 int x = 47;

 cout << "x = " << x << endl;

 f(x);

 cout << "x = " << x << endl;

} ///:~

In f(), a is a local variable, so it exists only for the duration of the
function call to f(). Because it’s a function argument, the value of a
is initialized by the arguments that are passed when the function is
called; in main() the argument is x, which has a value of 47, so
this value is copied into a when f() is called.

When you run this program you’ll see:

x = 47

a = 47

a = 5

x = 47

Initially, of course, x is 47. When f() is called, temporary space is
created to hold the variable a for the duration of the function call,
and a is initialized by copying the value of x, which is verified by
printing it out. Of course, you can change the value of a and show
that it is changed. But when f() is completed, the temporary space
that was created for a disappears, and we see that the only
connection that ever existed between a and x happened when the
value of x was copied into a.

3: The C in C++ 139

When you’re inside f(), x is the outside object (my terminology),
and changing the local variable does not affect the outside object,
naturally enough, since they are two separate locations in storage.
But what if you do want to modify the outside object? This is where
pointers come in handy. In a sense, a pointer is an alias for another
variable. So if we pass a pointer into a function instead of an
ordinary value, we are actually passing an alias to the outside
object, enabling the function to modify that outside object, like this:

//: C03:PassAddress.cpp

#include <iostream>

using namespace std;

void f(int* p) {

 cout << "p = " << p << endl;

 cout << "*p = " << *p << endl;

 *p = 5;

 cout << "p = " << p << endl;

}

int main() {

 int x = 47;

 cout << "x = " << x << endl;

 cout << "&x = " << &x << endl;

 f(&x);

 cout << "x = " << x << endl;

} ///:~

Now f() takes a pointer as an argument and dereferences the
pointer during assignment, and this causes the outside object x to
be modified. The output is:

x = 47

&x = 0065FE00

p = 0065FE00

*p = 47

p = 0065FE00

x = 5

Notice that the value contained in p is the same as the address of x
– the pointer p does indeed point to x. If that isn’t convincing
enough, when p is dereferenced to assign the value 5, we see that
the value of x is now changed to 5 as well.

140 Thinking in C++ www.BruceEckel.com

Thus, passing a pointer into a function will allow that function to
modify the outside object. You’ll see plenty of other uses for
pointers later, but this is arguably the most basic and possibly the
most common use.

Introduction to C++ references
Pointers work roughly the same in C and in C++, but C++ adds an
additional way to pass an address into a function. This is pass-by-
reference and it exists in several other programming languages so it
was not a C++ invention.

Your initial perception of references may be that they are
unnecessary, that you could write all your programs without
references. In general, this is true, with the exception of a few
important places that you’ll learn about later in the book. You’ll also
learn more about references later, but the basic idea is the same as
the demonstration of pointer use above: you can pass the address of
an argument using a reference. The difference between references
and pointers is that calling a function that takes references is
cleaner, syntactically, than calling a function that takes pointers
(and it is exactly this syntactic difference that makes references
essential in certain situations). If PassAddress.cpp is modified to
use references, you can see the difference in the function call in
main():

//: C03:PassReference.cpp

#include <iostream>

using namespace std;

void f(int& r) {

 cout << "r = " << r << endl;

 cout << "&r = " << &r << endl;

 r = 5;

 cout << "r = " << r << endl;

}

int main() {

 int x = 47;

 cout << "x = " << x << endl;

 cout << "&x = " << &x << endl;

 f(x); // Looks like pass-by-value,

3: The C in C++ 141

 // is actually pass by reference

 cout << "x = " << x << endl;

} ///:~

In f()’s argument list, instead of saying int* to pass a pointer, you
say int& to pass a reference. Inside f(), if you just say ‘r’ (which
would produce the address if r were a pointer) you get the value in
the variable that r references. If you assign to r, you actually assign
to the variable that r references. In fact, the only way to get the
address that’s held inside r is with the ‘&’ operator.

In main(), you can see the key effect of references in the syntax of
the call to f(), which is just f(x). Even though this looks like an
ordinary pass-by-value, the effect of the reference is that it actually
takes the address and passes it in, rather than making a copy of the
value. The output is:

x = 47

&x = 0065FE00

r = 47

&r = 0065FE00

r = 5

x = 5

So you can see that pass-by-reference allows a function to modify
the outside object, just like passing a pointer does (you can also
observe that the reference obscures the fact that an address is being
passed; this will be examined later in the book). Thus, for this
simple introduction you can assume that references are just a
syntactically different way (sometimes referred to as “syntactic
sugar”) to accomplish the same thing that pointers do: allow
functions to change outside objects.

Pointers and references as modifiers
So far, you’ve seen the basic data types char, int, float, and
double, along with the specifiers signed, unsigned, short, and
long, which can be used with the basic data types in almost any
combination. Now we’ve added pointers and references that are
orthogonal to the basic data types and specifiers, so the possible
combinations have just tripled:

142 Thinking in C++ www.BruceEckel.com

//: C03:AllDefinitions.cpp

// All possible combinations of basic data types,

// specifiers, pointers and references

#include <iostream>

using namespace std;

void f1(char c, int i, float f, double d);

void f2(short int si, long int li, long double ld);

void f3(unsigned char uc, unsigned int ui,

 unsigned short int usi, unsigned long int uli);

void f4(char* cp, int* ip, float* fp, double* dp);

void f5(short int* sip, long int* lip,

 long double* ldp);

void f6(unsigned char* ucp, unsigned int* uip,

 unsigned short int* usip,

 unsigned long int* ulip);

void f7(char& cr, int& ir, float& fr, double& dr);

void f8(short int& sir, long int& lir,

 long double& ldr);

void f9(unsigned char& ucr, unsigned int& uir,

 unsigned short int& usir,

 unsigned long int& ulir);

int main() {} ///:~

Pointers and references also work when passing objects into and
out of functions; you’ll learn about this in a later chapter.

There’s one other type that works with pointers: void. If you state
that a pointer is a void*, it means that any type of address at all can
be assigned to that pointer (whereas if you have an int*, you can
assign only the address of an int variable to that pointer). For
example:

//: C03:VoidPointer.cpp

int main() {

 void* vp;

 char c;

 int i;

 float f;

 double d;

 // The address of ANY type can be

 // assigned to a void pointer:

 vp = &c;

3: The C in C++ 143

 vp = &i;

 vp = &f;

 vp = &d;

} ///:~

Once you assign to a void* you lose any information about what
type it is. This means that before you can use the pointer, you must
cast it to the correct type:

//: C03:CastFromVoidPointer.cpp

int main() {

 int i = 99;

 void* vp = &i;

 // Can't dereference a void pointer:

 // *vp = 3; // Compile-time error

 // Must cast back to int before dereferencing:

 ((int)vp) = 3;

} ///:~

The cast (int*)vp takes the void* and tells the compiler to treat it
as an int*, and thus it can be successfully dereferenced. You might
observe that this syntax is ugly, and it is, but it’s worse than that –
the void* introduces a hole in the language’s type system. That is, it
allows, or even promotes, the treatment of one type as another type.
In the example above, I treat an int as an int by casting vp to an
int*, but there’s nothing that says I can’t cast it to a char* or
double*, which would modify a different amount of storage that
had been allocated for the int, possibly crashing the program. In
general, void pointers should be avoided, and used only in rare
special cases, the likes of which you won’t be ready to consider until
significantly later in the book.

You cannot have a void reference, for reasons that will be explained
in Chapter 11.

Scoping
Scoping rules tell you where a variable is valid, where it is created,
and where it gets destroyed (i.e., goes out of scope). The scope of a
variable extends from the point where it is defined to the first
closing brace that matches the closest opening brace before the

144 Thinking in C++ www.BruceEckel.com

variable was defined. That is, a scope is defined by its “nearest” set
of braces. To illustrate:

//: C03:Scope.cpp

// How variables are scoped

int main() {

 int scp1;

 // scp1 visible here

 {

 // scp1 still visible here

 //.....

 int scp2;

 // scp2 visible here

 //.....

 {

 // scp1 & scp2 still visible here

 //..

 int scp3;

 // scp1, scp2 & scp3 visible here

 // ...

 } // <-- scp3 destroyed here

 // scp3 not available here

 // scp1 & scp2 still visible here

 // ...

 } // <-- scp2 destroyed here

 // scp3 & scp2 not available here

 // scp1 still visible here

 //..

} // <-- scp1 destroyed here

///:~

The example above shows when variables are visible and when they
are unavailable (that is, when they go out of scope). A variable can
be used only when inside its scope. Scopes can be nested, indicated
by matched pairs of braces inside other matched pairs of braces.
Nesting means that you can access a variable in a scope that
encloses the scope you are in. In the example above, the variable
scp1 is available inside all of the other scopes, while scp3 is
available only in the innermost scope.

3: The C in C++ 145

Defining variables on the fly
As noted earlier in this chapter, there is a significant difference
between C and C++ when defining variables. Both languages
require that variables be defined before they are used, but C (and
many other traditional procedural languages) forces you to define
all the variables at the beginning of a scope, so that when the
compiler creates a block it can allocate space for those variables.

While reading C code, a block of variable definitions is usually the
first thing you see when entering a scope. Declaring all variables at
the beginning of the block requires the programmer to write in a
particular way because of the implementation details of the
language. Most people don’t know all the variables they are going to
use before they write the code, so they must keep jumping back to
the beginning of the block to insert new variables, which is awkward
and causes errors. These variable definitions don’t usually mean
much to the reader, and they actually tend to be confusing because
they appear apart from the context in which they are used.

C++ (not C) allows you to define variables anywhere in a scope, so
you can define a variable right before you use it. In addition, you
can initialize the variable at the point you define it, which prevents
a certain class of errors. Defining variables this way makes the code
much easier to write and reduces the errors you get from being
forced to jump back and forth within a scope. It makes the code
easier to understand because you see a variable defined in the
context of its use. This is especially important when you are
defining and initializing a variable at the same time – you can see
the meaning of the initialization value by the way the variable is
used.

You can also define variables inside the control expressions of for
loops and while loops, inside the conditional of an if statement,
and inside the selector statement of a switch. Here’s an example
showing on-the-fly variable definitions:

//: C03:OnTheFly.cpp

// On-the-fly variable definitions

#include <iostream>

using namespace std;

146 Thinking in C++ www.BruceEckel.com

int main() {

 //..

 { // Begin a new scope

 int q = 0; // C requires definitions here

 //..

 // Define at point of use:

 for(int i = 0; i < 100; i++) {

 q++; // q comes from a larger scope

 // Definition at the end of the scope:

 int p = 12;

 }

 int p = 1; // A different p

 } // End scope containing q & outer p

 cout << "Type characters:" << endl;

 while(char c = cin.get() != 'q') {

 cout << c << " wasn't it" << endl;

 if(char x = c == 'a' || c == 'b')

 cout << "You typed a or b" << endl;

 else

 cout << "You typed " << x << endl;

 }

 cout << "Type A, B, or C" << endl;

 switch(int i = cin.get()) {

 case 'A': cout << "Snap" << endl; break;

 case 'B': cout << "Crackle" << endl; break;

 case 'C': cout << "Pop" << endl; break;

 default: cout << "Not A, B or C!" << endl;

 }

} ///:~

In the innermost scope, p is defined right before the scope ends, so
it is really a useless gesture (but it shows you can define a variable
anywhere). The p in the outer scope is in the same situation.

The definition of i in the control expression of the for loop is an
example of being able to define a variable exactly at the point you
need it (you can do this only in C++). The scope of i is the scope of
the expression controlled by the for loop, so you can turn around
and re-use i in the next for loop. This is a convenient and
commonly-used idiom in C++; i is the classic name for a loop
counter and you don’t have to keep inventing new names.

3: The C in C++ 147

Although the example also shows variables defined within while,
if, and switch statements, this kind of definition is much less
common than those in for expressions, possibly because the syntax
is so constrained. For example, you cannot have any parentheses.
That is, you cannot say:

while((char c = cin.get()) != 'q')

The addition of the extra parentheses would seem like an innocent
and useful thing to do, and because you cannot use them, the
results are not what you might like. The problem occurs because
‘!=’ has a higher precedence than ‘=’, so the char c ends up
containing a bool converted to char. When that’s printed, on many
terminals you’ll see a smiley-face character.

In general, you can consider the ability to define variables within
while, if, and switch statements as being there for completeness,
but the only place you’re likely to use this kind of variable definition
is in a for loop (where you’ll use it quite often).

Specifying storage allocation
When creating a variable, you have a number of options to specify
the lifetime of the variable, how the storage is allocated for that
variable, and how the variable is treated by the compiler.

Global variables
Global variables are defined outside all function bodies and are
available to all parts of the program (even code in other files).
Global variables are unaffected by scopes and are always available
(i.e., the lifetime of a global variable lasts until the program ends).
If the existence of a global variable in one file is declared using the
extern keyword in another file, the data is available for use by the
second file. Here’s an example of the use of global variables:

//: C03:Global.cpp

//{L} Global2

// Demonstration of global variables

#include <iostream>

148 Thinking in C++ www.BruceEckel.com

using namespace std;

int globe;

void func();

int main() {

 globe = 12;

 cout << globe << endl;

 func(); // Modifies globe

 cout << globe << endl;

} ///:~

Here’s a file that accesses globe as an extern:

//: C03:Global2.cpp {O}

// Accessing external global variables

extern int globe;

// (The linker resolves the reference)

void func() {

 globe = 47;

} ///:~

Storage for the variable globe is created by the definition in
Global.cpp, and that same variable is accessed by the code in
Global2.cpp. Since the code in Global2.cpp is compiled
separately from the code in Global.cpp, the compiler must be
informed that the variable exists elsewhere by the declaration

extern int globe;

When you run the program, you’ll see that the call to func() does
indeed affect the single global instance of globe.

In Global.cpp, you can see the special comment tag (which is my
own design):

//{L} Global2

This says that to create the final program, the object file with the
name Global2 must be linked in (there is no extension because the
extension names of object files differ from one system to the next).
In Global2.cpp, the first line has another special comment tag
{O}, which says “Don’t try to create an executable out of this file,
it’s being compiled so that it can be linked into some other

3: The C in C++ 149

executable.” The ExtractCode.cpp program in Volume 2 of this
book (downloadable at www.BruceEckel.com) reads these tags and
creates the appropriate makefile so everything compiles properly
(you’ll learn about makefiles at the end of this chapter).

Local variables
Local variables occur within a scope; they are “local” to a function.
They are often called automatic variables because they
automatically come into being when the scope is entered and
automatically go away when the scope closes. The keyword auto
makes this explicit, but local variables default to auto so it is never
necessary to declare something as an auto.

Register variables
A register variable is a type of local variable. The register keyword
tells the compiler “Make accesses to this variable as fast as
possible.” Increasing the access speed is implementation
dependent, but, as the name suggests, it is often done by placing the
variable in a register. There is no guarantee that the variable will be
placed in a register or even that the access speed will increase. It is a
hint to the compiler.

There are restrictions to the use of register variables. You cannot
take or compute the address of a register variable. A register
variable can be declared only within a block (you cannot have global
or static register variables). You can, however, use a register
variable as a formal argument in a function (i.e., in the argument
list).

In general, you shouldn’t try to second-guess the compiler’s
optimizer, since it will probably do a better job than you can. Thus,
the register keyword is best avoided.

static
The static keyword has several distinct meanings. Normally,
variables defined local to a function disappear at the end of the
function scope. When you call the function again, storage for the
variables is created anew and the values are re-initialized. If you

150 Thinking in C++ www.BruceEckel.com

want a value to be extant throughout the life of a program, you can
define a function’s local variable to be static and give it an initial
value. The initialization is performed only the first time the function
is called, and the data retains its value between function calls. This
way, a function can “remember” some piece of information between
function calls.

You may wonder why a global variable isn’t used instead. The
beauty of a static variable is that it is unavailable outside the scope
of the function, so it can’t be inadvertently changed. This localizes
errors.

Here’s an example of the use of static variables:

//: C03:Static.cpp

// Using a static variable in a function

#include <iostream>

using namespace std;

void func() {

 static int i = 0;

 cout << "i = " << ++i << endl;

}

int main() {

 for(int x = 0; x < 10; x++)

 func();

} ///:~

Each time func() is called in the for loop, it prints a different value.
If the keyword static is not used, the value printed will always be
‘1’.

The second meaning of static is related to the first in the
“unavailable outside a certain scope” sense. When static is applied
to a function name or to a variable that is outside of all functions, it
means “This name is unavailable outside of this file.” The function
name or variable is local to the file; we say it has file scope. As a
demonstration, compiling and linking the following two files will
cause a linker error:

//: C03:FileStatic.cpp

3: The C in C++ 151

// File scope demonstration. Compiling and

// linking this file with FileStatic2.cpp

// will cause a linker error

// File scope means only available in this file:

static int fs;

int main() {

 fs = 1;

} ///:~

Even though the variable fs is claimed to exist as an extern in the
following file, the linker won’t find it because it has been declared
static in FileStatic.cpp.

//: C03:FileStatic2.cpp {O}

// Trying to reference fs

extern int fs;

void func() {

 fs = 100;

} ///:~

The static specifier may also be used inside a class. This
explanation will be delayed until you learn to create classes, later in
the book.

extern
The extern keyword has already been briefly described and
demonstrated. It tells the compiler that a variable or a function
exists, even if the compiler hasn’t yet seen it in the file currently
being compiled. This variable or function may be defined in another
file or further down in the current file. As an example of the latter:

//: C03:Forward.cpp

// Forward function & data declarations

#include <iostream>

using namespace std;

// This is not actually external, but the

// compiler must be told it exists somewhere:

extern int i;

extern void func();

152 Thinking in C++ www.BruceEckel.com

int main() {

 i = 0;

 func();

}

int i; // The data definition

void func() {

 i++;

 cout << i;

} ///:~

When the compiler encounters the declaration ‘extern int i’, it
knows that the definition for i must exist somewhere as a global
variable. When the compiler reaches the definition of i, no other
declaration is visible, so it knows it has found the same i declared
earlier in the file. If you were to define i as static, you would be
telling the compiler that i is defined globally (via the extern), but it
also has file scope (via the static), so the compiler will generate an
error.

Linkage
To understand the behavior of C and C++ programs, you need to
know about linkage. In an executing program, an identifier is
represented by storage in memory that holds a variable or a
compiled function body. Linkage describes this storage as it is seen
by the linker. There are two types of linkage: internal linkage and
external linkage.

Internal linkage means that storage is created to represent the
identifier only for the file being compiled. Other files may use the
same identifier name with internal linkage, or for a global variable,
and no conflicts will be found by the linker – separate storage is
created for each identifier. Internal linkage is specified by the
keyword static in C and C++.

External linkage means that a single piece of storage is created to
represent the identifier for all files being compiled. The storage is
created once, and the linker must resolve all other references to that
storage. Global variables and function names have external linkage.
These are accessed from other files by declaring them with the
keyword extern. Variables defined outside all functions (with the
exception of const in C++) and function definitions default to

3: The C in C++ 153

external linkage. You can specifically force them to have internal
linkage using the static keyword. You can explicitly state that an
identifier has external linkage by defining it with the extern
keyword. Defining a variable or function with extern is not
necessary in C, but it is sometimes necessary for const in C++.

Automatic (local) variables exist only temporarily, on the stack,
while a function is being called. The linker doesn’t know about
automatic variables, and so these have no linkage.

Constants
In old (pre-Standard) C, if you wanted to make a constant, you had
to use the preprocessor:

#define PI 3.14159

Everywhere you used PI, the value 3.14159 was substituted by the
preprocessor (you can still use this method in C and C++).

When you use the preprocessor to create constants, you place
control of those constants outside the scope of the compiler. No
type checking is performed on the name PI and you can’t take the
address of PI (so you can’t pass a pointer or a reference to PI). PI
cannot be a variable of a user-defined type. The meaning of PI lasts
from the point it is defined to the end of the file; the preprocessor
doesn’t recognize scoping.

C++ introduces the concept of a named constant that is just like a
variable, except that its value cannot be changed. The modifier
const tells the compiler that a name represents a constant. Any
data type, built-in or user-defined, may be defined as const. If you
define something as const and then attempt to modify it, the
compiler will generate an error.

You must specify the type of a const, like this:

const int x = 10;

In Standard C and C++, you can use a named constant in an
argument list, even if the argument it fills is a pointer or a reference

154 Thinking in C++ www.BruceEckel.com

(i.e., you can take the address of a const). A const has a scope, just
like a regular variable, so you can “hide” a const inside a function
and be sure that the name will not affect the rest of the program.

The const was taken from C++ and incorporated into Standard C,
albeit quite differently. In C, the compiler treats a const just like a
variable that has a special tag attached that says “Don’t change me.”
When you define a const in C, the compiler creates storage for it,
so if you define more than one const with the same name in two
different files (or put the definition in a header file), the linker will
generate error messages about conflicts. The intended use of const
in C is quite different from its intended use in C++ (in short, it’s
nicer in C++).

Constant values
In C++, a const must always have an initialization value (in C, this
is not true). Constant values for built-in types are expressed as
decimal, octal, hexadecimal, or floating-point numbers (sadly,
binary numbers were not considered important), or as characters.

In the absence of any other clues, the compiler assumes a constant
value is a decimal number. The numbers 47, 0, and 1101 are all
treated as decimal numbers.

A constant value with a leading 0 is treated as an octal number
(base 8). Base 8 numbers can contain only digits 0-7; the compiler
flags other digits as an error. A legitimate octal number is 017 (15 in
base 10).

A constant value with a leading 0x is treated as a hexadecimal
number (base 16). Base 16 numbers contain the digits 0-9 and a-f or
A-F. A legitimate hexadecimal number is 0x1fe (510 in base 10).

Floating point numbers can contain decimal points and exponential
powers (represented by e, which means “10 to the power of”). Both
the decimal point and the e are optional. If you assign a constant to
a floating-point variable, the compiler will take the constant value
and convert it to a floating-point number (this process is one form
of what’s called implicit type conversion). However, it is a good idea
to use either a decimal point or an e to remind the reader that you

3: The C in C++ 155

are using a floating-point number; some older compilers also need
the hint.

Legitimate floating-point constant values are: 1e4, 1.0001, 47.0,
0.0, and -1.159e-77. You can add suffixes to force the type of
floating-point number: f or F forces a float, L or l forces a long
double; otherwise the number will be a double.

Character constants are characters surrounded by single quotes, as:
‘A’, ‘0’, ‘ ‘. Notice there is a big difference between the character ‘0’
(ASCII 96) and the value 0. Special characters are represented with
the “backslash escape”: ‘\n’ (newline), ‘\t’ (tab), ‘\ ’ (backslash), ‘\r’
(carriage return), ‘\"’ (double quotes), ‘\'’ (single quote), etc. You
can also express char constants in octal: ‘\17’ or hexadecimal: ‘\xff’.

volatile
Whereas the qualifier const tells the compiler “This never changes”
(which allows the compiler to perform extra optimizations), the
qualifier volatile tells the compiler “You never know when this will
change,” and prevents the compiler from performing any
optimizations based on the stability of that variable. Use this
keyword when you read some value outside the control of your
code, such as a register in a piece of communication hardware. A
volatile variable is always read whenever its value is required, even
if it was just read the line before.

A special case of some storage being “outside the control of your
code” is in a multithreaded program. If you’re watching a particular
flag that is modified by another thread or process, that flag should
be volatile so the compiler doesn’t make the assumption that it can
optimize away multiple reads of the flag.

Note that volatile may have no effect when a compiler is not
optimizing, but may prevent critical bugs when you start optimizing
the code (which is when the compiler will begin looking for
redundant reads).

The const and volatile keywords will be further illuminated in a
later chapter.

156 Thinking in C++ www.BruceEckel.com

Operators and their use
This section covers all the operators in C and C++.

All operators produce a value from their operands. This value is
produced without modifying the operands, except with the
assignment, increment, and decrement operators. Modifying an
operand is called a side effect. The most common use for operators
that modify their operands is to generate the side effect, but you
should keep in mind that the value produced is available for your
use just as in operators without side effects.

Assignment
Assignment is performed with the operator =. It means “Take the
right-hand side (often called the rvalue) and copy it into the left-
hand side (often called the lvalue).” An rvalue is any constant,
variable, or expression that can produce a value, but an lvalue must
be a distinct, named variable (that is, there must be a physical space
in which to store data). For instance, you can assign a constant
value to a variable (A = 4;), but you cannot assign anything to
constant value – it cannot be an lvalue (you can’t say 4 = A;).

Mathematical operators
The basic mathematical operators are the same as the ones
available in most programming languages: addition (+), subtraction
(-), division (/), multiplication (*), and modulus (%; this produces
the remainder from integer division). Integer division truncates the
result (it doesn’t round). The modulus operator cannot be used with
floating-point numbers.

C and C++ also use a shorthand notation to perform an operation
and an assignment at the same time. This is denoted by an operator
followed by an equal sign, and is consistent with all the operators in
the language (whenever it makes sense). For example, to add 4 to
the variable x and assign x to the result, you say: x += 4;.

This example shows the use of the mathematical operators:

3: The C in C++ 157

//: C03:Mathops.cpp

// Mathematical operators

#include <iostream>

using namespace std;

// A macro to display a string and a value.

#define PRINT(STR, VAR) \

 cout << STR " = " << VAR << endl

int main() {

 int i, j, k;

 float u, v, w; // Applies to doubles, too

 cout << "enter an integer: ";

 cin >> j;

 cout << "enter another integer: ";

 cin >> k;

 PRINT("j",j); PRINT("k",k);

 i = j + k; PRINT("j + k",i);

 i = j - k; PRINT("j - k",i);

 i = k / j; PRINT("k / j",i);

 i = k * j; PRINT("k * j",i);

 i = k % j; PRINT("k % j",i);

 // The following only works with integers:

 j %= k; PRINT("j %= k", j);

 cout << "Enter a floating-point number: ";

 cin >> v;

 cout << "Enter another floating-point number:";

 cin >> w;

 PRINT("v",v); PRINT("w",w);

 u = v + w; PRINT("v + w", u);

 u = v - w; PRINT("v - w", u);

 u = v * w; PRINT("v * w", u);

 u = v / w; PRINT("v / w", u);

 // The following works for ints, chars,

 // and doubles too:

 PRINT("u", u); PRINT("v", v);

 u += v; PRINT("u += v", u);

 u -= v; PRINT("u -= v", u);

 u *= v; PRINT("u *= v", u);

 u /= v; PRINT("u /= v", u);

} ///:~

The rvalues of all the assignments can, of course, be much more
complex.

158 Thinking in C++ www.BruceEckel.com

Introduction to preprocessor macros
Notice the use of the macro PRINT() to save typing (and typing
errors!). Preprocessor macros are traditionally named with all
uppercase letters so they stand out – you’ll learn later that macros
can quickly become dangerous (and they can also be very useful).

The arguments in the parenthesized list following the macro name
are substituted in all the code following the closing parenthesis. The
preprocessor removes the name PRINT and substitutes the code
wherever the macro is called, so the compiler cannot generate any
error messages using the macro name, and it doesn’t do any type
checking on the arguments (the latter can be beneficial, as shown in
the debugging macros at the end of the chapter).

Relational operators
Relational operators establish a relationship between the values of
the operands. They produce a Boolean (specified with the bool
keyword in C++) true if the relationship is true, and false if the
relationship is false. The relational operators are: less than (<),
greater than (>), less than or equal to (<=), greater than or equal to
(>=), equivalent (==), and not equivalent (!=). They may be used
with all built-in data types in C and C++. They may be given special
definitions for user-defined data types in C++ (you’ll learn about
this in Chapter 12, which covers operator overloading).

Logical operators
The logical operators and (&&) and or (||) produce a true or false
based on the logical relationship of its arguments. Remember that
in C and C++, a statement is true if it has a non-zero value, and
false if it has a value of zero. If you print a bool, you’ll typically see
a ‘1’ for true and ‘0’ for false.

This example uses the relational and logical operators:

//: C03:Boolean.cpp

// Relational and logical operators.

#include <iostream>

using namespace std;

3: The C in C++ 159

int main() {

 int i,j;

 cout << "Enter an integer: ";

 cin >> i;

 cout << "Enter another integer: ";

 cin >> j;

 cout << "i > j is " << (i > j) << endl;

 cout << "i < j is " << (i < j) << endl;

 cout << "i >= j is " << (i >= j) << endl;

 cout << "i <= j is " << (i <= j) << endl;

 cout << "i == j is " << (i == j) << endl;

 cout << "i != j is " << (i != j) << endl;

 cout << "i && j is " << (i && j) << endl;

 cout << "i || j is " << (i || j) << endl;

 cout << " (i < 10) && (j < 10) is "

 << ((i < 10) && (j < 10)) << endl;

} ///:~

You can replace the definition for int with float or double in the
program above. Be aware, however, that the comparison of a
floating-point number with the value of zero is strict; a number that
is the tiniest fraction different from another number is still “not
equal.” A floating-point number that is the tiniest bit above zero is
still true.

Bitwise operators
The bitwise operators allow you to manipulate individual bits in a
number (since floating point values use a special internal format,
the bitwise operators work only with integral types: char, int and
long). Bitwise operators perform Boolean algebra on the
corresponding bits in the arguments to produce the result.

The bitwise and operator (&) produces a one in the output bit if
both input bits are one; otherwise it produces a zero. The bitwise or
operator (|) produces a one in the output bit if either input bit is a
one and produces a zero only if both input bits are zero. The bitwise
exclusive or, or xor (^) produces a one in the output bit if one or
the other input bit is a one, but not both. The bitwise not (~, also
called the ones complement operator) is a unary operator – it only
takes one argument (all other bitwise operators are binary

160 Thinking in C++ www.BruceEckel.com

operators). Bitwise not produces the opposite of the input bit – a
one if the input bit is zero, a zero if the input bit is one.

Bitwise operators can be combined with the = sign to unite the
operation and assignment: &=, |=, and ^= are all legitimate
operations (since ~ is a unary operator it cannot be combined with
the = sign).

Shift operators
The shift operators also manipulate bits. The left-shift operator
(<<) produces the operand to the left of the operator shifted to the
left by the number of bits specified after the operator. The right-
shift operator (>>) produces the operand to the left of the operator
shifted to the right by the number of bits specified after the
operator. If the value after the shift operator is greater than the
number of bits in the left-hand operand, the result is undefined. If
the left-hand operand is unsigned, the right shift is a logical shift so
the upper bits will be filled with zeros. If the left-hand operand is
signed, the right shift may or may not be a logical shift (that is, the
behavior is undefined).

Shifts can be combined with the equal sign (<<= and >>=). The
lvalue is replaced by the lvalue shifted by the rvalue.

What follows is an example that demonstrates the use of all the
operators involving bits. First, here’s a general-purpose function
that prints a byte in binary format, created separately so that it may
be easily reused. The header file declares the function:

//: C03:printBinary.h

// Display a byte in binary

void printBinary(const unsigned char val);

///:~

Here’s the implementation of the function:

//: C03:printBinary.cpp {O}

#include <iostream>

void printBinary(const unsigned char val) {

 for(int i = 7; i >= 0; i--)

3: The C in C++ 161

 if(val & (1 << i))

 std::cout << "1";

 else

 std::cout << "0";

} ///:~

The printBinary() function takes a single byte and displays it bit-
by-bit. The expression

(1 << i)

produces a one in each successive bit position; in binary:
00000001, 00000010, etc. If this bit is bitwise anded with val and
the result is nonzero, it means there was a one in that position in
val.

Finally, the function is used in the example that shows the bit-
manipulation operators:

//: C03:Bitwise.cpp

//{L} printBinary

// Demonstration of bit manipulation

#include "printBinary.h"

#include <iostream>

using namespace std;

// A macro to save typing:

#define PR(STR, EXPR) \

 cout << STR; printBinary(EXPR); cout << endl;

int main() {

 unsigned int getval;

 unsigned char a, b;

 cout << "Enter a number between 0 and 255: ";

 cin >> getval; a = getval;

 PR("a in binary: ", a);

 cout << "Enter a number between 0 and 255: ";

 cin >> getval; b = getval;

 PR("b in binary: ", b);

 PR("a | b = ", a | b);

 PR("a & b = ", a & b);

 PR("a ^ b = ", a ^ b);

 PR("~a = ", ~a);

 PR("~b = ", ~b);

162 Thinking in C++ www.BruceEckel.com

 // An interesting bit pattern:

 unsigned char c = 0x5A;

 PR("c in binary: ", c);

 a |= c;

 PR("a |= c; a = ", a);

 b &= c;

 PR("b &= c; b = ", b);

 b ^= a;

 PR("b ^= a; b = ", b);

} ///:~

Once again, a preprocessor macro is used to save typing. It prints
the string of your choice, then the binary representation of an
expression, then a newline.

In main(), the variables are unsigned. This is because, in
general, you don't want signs when you are working with bytes. An
int must be used instead of a char for getval because the “cin >>”
statement will otherwise treat the first digit as a character. By
assigning getval to a and b, the value is converted to a single byte
(by truncating it).

The << and >> provide bit-shifting behavior, but when they shift
bits off the end of the number, those bits are lost (it’s commonly
said that they fall into the mythical bit bucket, a place where
discarded bits end up, presumably so they can be reused…). When
manipulating bits you can also perform rotation, which means that
the bits that fall off one end are inserted back at the other end, as if
they’re being rotated around a loop. Even though most computer
processors provide a machine-level rotate command (so you’ll see it
in the assembly language for that processor), there is no direct
support for “rotate” in C or C++. Presumably the designers of C felt
justified in leaving “rotate” off (aiming, as they said, for a minimal
language) because you can build your own rotate command. For
example, here are functions to perform left and right rotations:

//: C03:Rotation.cpp {O}

// Perform left and right rotations

unsigned char rol(unsigned char val) {

 int highbit;

 if(val & 0x80) // 0x80 is the high bit only

3: The C in C++ 163

 highbit = 1;

 else

 highbit = 0;

 // Left shift (bottom bit becomes 0):

 val <<= 1;

 // Rotate the high bit onto the bottom:

 val |= highbit;

 return val;

}

unsigned char ror(unsigned char val) {

 int lowbit;

 if(val & 1) // Check the low bit

 lowbit = 1;

 else

 lowbit = 0;

 val >>= 1; // Right shift by one position

 // Rotate the low bit onto the top:

 val |= (lowbit << 7);

 return val;

} ///:~

Try using these functions in Bitwise.cpp. Notice the definitions
(or at least declarations) of rol() and ror() must be seen by the
compiler in Bitwise.cpp before the functions are used.

The bitwise functions are generally extremely efficient to use
because they translate directly into assembly language statements.
Sometimes a single C or C++ statement will generate a single line of
assembly code.

Unary operators
Bitwise not isn’t the only operator that takes a single argument. Its
companion, the logical not (!), will take a true value and produce a
false value. The unary minus (-) and unary plus (+) are the same
operators as binary minus and plus; the compiler figures out which
usage is intended by the way you write the expression. For instance,
the statement

x = -a;

has an obvious meaning. The compiler can figure out:

164 Thinking in C++ www.BruceEckel.com

x = a * -b;

but the reader might get confused, so it is safer to say:

x = a * (-b);

The unary minus produces the negative of the value. Unary plus
provides symmetry with unary minus, although it doesn’t actually
do anything.

The increment and decrement operators (++ and --) were
introduced earlier in this chapter. These are the only operators
other than those involving assignment that have side effects. These
operators increase or decrease the variable by one unit, although
“unit” can have different meanings according to the data type – this
is especially true with pointers.

The last unary operators are the address-of (&), dereference (* and
->), and cast operators in C and C++, and new and delete in C++.
Address-of and dereference are used with pointers, described in this
chapter. Casting is described later in this chapter, and new and
delete are introduced in Chapter 4.

The ternary operator
The ternary if-else is unusual because it has three operands. It is
truly an operator because it produces a value, unlike the ordinary
if-else statement. It consists of three expressions: if the first
expression (followed by a ?) evaluates to true, the expression
following the ? is evaluated and its result becomes the value
produced by the operator. If the first expression is false, the third
expression (following a :) is executed and its result becomes the
value produced by the operator.

The conditional operator can be used for its side effects or for the
value it produces. Here’s a code fragment that demonstrates both:

a = --b ? b : (b = -99);

Here, the conditional produces the rvalue. a is assigned to the value
of b if the result of decrementing b is nonzero. If b became zero, a

3: The C in C++ 165

and b are both assigned to -99. b is always decremented, but it is
assigned to -99 only if the decrement causes b to become 0. A
similar statement can be used without the “a =” just for its side
effects:

--b ? b : (b = -99);

Here the second B is superfluous, since the value produced by the
operator is unused. An expression is required between the ? and :.
In this case, the expression could simply be a constant that might
make the code run a bit faster.

The comma operator
The comma is not restricted to separating variable names in
multiple definitions, such as

int i, j, k;

Of course, it’s also used in function argument lists. However, it can
also be used as an operator to separate expressions – in this case it
produces only the value of the last expression. All the rest of the
expressions in the comma-separated list are evaluated only for their
side effects. This example increments a list of variables and uses the
last one as the rvalue:

//: C03:CommaOperator.cpp

#include <iostream>

using namespace std;

int main() {

 int a = 0, b = 1, c = 2, d = 3, e = 4;

 a = (b++, c++, d++, e++);

 cout << "a = " << a << endl;

 // The parentheses are critical here. Without

 // them, the statement will evaluate to:

 (a = b++), c++, d++, e++;

 cout << "a = " << a << endl;

} ///:~

In general, it’s best to avoid using the comma as anything other
than a separator, since people are not used to seeing it as an
operator.

166 Thinking in C++ www.BruceEckel.com

Common pitfalls when using operators
As illustrated above, one of the pitfalls when using operators is
trying to get away without parentheses when you are even the least
bit uncertain about how an expression will evaluate (consult your
local C manual for the order of expression evaluation).

Another extremely common error looks like this:

//: C03:Pitfall.cpp

// Operator mistakes

int main() {

 int a = 1, b = 1;

 while(a = b) {

 //

 }

} ///:~

The statement a = b will always evaluate to true when b is non-
zero. The variable a is assigned to the value of b, and the value of b
is also produced by the operator =. In general, you want to use the
equivalence operator == inside a conditional statement, not
assignment. This one bites a lot of programmers (however, some
compilers will point out the problem to you, which is helpful).

A similar problem is using bitwise and and or instead of their
logical counterparts. Bitwise and and or use one of the characters
(& or |), while logical and and or use two (&& and ||). Just as with
= and ==, it’s easy to just type one character instead of two. A
useful mnemonic device is to observe that “Bits are smaller, so they
don’t need as many characters in their operators.”

Casting operators
The word cast is used in the sense of “casting into a mold.” The
compiler will automatically change one type of data into another if
it makes sense. For instance, if you assign an integral value to a
floating-point variable, the compiler will secretly call a function (or
more probably, insert code) to convert the int to a float. Casting
allows you to make this type conversion explicit, or to force it when
it wouldn’t normally happen.

3: The C in C++ 167

To perform a cast, put the desired data type (including all
modifiers) inside parentheses to the left of the value. This value can
be a variable, a constant, the value produced by an expression, or
the return value of a function. Here’s an example:

//: C03:SimpleCast.cpp

int main() {

 int b = 200;

 unsigned long a = (unsigned long int)b;

} ///:~

Casting is powerful, but it can cause headaches because in some
situations it forces the compiler to treat data as if it were (for
instance) larger than it really is, so it will occupy more space in
memory; this can trample over other data. This usually occurs when
casting pointers, not when making simple casts like the one shown
above.

C++ has an additional casting syntax, which follows the function
call syntax. This syntax puts the parentheses around the argument,
like a function call, rather than around the data type:

//: C03:FunctionCallCast.cpp

int main() {

 float a = float(200);

 // This is equivalent to:

 float b = (float)200;

} ///:~

Of course in the case above you wouldn’t really need a cast; you
could just say 200f (in effect, that’s typically what the compiler will
do for the above expression). Casts are generally used instead with
variables, rather than constants.

C++ explicit casts
Casts should be used carefully, because what you are actually doing
is saying to the compiler “Forget type checking – treat it as this
other type instead.” That is, you’re introducing a hole in the C++
type system and preventing the compiler from telling you that
you’re doing something wrong with a type. What’s worse, the
compiler believes you implicitly and doesn’t perform any other

168 Thinking in C++ www.BruceEckel.com

checking to catch errors. Once you start casting, you open yourself
up for all kinds of problems. In fact, any program that uses a lot of
casts should be viewed with suspicion, no matter how much you are
told it simply “must” be done that way. In general, casts should be
few and isolated to the solution of very specific problems.

Once you understand this and are presented with a buggy program,
your first inclination may be to look for casts as culprits. But how
do you locate C-style casts? They are simply type names inside of
parentheses, and if you start hunting for such things you’ll discover
that it’s often hard to distinguish them from the rest of your code.

Standard C++ includes an explicit cast syntax that can be used to
completely replace the old C-style casts (of course, C-style casts
cannot be outlawed without breaking code, but compiler writers
could easily flag old-style casts for you). The explicit cast syntax is
such that you can easily find them, as you can see by their names:

static_cast For “well-behaved” and
“reasonably well-behaved” casts,
including things you might now
do without a cast (such as an
automatic type conversion).

const_cast To cast away const and/or
volatile.

reinterpret_cast To cast to a completely different
meaning. The key is that you’ll
need to cast back to the original
type to use it safely. The type you
cast to is typically used only for
bit twiddling or some other
mysterious purpose. This is the
most dangerous of all the casts.

dynamic_cast For type-safe downcasting (this
cast will be described in Chapter
15).

The first three explicit casts will be described more completely in

3: The C in C++ 169

the following sections, while the last one can be demonstrated only
after you’ve learned more, in Chapter 15.

static_cast
A static_cast is used for all conversions that are well-defined.
These include “safe” conversions that the compiler would allow you
to do without a cast and less-safe conversions that are nonetheless
well-defined. The types of conversions covered by static_cast
include typical castless conversions, narrowing (information-losing)
conversions, forcing a conversion from a void*, implicit type
conversions, and static navigation of class hierarchies (since you
haven’t seen classes and inheritance yet, this last topic will be
delayed until Chapter 15):

//: C03:static_cast.cpp

void func(int) {}

int main() {

 int i = 0x7fff; // Max pos value = 32767

 long l;

 float f;

 // (1) Typical castless conversions:

 l = i;

 f = i;

 // Also works:

 l = static_cast<long>(i);

 f = static_cast<float>(i);

 // (2) Narrowing conversions:

 i = l; // May lose digits

 i = f; // May lose info

 // Says "I know," eliminates warnings:

 i = static_cast<int>(l);

 i = static_cast<int>(f);

 char c = static_cast<char>(i);

 // (3) Forcing a conversion from void* :

 void* vp = &i;

 // Old way produces a dangerous conversion:

 float* fp = (float*)vp;

 // The new way is equally dangerous:

 fp = static_cast<float*>(vp);

170 Thinking in C++ www.BruceEckel.com

 // (4) Implicit type conversions, normally

 // performed by the compiler:

 double d = 0.0;

 int x = d; // Automatic type conversion

 x = static_cast<int>(d); // More explicit

 func(d); // Automatic type conversion

 func(static_cast<int>(d)); // More explicit

} ///:~

In Section (1), you see the kinds of conversions you’re used to doing
in C, with or without a cast. Promoting from an int to a long or
float is not a problem because the latter can always hold every
value that an int can contain. Although it’s unnecessary, you can
use static_cast to highlight these promotions.

Converting back the other way is shown in (2). Here, you can lose
data because an int is not as “wide” as a long or a float; it won’t
hold numbers of the same size. Thus these are called narrowing
conversions. The compiler will still perform these, but will often
give you a warning. You can eliminate this warning and indicate
that you really did mean it using a cast.

Assigning from a void* is not allowed without a cast in C++ (unlike
C), as seen in (3). This is dangerous and requires that programmers
know what they’re doing. The static_cast, at least, is easier to
locate than the old standard cast when you’re hunting for bugs.

Section (4) of the program shows the kinds of implicit type
conversions that are normally performed automatically by the
compiler. These are automatic and require no casting, but again
static_cast highlights the action in case you want to make it clear
what’s happening or hunt for it later.

const_cast
If you want to convert from a const to a nonconst or from a
volatile to a nonvolatile, you use const_cast. This is the only
conversion allowed with const_cast; if any other conversion is
involved it must be done using a separate expression or you’ll get a
compile-time error.

//: C03:const_cast.cpp

3: The C in C++ 171

int main() {

 const int i = 0;

 int* j = (int*)&i; // Deprecated form

 j = const_cast<int*>(&i); // Preferred

 // Can't do simultaneous additional casting:

//! long* l = const_cast<long*>(&i); // Error

 volatile int k = 0;

 int* u = const_cast<int*>(&k);

} ///:~

If you take the address of a const object, you produce a pointer to a
const, and this cannot be assigned to a nonconst pointer without a
cast. The old-style cast will accomplish this, but the const_cast is
the appropriate one to use. The same holds true for volatile.

reinterpret_cast
This is the least safe of the casting mechanisms, and the one most
likely to produce bugs. A reinterpret_cast pretends that an
object is just a bit pattern that can be treated (for some dark
purpose) as if it were an entirely different type of object. This is the
low-level bit twiddling that C is notorious for. You’ll virtually always
need to reinterpret_cast back to the original type (or otherwise
treat the variable as its original type) before doing anything else
with it.

//: C03:reinterpret_cast.cpp

#include <iostream>

using namespace std;

const int sz = 100;

struct X { int a[sz]; };

void print(X* x) {

 for(int i = 0; i < sz; i++)

 cout << x->a[i] << ' ';

 cout << endl << "--------------------" << endl;

}

int main() {

 X x;

 print(&x);

 int* xp = reinterpret_cast<int*>(&x);

 for(int* i = xp; i < xp + sz; i++)

172 Thinking in C++ www.BruceEckel.com

 *i = 0;

 // Can't use xp as an X* at this point

 // unless you cast it back:

 print(reinterpret_cast<X*>(xp));

 // In this example, you can also just use

 // the original identifier:

 print(&x);

} ///:~

In this simple example, struct X just contains an array of int, but
when you create one on the stack as in X x, the values of each of the
ints are garbage (this is shown using the print() function to
display the contents of the struct). To initialize them, the address
of the X is taken and cast to an int pointer, which is then walked
through the array to set each int to zero. Notice how the upper
bound for i is calculated by “adding” sz to xp; the compiler knows
that you actually want sz pointer locations greater than xp and it
does the correct pointer arithmetic for you.

The idea of reinterpret_cast is that when you use it, what you get
is so foreign that it cannot be used for the type’s original purpose
unless you cast it back. Here, we see the cast back to an X* in the
call to print, but of course since you still have the original identifier
you can also use that. But the xp is only useful as an int*, which is
truly a “reinterpretation” of the original X.

A reinterpret_cast often indicates inadvisable and/or
nonportable programming, but it’s available when you decide you
have to use it.

sizeof – an operator by itself
The sizeof operator stands alone because it satisfies an unusual
need. sizeof gives you information about the amount of memory
allocated for data items. As described earlier in this chapter, sizeof
tells you the number of bytes used by any particular variable. It can
also give the size of a data type (with no variable name):

//: C03:sizeof.cpp

#include <iostream>

using namespace std;

int main() {

3: The C in C++ 173

 cout << "sizeof(double) = " << sizeof(double);

 cout << ", sizeof(char) = " << sizeof(char);

} ///:~

By definition, the sizeof any type of char (signed, unsigned or
plain) is always one, regardless of whether the underlying storage
for a char is actually one byte. For all other types, the result is the
size in bytes.

Note that sizeof is an operator, not a function. If you apply it to a
type, it must be used with the parenthesized form shown above, but
if you apply it to a variable you can use it without parentheses:

//: C03:sizeofOperator.cpp

int main() {

 int x;

 int i = sizeof x;

} ///:~

sizeof can also give you the sizes of user-defined data types. This is
used later in the book.

The asm keyword
This is an escape mechanism that allows you to write assembly code
for your hardware within a C++ program. Often you’re able to
reference C++ variables within the assembly code, which means you
can easily communicate with your C++ code and limit the assembly
code to that necessary for efficiency tuning or to use special
processor instructions. The exact syntax that you must use when
writing the assembly language is compiler-dependent and can be
discovered in your compiler’s documentation.

Explicit operators
These are keywords for bitwise and logical operators. Non-U.S.
programmers without keyboard characters like &, |, ^, and so on,
were forced to use C’s horrible trigraphs, which were not only
annoying to type, but obscure when reading. This is repaired in C++
with additional keywords:

174 Thinking in C++ www.BruceEckel.com

Keyword Meaning

and && (logical and)

or || (logical or)

not ! (logical NOT)

 not_eq != (logical not-equivalent)

bitand & (bitwise and)

and_eq &= (bitwise and-assignment)

bitor | (bitwise or)

or_eq |= (bitwise or-assignment)

xor ^ (bitwise exclusive-or)

xor_eq ^= (bitwise exclusive-or-
assignment)

compl ~ (ones complement)

If your compiler complies with Standard C++, it will support these
keywords.

Composite type creation
The fundamental data types and their variations are essential, but
rather primitive. C and C++ provide tools that allow you to compose
more sophisticated data types from the fundamental data types. As
you’ll see, the most important of these is struct, which is the
foundation for class in C++. However, the simplest way to create
more sophisticated types is simply to alias a name to another name
via typedef.

Aliasing names with typedef
This keyword promises more than it delivers: typedef suggests
“type definition” when “alias” would probably have been a more
accurate description, since that’s what it really does. The syntax is:

3: The C in C++ 175

typedef existing-type-description alias-name

People often use typedef when data types get slightly complicated,
just to prevent extra keystrokes. Here is a commonly-used typedef:

typedef unsigned long ulong;

Now if you say ulong the compiler knows that you mean
unsigned long. You might think that this could as easily be
accomplished using preprocessor substitution, but there are key
situations in which the compiler must be aware that you’re treating
a name as if it were a type, so typedef is essential.

One place where typedef comes in handy is for pointer types. As
previously mentioned, if you say:

int* x, y;

This actually produces an int* which is x and an int (not an int*)
which is y. That is, the ‘*’ binds to the right, not the left. However, if
you use a typedef:

typedef int* IntPtr;

IntPtr x, y;

Then both x and y are of type int*.

You can argue that it’s more explicit and therefore more readable to
avoid typedefs for primitive types, and indeed programs rapidly
become difficult to read when many typedefs are used. However,
typedefs become especially important in C when used with struct.

Combining variables with struct
A struct is a way to collect a group of variables into a structure.
Once you create a struct, then you can make many instances of this
“new” type of variable you’ve invented. For example:

//: C03:SimpleStruct.cpp

struct Structure1 {

 char c;

 int i;

176 Thinking in C++ www.BruceEckel.com

 float f;

 double d;

};

int main() {

 struct Structure1 s1, s2;

 s1.c = 'a'; // Select an element using a '.'

 s1.i = 1;

 s1.f = 3.14;

 s1.d = 0.00093;

 s2.c = 'a';

 s2.i = 1;

 s2.f = 3.14;

 s2.d = 0.00093;

} ///:~

The struct declaration must end with a semicolon. In main(), two
instances of Structure1 are created: s1 and s2. Each of these has
their own separate versions of c, i, f, and d. So s1 and s2 represent
clumps of completely independent variables. To select one of the
elements within s1 or s2, you use a ‘.’, syntax you’ve seen in the
previous chapter when using C++ class objects – since classes
evolved from structs, this is where that syntax arose from.

One thing you’ll notice is the awkwardness of the use of
Structure1 (as it turns out, this is only required by C, not C++). In
C, you can’t just say Structure1 when you’re defining variables,
you must say struct Structure1. This is where typedef becomes
especially handy in C:

//: C03:SimpleStruct2.cpp

// Using typedef with struct

typedef struct {

 char c;

 int i;

 float f;

 double d;

} Structure2;

int main() {

 Structure2 s1, s2;

 s1.c = 'a';

 s1.i = 1;

3: The C in C++ 177

 s1.f = 3.14;

 s1.d = 0.00093;

 s2.c = 'a';

 s2.i = 1;

 s2.f = 3.14;

 s2.d = 0.00093;

} ///:~

By using typedef in this way, you can pretend (in C; try removing
the typedef for C++) that Structure2 is a built-in type, like int or
float, when you define s1 and s2 (but notice it only has data –
characteristics – and does not include behavior, which is what we
get with real objects in C++). You’ll notice that the struct identifier
has been left off at the beginning, because the goal is to create the
typedef. However, there are times when you might need to refer to
the struct during its definition. In those cases, you can actually
repeat the name of the struct as the struct name and as the
typedef:

//: C03:SelfReferential.cpp

// Allowing a struct to refer to itself

typedef struct SelfReferential {

 int i;

 SelfReferential* sr; // Head spinning yet?

} SelfReferential;

int main() {

 SelfReferential sr1, sr2;

 sr1.sr = &sr2;

 sr2.sr = &sr1;

 sr1.i = 47;

 sr2.i = 1024;

} ///:~

If you look at this for awhile, you’ll see that sr1 and sr2 point to
each other, as well as each holding a piece of data.

Actually, the struct name does not have to be the same as the
typedef name, but it is usually done this way as it tends to keep
things simpler.

178 Thinking in C++ www.BruceEckel.com

Pointers and structs
In the examples above, all the structs are manipulated as objects.
However, like any piece of storage, you can take the address of a
struct object (as seen in SelfReferential.cpp above). To select
the elements of a particular struct object, you use a ‘.’, as seen
above. However, if you have a pointer to a struct object, you must
select an element of that object using a different operator: the ‘->’.
Here’s an example:

//: C03:SimpleStruct3.cpp

// Using pointers to structs

typedef struct Structure3 {

 char c;

 int i;

 float f;

 double d;

} Structure3;

int main() {

 Structure3 s1, s2;

 Structure3* sp = &s1;

 sp->c = 'a';

 sp->i = 1;

 sp->f = 3.14;

 sp->d = 0.00093;

 sp = &s2; // Point to a different struct object

 sp->c = 'a';

 sp->i = 1;

 sp->f = 3.14;

 sp->d = 0.00093;

} ///:~

In main(), the struct pointer sp is initially pointing to s1, and the
members of s1 are initialized by selecting them with the ‘->’ (and
you use this same operator in order to read those members). But
then sp is pointed to s2, and those variables are initialized the
same way. So you can see that another benefit of pointers is that
they can be dynamically redirected to point to different objects; this
provides more flexibility in your programming, as you will learn.

3: The C in C++ 179

For now, that’s all you need to know about structs, but you’ll
become much more comfortable with them (and especially their
more potent successors, classes) as the book progresses.

Clarifying programs with enum
An enumerated data type is a way of attaching names to numbers,
thereby giving more meaning to anyone reading the code. The
enum keyword (from C) automatically enumerates any list of
identifiers you give it by assigning them values of 0, 1, 2, etc. You
can declare enum variables (which are always represented as
integral values). The declaration of an enum looks similar to a
struct declaration.

An enumerated data type is useful when you want to keep track of
some sort of feature:

//: C03:Enum.cpp

// Keeping track of shapes

enum ShapeType {

 circle,

 square,

 rectangle

}; // Must end with a semicolon like a struct

int main() {

 ShapeType shape = circle;

 // Activities here....

 // Now do something based on what the shape is:

 switch(shape) {

 case circle: /* circle stuff */ break;

 case square: /* square stuff */ break;

 case rectangle: /* rectangle stuff */ break;

 }

} ///:~

shape is a variable of the ShapeType enumerated data type, and
its value is compared with the value in the enumeration. Since
shape is really just an int, however, it can be any value an int can
hold (including a negative number). You can also compare an int
variable with a value in the enumeration.

180 Thinking in C++ www.BruceEckel.com

You should be aware that the example above of switching on type
turns out to be a problematic way to program. C++ has a much
better way to code this sort of thing, the explanation of which must
be delayed until much later in the book.

If you don’t like the way the compiler assigns values, you can do it
yourself, like this:

enum ShapeType {

 circle = 10, square = 20, rectangle = 50

};

If you give values to some names and not to others, the compiler
will use the next integral value. For example,

enum snap { crackle = 25, pop };

The compiler gives pop the value 26.

You can see how much more readable the code is when you use
enumerated data types. However, to some degree this is still an
attempt (in C) to accomplish the things that we can do with a class
in C++, so you’ll see enum used less in C++.

Type checking for enumerations
C’s enumerations are fairly primitive, simply associating integral
values with names, but they provide no type checking. In C++, as
you may have come to expect by now, the concept of type is
fundamental, and this is true with enumerations. When you create a
named enumeration, you effectively create a new type just as you do
with a class: The name of your enumeration becomes a reserved
word for the duration of that translation unit.

In addition, there’s stricter type checking for enumerations in C++
than in C. You’ll notice this in particular if you have an instance of
an enumeration color called a. In C you can say a++, but in C++
you can’t. This is because incrementing an enumeration is
performing two type conversions, one of them legal in C++ and one
of them illegal. First, the value of the enumeration is implicitly cast
from a color to an int, then the value is incremented, then the int
is cast back into a color. In C++ this isn’t allowed, because color is

3: The C in C++ 181

a distinct type and not equivalent to an int. This makes sense,
because how do you know the increment of blue will even be in the
list of colors? If you want to increment a color, then it should be a
class (with an increment operation) and not an enum, because the
class can be made to be much safer. Any time you write code that
assumes an implicit conversion to an enum type, the compiler will
flag this inherently dangerous activity.

Unions (described next) have similar additional type checking in
C++.

Saving memory with union
Sometimes a program will handle different types of data using the
same variable. In this situation, you have two choices: you can
create a struct containing all the possible different types you might
need to store, or you can use a union. A union piles all the data
into a single space; it figures out the amount of space necessary for
the largest item you’ve put in the union, and makes that the size of
the union. Use a union to save memory.

Anytime you place a value in a union, the value always starts in the
same place at the beginning of the union, but only uses as much
space as is necessary. Thus, you create a “super-variable” capable of
holding any of the union variables. All the addresses of the union
variables are the same (in a class or struct, the addresses are
different).

Here’s a simple use of a union. Try removing various elements and
see what effect it has on the size of the union. Notice that it makes
no sense to declare more than one instance of a single data type in a
union (unless you’re just doing it to use a different name).

//: C03:Union.cpp

// The size and simple use of a union

#include <iostream>

using namespace std;

union Packed { // Declaration similar to a class

 char i;

 short j;

182 Thinking in C++ www.BruceEckel.com

 int k;

 long l;

 float f;

 double d;

 // The union will be the size of a

 // double, since that's the largest element

}; // Semicolon ends a union, like a struct

int main() {

 cout << "sizeof(Packed) = "

 << sizeof(Packed) << endl;

 Packed x;

 x.i = 'c';

 cout << x.i << endl;

 x.d = 3.14159;

 cout << x.d << endl;

} ///:~

The compiler performs the proper assignment according to the
union member you select.

Once you perform an assignment, the compiler doesn’t care what
you do with the union. In the example above, you could assign a
floating-point value to x:

x.f = 2.222;

and then send it to the output as if it were an int:

cout << x.i;

This would produce garbage.

Arrays
Arrays are a kind of composite type because they allow you to
clump a lot of variables together, one right after the other, under a
single identifier name. If you say:

int a[10];

You create storage for 10 int variables stacked on top of each other,
but without unique identifier names for each variable. Instead, they
are all lumped under the name a.

3: The C in C++ 183

To access one of these array elements, you use the same square-
bracket syntax that you use to define an array:

a[5] = 47;

However, you must remember that even though the size of a is 10,
you select array elements starting at zero (this is sometimes called
zero indexing), so you can select only the array elements 0-9, like
this:

//: C03:Arrays.cpp

#include <iostream>

using namespace std;

int main() {

 int a[10];

 for(int i = 0; i < 10; i++) {

 a[i] = i * 10;

 cout << "a[" << i << "] = " << a[i] << endl;

 }

} ///:~

Array access is extremely fast. However, if you index past the end of
the array, there is no safety net – you’ll step on other variables. The
other drawback is that you must define the size of the array at
compile time; if you want to change the size at runtime you can’t do
it with the syntax above (C does have a way to create an array
dynamically, but it’s significantly messier). The C++ vector,
introduced in the previous chapter, provides an array-like object
that automatically resizes itself, so it is usually a much better
solution if your array size cannot be known at compile time.

You can make an array of any type, even of structs:

//: C03:StructArray.cpp

// An array of struct

typedef struct {

 int i, j, k;

} ThreeDpoint;

int main() {

 ThreeDpoint p[10];

184 Thinking in C++ www.BruceEckel.com

 for(int i = 0; i < 10; i++) {

 p[i].i = i + 1;

 p[i].j = i + 2;

 p[i].k = i + 3;

 }

} ///:~

Notice how the struct identifier i is independent of the for loop’s i.

To see that each element of an array is contiguous with the next,
you can print out the addresses like this:

//: C03:ArrayAddresses.cpp

#include <iostream>

using namespace std;

int main() {

 int a[10];

 cout << "sizeof(int) = "<< sizeof(int) << endl;

 for(int i = 0; i < 10; i++)

 cout << "&a[" << i << "] = "

 << (long)&a[i] << endl;

} ///:~

When you run this program, you’ll see that each element is one int
size away from the previous one. That is, they are stacked one on
top of the other.

Pointers and arrays
The identifier of an array is unlike the identifiers for ordinary
variables. For one thing, an array identifier is not an lvalue; you
cannot assign to it. It’s really just a hook into the square-bracket
syntax, and when you give the name of an array, without square
brackets, what you get is the starting address of the array:

//: C03:ArrayIdentifier.cpp

#include <iostream>

using namespace std;

int main() {

 int a[10];

 cout << "a = " << a << endl;

 cout << "&a[0] =" << &a[0] << endl;

3: The C in C++ 185

} ///:~

When you run this program you’ll see that the two addresses (which
will be printed in hexadecimal, since there is no cast to long) are
the same.

So one way to look at the array identifier is as a read-only pointer to
the beginning of an array. And although we can’t change the array
identifier to point somewhere else, we can create another pointer
and use that to move around in the array. In fact, the square-
bracket syntax works with regular pointers as well:

//: C03:PointersAndBrackets.cpp

int main() {

 int a[10];

 int* ip = a;

 for(int i = 0; i < 10; i++)

 ip[i] = i * 10;

} ///:~

The fact that naming an array produces its starting address turns
out to be quite important when you want to pass an array to a
function. If you declare an array as a function argument, what
you’re really declaring is a pointer. So in the following example,
func1() and func2() effectively have the same argument lists:

//: C03:ArrayArguments.cpp

#include <iostream>

#include <string>

using namespace std;

void func1(int a[], int size) {

 for(int i = 0; i < size; i++)

 a[i] = i * i - i;

}

void func2(int* a, int size) {

 for(int i = 0; i < size; i++)

 a[i] = i * i + i;

}

void print(int a[], string name, int size) {

 for(int i = 0; i < size; i++)

186 Thinking in C++ www.BruceEckel.com

 cout << name << "[" << i << "] = "

 << a[i] << endl;

}

int main() {

 int a[5], b[5];

 // Probably garbage values:

 print(a, "a", 5);

 print(b, "b", 5);

 // Initialize the arrays:

 func1(a, 5);

 func1(b, 5);

 print(a, "a", 5);

 print(b, "b", 5);

 // Notice the arrays are always modified:

 func2(a, 5);

 func2(b, 5);

 print(a, "a", 5);

 print(b, "b", 5);

} ///:~

Even though func1() and func2() declare their arguments
differently, the usage is the same inside the function. There are
some other issues that this example reveals: arrays cannot be
passed by value3, that is, you never automatically get a local copy of
the array that you pass into a function. Thus, when you modify an
array, you’re always modifying the outside object. This can be a bit
confusing at first, if you’re expecting the pass-by-value provided
with ordinary arguments.

You’ll notice that print() uses the square-bracket syntax for array
arguments. Even though the pointer syntax and the square-bracket
syntax are effectively the same when passing arrays as arguments,
the square-bracket syntax makes it clearer to the reader that you
mean for this argument to be an array.

3 Unless you take the very strict approach that “all argument passing in C/C++ is by
value, and the ‘value’ of an array is what is produced by the array identifier: it’s
address.” This can be seen as true from the assembly-language standpoint, but I don’t
think it helps when trying to work with higher-level concepts. The addition of
references in C++ makes the “all passing is by value” argument more confusing, to the
point where I feel it’s more helpful to think in terms of “passing by value” vs. “passing
addresses.”

3: The C in C++ 187

Also note that the size argument is passed in each case. Just
passing the address of an array isn’t enough information; you must
always be able to know how big the array is inside your function, so
you don’t run off the end of that array.

Arrays can be of any type, including arrays of pointers. In fact,
when you want to pass command-line arguments into your
program, C and C++ have a special argument list for main(),
which looks like this:

int main(int argc, char* argv[]) { // ...

The first argument is the number of elements in the array, which is
the second argument. The second argument is always an array of
char*, because the arguments are passed from the command line
as character arrays (and remember, an array can be passed only as a
pointer). Each whitespace-delimited cluster of characters on the
command line is turned into a separate array argument. The
following program prints out all its command-line arguments by
stepping through the array:

//: C03:CommandLineArgs.cpp

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

 cout << "argc = " << argc << endl;

 for(int i = 0; i < argc; i++)

 cout << "argv[" << i << "] = "

 << argv[i] << endl;

} ///:~

You’ll notice that argv[0] is the path and name of the program
itself. This allows the program to discover information about itself.
It also adds one more to the array of program arguments, so a
common error when fetching command-line arguments is to grab
argv[0] when you want argv[1].

You are not forced to use argc and argv as identifiers in main();
those identifiers are only conventions (but it will confuse people if
you don’t use them). Also, there is an alternate way to declare argv:

188 Thinking in C++ www.BruceEckel.com

int main(int argc, char** argv) { // ...

Both forms are equivalent, but I find the version used in this book
to be the most intuitive when reading the code, since it says,
directly, “This is an array of character pointers.”

All you get from the command-line is character arrays; if you want
to treat an argument as some other type, you are responsible for
converting it inside your program. To facilitate the conversion to
numbers, there are some helper functions in the Standard C library,
declared in <cstdlib>. The simplest ones to use are atoi(),
atol(), and atof() to convert an ASCII character array to an int,
long, and double floating-point value, respectively. Here’s an
example using atoi() (the other two functions are called the same
way):

//: C03:ArgsToInts.cpp

// Converting command-line arguments to ints

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char* argv[]) {

 for(int i = 1; i < argc; i++)

 cout << atoi(argv[i]) << endl;

} ///:~

In this program, you can put any number of arguments on the
command line. You’ll notice that the for loop starts at the value 1 to
skip over the program name at argv[0]. Also, if you put a floating-
point number containing a decimal point on the command line,
atoi() takes only the digits up to the decimal point. If you put non-
numbers on the command line, these come back from atoi() as
zero.

Exploring floating-point format
The printBinary() function introduced earlier in this chapter is
handy for delving into the internal structure of various data types.
The most interesting of these is the floating-point format that
allows C and C++ to store numbers representing very large and very
small values in a limited amount of space. Although the details can’t

3: The C in C++ 189

be completely exposed here, the bits inside of floats and doubles
are divided into three regions: the exponent, the mantissa, and the
sign bit; thus it stores the values using scientific notation. The
following program allows you to play around by printing out the
binary patterns of various floating point numbers so you can deduce
for yourself the scheme used in your compiler’s floating-point
format (usually this is the IEEE standard for floating point
numbers, but your compiler may not follow that):

//: C03:FloatingAsBinary.cpp

//{L} printBinary

//{T} 3.14159

#include "printBinary.h"

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

 if(argc != 2) {

 cout << "Must provide a number" << endl;

 exit(1);

 }

 double d = atof(argv[1]);

 unsigned char* cp =

 reinterpret_cast<unsigned char*>(&d);

 for(int i = sizeof(double); i > 0 ; i -= 2) {

 printBinary(cp[i-1]);

 printBinary(cp[i]);

 }

} ///:~

First, the program guarantees that you’ve given it an argument by
checking the value of argc, which is two if there’s a single argument
(it’s one if there are no arguments, since the program name is
always the first element of argv). If this fails, a message is printed
and the Standard C Library function exit() is called to terminate
the program.

The program grabs the argument from the command line and
converts the characters to a double using atof(). Then the double
is treated as an array of bytes by taking the address and casting it to

190 Thinking in C++ www.BruceEckel.com

an unsigned char*. Each of these bytes is passed to
printBinary() for display.

This example has been set up to print the bytes in an order such
that the sign bit appears first – on my machine. Yours may be
different, so you might want to re-arrange the way things are
printed. You should also be aware that floating-point formats are
not trivial to understand; for example, the exponent and mantissa
are not generally arranged on byte boundaries, but instead a
number of bits is reserved for each one and they are packed into the
memory as tightly as possible. To truly see what’s going on, you’d
need to find out the size of each part of the number (sign bits are
always one bit, but exponents and mantissas are of differing sizes)
and print out the bits in each part separately.

Pointer arithmetic
If all you could do with a pointer that points at an array is treat it as
if it were an alias for that array, pointers into arrays wouldn’t be
very interesting. However, pointers are more flexible than this,
since they can be modified to point somewhere else (but remember,
the array identifier cannot be modified to point somewhere else).

Pointer arithmetic refers to the application of some of the
arithmetic operators to pointers. The reason pointer arithmetic is a
separate subject from ordinary arithmetic is that pointers must
conform to special constraints in order to make them behave
properly. For example, a common operator to use with pointers is
++, which “adds one to the pointer.” What this actually means is
that the pointer is changed to move to “the next value,” whatever
that means. Here’s an example:

//: C03:PointerIncrement.cpp

#include <iostream>

using namespace std;

int main() {

 int i[10];

 double d[10];

 int* ip = i;

 double* dp = d;

 cout << "ip = " << (long)ip << endl;

3: The C in C++ 191

 ip++;

 cout << "ip = " << (long)ip << endl;

 cout << "dp = " << (long)dp << endl;

 dp++;

 cout << "dp = " << (long)dp << endl;

} ///:~

For one run on my machine, the output is:

ip = 6684124

ip = 6684128

dp = 6684044

dp = 6684052

What’s interesting here is that even though the operation ++
appears to be the same operation for both the int* and the
double*, you can see that the pointer has been changed only 4
bytes for the int* but 8 bytes for the double*. Not coincidentally,
these are the sizes of int and double on my machine. And that’s
the trick of pointer arithmetic: the compiler figures out the right
amount to change the pointer so that it’s pointing to the next
element in the array (pointer arithmetic is only meaningful within
arrays). This even works with arrays of structs:

//: C03:PointerIncrement2.cpp

#include <iostream>

using namespace std;

typedef struct {

 char c;

 short s;

 int i;

 long l;

 float f;

 double d;

 long double ld;

} Primitives;

int main() {

 Primitives p[10];

 Primitives* pp = p;

 cout << "sizeof(Primitives) = "

 << sizeof(Primitives) << endl;

 cout << "pp = " << (long)pp << endl;

192 Thinking in C++ www.BruceEckel.com

 pp++;

 cout << "pp = " << (long)pp << endl;

} ///:~

The output for one run on my machine was:

sizeof(Primitives) = 40

pp = 6683764

pp = 6683804

So you can see the compiler also does the right thing for pointers to
structs (and classes and unions).

Pointer arithmetic also works with the operators --, +, and -, but
the latter two operators are limited: you cannot add two pointers,
and if you subtract pointers the result is the number of elements
between the two pointers. However, you can add or subtract an
integral value and a pointer. Here’s an example demonstrating the
use of pointer arithmetic:

//: C03:PointerArithmetic.cpp

#include <iostream>

using namespace std;

#define P(EX) cout << #EX << ": " << EX << endl;

int main() {

 int a[10];

 for(int i = 0; i < 10; i++)

 a[i] = i; // Give it index values

 int* ip = a;

 P(*ip);

 P(*++ip);

 P(*(ip + 5));

 int* ip2 = ip + 5;

 P(*ip2);

 P(*(ip2 - 4));

 P(*--ip2);

 P(ip2 - ip); // Yields number of elements

} ///:~

It begins with another macro, but this one uses a preprocessor
feature called stringizing (implemented with the ‘#’ sign before an
expression) that takes any expression and turns it into a character

3: The C in C++ 193

array. This is quite convenient, since it allows the expression to be
printed, followed by a colon, followed by the value of the
expression. In main() you can see the useful shorthand that is
produced.

Although pre- and postfix versions of ++ and -- are valid with
pointers, only the prefix versions are used in this example because
they are applied before the pointers are dereferenced in the
expressions above, so they allow us to see the effects of the
operations. Note that only integral values are being added and
subtracted; if two pointers were combined this way the compiler
would not allow it.

Here is the output of the program above:

*ip: 0

*++ip: 1

*(ip + 5): 6

*ip2: 6

*(ip2 - 4): 2

*--ip2: 5

In all cases, the pointer arithmetic results in the pointer being
adjusted to point to the “right place,” based on the size of the
elements being pointed to.

If pointer arithmetic seems a bit overwhelming at first, don’t worry.
Most of the time you’ll only need to create arrays and index into
them with [], and the most sophisticated pointer arithmetic you’ll
usually need is ++ and --. Pointer arithmetic is generally reserved
for more clever and complex programs, and many of the containers
in the Standard C++ library hide most of these clever details so you
don’t have to worry about them.

Debugging hints
In an ideal environment, you have an excellent debugger available
that easily makes the behavior of your program transparent so you
can quickly discover errors. However, most debuggers have blind
spots, and these will require you to embed code snippets in your

194 Thinking in C++ www.BruceEckel.com

program to help you understand what’s going on. In addition, you
may be developing in an environment (such as an embedded
system, which is where I spent my formative years) that has no
debugger available, and perhaps very limited feedback (i.e. a one-
line LED display). In these cases you become creative in the ways
you discover and display information about the execution of your
program. This section suggests some techniques for doing this.

Debugging flags
If you hard-wire debugging code into a program, you can run into
problems. You start to get too much information, which makes the
bugs difficult to isolate. When you think you’ve found the bug you
start tearing out debugging code, only to find you need to put it
back in again. You can solve these problems with two types of flags:
preprocessor debugging flags and runtime debugging flags.

Preprocessor debugging flags
By using the preprocessor to #define one or more debugging flags
(preferably in a header file), you can test a flag using an #ifdef
statement and conditionally include debugging code. When you
think your debugging is finished, you can simply #undef the flag(s)
and the code will automatically be removed (and you’ll reduce the
size and runtime overhead of your executable file).

It is best to decide on names for debugging flags before you begin
building your project so the names will be consistent. Preprocessor
flags are traditionally distinguished from variables by writing them
in all upper case. A common flag name is simply DEBUG (but be
careful you don’t use NDEBUG, which is reserved in C). The
sequence of statements might be:

#define DEBUG // Probably in a header file

//...

#ifdef DEBUG // Check to see if flag is defined

/* debugging code here */

#endif // DEBUG

Most C and C++ implementations will also let you #define and
#undef flags from the compiler command line, so you can re-
compile code and insert debugging information with a single

3: The C in C++ 195

command (preferably via the makefile, a tool that will be described
shortly). Check your local documentation for details.

Runtime debugging flags
In some situations it is more convenient to turn debugging flags on
and off during program execution, especially by setting them when
the program starts up using the command line. Large programs are
tedious to recompile just to insert debugging code.

To turn debugging code on and off dynamically, create bool flags:

//: C03:DynamicDebugFlags.cpp

#include <iostream>

#include <string>

using namespace std;

// Debug flags aren't necessarily global:

bool debug = false;

int main(int argc, char* argv[]) {

 for(int i = 0; i < argc; i++)

 if(string(argv[i]) == "--debug=on")

 debug = true;

 bool go = true;

 while(go) {

 if(debug) {

 // Debugging code here

 cout << "Debugger is now on!" << endl;

 } else {

 cout << "Debugger is now off." << endl;

 }

 cout << "Turn debugger [on/off/quit]: ";

 string reply;

 cin >> reply;

 if(reply == "on") debug = true; // Turn it on

 if(reply == "off") debug = false; // Off

 if(reply == "quit") break; // Out of 'while'

 }

} ///:~

This program continues to allow you to turn the debugging flag on
and off until you type “quit” to tell it you want to exit. Notice it
requires that full words are typed in, not just letters (you can
shorten it to letter if you wish). Also, a command-line argument can

196 Thinking in C++ www.BruceEckel.com

optionally be used to turn debugging on at startup – this argument
can appear anyplace in the command line, since the startup code in
main() looks at all the arguments. The testing is quite simple
because of the expression:

string(argv[i])

This takes the argv[i] character array and creates a string, which
then can be easily compared to the right-hand side of the ==. The
program above searches for the entire string --debug=on. You can
also look for --debug= and then see what’s after that, to provide
more options. Volume 2 (available from www.BruceEckel.com)
devotes a chapter to the Standard C++ string class.

Although a debugging flag is one of the relatively few areas where it
makes a lot of sense to use a global variable, there’s nothing that
says it must be that way. Notice that the variable is in lower case
letters to remind the reader it isn’t a preprocessor flag.

Turning variables and expressions into strings
When writing debugging code, it is tedious to write print
expressions consisting of a character array containing the variable
name, followed by the variable. Fortunately, Standard C includes
the stringize operator ‘#’, which was used earlier in this chapter.
When you put a # before an argument in a preprocessor macro, the
preprocessor turns that argument into a character array. This,
combined with the fact that character arrays with no intervening
punctuation are concatenated into a single character array, allows
you to make a very convenient macro for printing the values of
variables during debugging:

#define PR(x) cout << #x " = " << x << "\n";

If you print the variable a by calling the macro PR(a), it will have
the same effect as the code:

cout << "a = " << a << "\n";

This same process works with entire expressions. The following
program uses a macro to create a shorthand that prints the

3: The C in C++ 197

stringized expression and then evaluates the expression and prints
the result:

//: C03:StringizingExpressions.cpp

#include <iostream>

using namespace std;

#define P(A) cout << #A << ": " << (A) << endl;

int main() {

 int a = 1, b = 2, c = 3;

 P(a); P(b); P(c);

 P(a + b);

 P((c - a)/b);

} ///:~

You can see how a technique like this can quickly become
indispensable, especially if you have no debugger (or must use
multiple development environments). You can also insert an #ifdef
to cause P(A) to be defined as “nothing” when you want to strip out
debugging.

The C assert() macro
In the standard header file <cassert> you’ll find assert(), which
is a convenient debugging macro. When you use assert(), you give
it an argument that is an expression you are “asserting to be true.”
The preprocessor generates code that will test the assertion. If the
assertion isn’t true, the program will stop after issuing an error
message telling you what the assertion was and that it failed. Here’s
a trivial example:

//: C03:Assert.cpp

// Use of the assert() debugging macro

#include <cassert> // Contains the macro

using namespace std;

int main() {

 int i = 100;

 assert(i != 100); // Fails

} ///:~

198 Thinking in C++ www.BruceEckel.com

The macro originated in Standard C, so it’s also available in the
header file assert.h.

When you are finished debugging, you can remove the code
generated by the macro by placing the line:

#define NDEBUG

in the program before the inclusion of <cassert>, or by defining
NDEBUG on the compiler command line. NDEBUG is a flag used in
<cassert> to change the way code is generated by the macros.

Later in this book, you’ll see some more sophisticated alternatives
to assert().

Function addresses
Once a function is compiled and loaded into the computer to be
executed, it occupies a chunk of memory. That memory, and thus
the function, has an address.

C has never been a language to bar entry where others fear to tread.
You can use function addresses with pointers just as you can use
variable addresses. The declaration and use of function pointers
looks a bit opaque at first, but it follows the format of the rest of the
language.

Defining a function pointer
To define a pointer to a function that has no arguments and no
return value, you say:

void (*funcPtr)();

When you are looking at a complex definition like this, the best way
to attack it is to start in the middle and work your way out. “Starting
in the middle” means starting at the variable name, which is
funcPtr. “Working your way out” means looking to the right for
the nearest item (nothing in this case; the right parenthesis stops
you short), then looking to the left (a pointer denoted by the

3: The C in C++ 199

asterisk), then looking to the right (an empty argument list
indicating a function that takes no arguments), then looking to the
left (void, which indicates the function has no return value). This
right-left-right motion works with most declarations.

To review, “start in the middle” (“funcPtr is a ...”), go to the right
(nothing there – you're stopped by the right parenthesis), go to the
left and find the ‘*’ (“... pointer to a ...”), go to the right and find the
empty argument list (“... function that takes no arguments ... ”), go
to the left and find the void (“funcPtr is a pointer to a function
that takes no arguments and returns void”).

You may wonder why *funcPtr requires parentheses. If you didn't
use them, the compiler would see:

void *funcPtr();

You would be declaring a function (that returns a void*) rather
than defining a variable. You can think of the compiler as going
through the same process you do when it figures out what a
declaration or definition is supposed to be. It needs those
parentheses to “bump up against” so it goes back to the left and
finds the ‘*’, instead of continuing to the right and finding the
empty argument list.

Complicated declarations & definitions
As an aside, once you figure out how the C and C++ declaration
syntax works you can create much more complicated items. For
instance:

//: C03:ComplicatedDefinitions.cpp

/* 1. */ void * (*(*fp1)(int))[10];

/* 2. */ float (*(*fp2)(int,int,float))(int);

/* 3. */ typedef double (*(*(*fp3)())[10])();

 fp3 a;

/* 4. */ int (*(*f4())[10])();

200 Thinking in C++ www.BruceEckel.com

int main() {} ///:~

Walk through each one and use the right-left guideline to figure it
out. Number 1 says “fp1 is a pointer to a function that takes an
integer argument and returns a pointer to an array of 10 void
pointers.”

Number 2 says “fp2 is a pointer to a function that takes three
arguments (int, int, and float) and returns a pointer to a function
that takes an integer argument and returns a float.”

If you are creating a lot of complicated definitions, you might want
to use a typedef. Number 3 shows how a typedef saves typing the
complicated description every time. It says “An fp3 is a pointer to a
function that takes no arguments and returns a pointer to an array
of 10 pointers to functions that take no arguments and return
doubles.” Then it says “a is one of these fp3 types.” typedef is
generally useful for building complicated descriptions from simple
ones.

Number 4 is a function declaration instead of a variable definition.
It says “f4 is a function that returns a pointer to an array of 10
pointers to functions that return integers.”

You will rarely if ever need such complicated declarations and
definitions as these. However, if you go through the exercise of
figuring them out you will not even be mildly disturbed with the
slightly complicated ones you may encounter in real life.

Using a function pointer
Once you define a pointer to a function, you must assign it to a
function address before you can use it. Just as the address of an
array arr[10] is produced by the array name without the brackets
(arr), the address of a function func() is produced by the function
name without the argument list (func). You can also use the more
explicit syntax &func(). To call the function, you dereference the
pointer in the same way that you declared it (remember that C and
C++ always try to make definitions look the same as the way they

3: The C in C++ 201

are used). The following example shows how a pointer to a function
is defined and used:

//: C03:PointerToFunction.cpp

// Defining and using a pointer to a function

#include <iostream>

using namespace std;

void func() {

 cout << "func() called..." << endl;

}

int main() {

 void (*fp)(); // Define a function pointer

 fp = func; // Initialize it

 (*fp)(); // Dereferencing calls the function

 void (*fp2)() = func; // Define and initialize

 (*fp2)();

} ///:~

After the pointer to function fp is defined, it is assigned to the
address of a function func() using fp = func (notice the argument
list is missing on the function name). The second case shows
simultaneous definition and initialization.

Arrays of pointers to functions
One of the more interesting constructs you can create is an array of
pointers to functions. To select a function, you just index into the
array and dereference the pointer. This supports the concept of
table-driven code; instead of using conditionals or case statements,
you select functions to execute based on a state variable (or a
combination of state variables). This kind of design can be useful if
you often add or delete functions from the table (or if you want to
create or change such a table dynamically).

The following example creates some dummy functions using a
preprocessor macro, then creates an array of pointers to those
functions using automatic aggregate initialization. As you can see, it
is easy to add or remove functions from the table (and thus,
functionality from the program) by changing a small amount of
code:

202 Thinking in C++ www.BruceEckel.com

//: C03:FunctionTable.cpp

// Using an array of pointers to functions

#include <iostream>

using namespace std;

// A macro to define dummy functions:

#define DF(N) void N() { \

 cout << "function " #N " called..." << endl; }

DF(a); DF(b); DF(c); DF(d); DF(e); DF(f); DF(g);

void (*func_table[])() = { a, b, c, d, e, f, g };

int main() {

 while(1) {

 cout << "press a key from 'a' to 'g' "

 "or q to quit" << endl;

 char c, cr;

 cin.get(c); cin.get(cr); // second one for CR

 if (c == 'q')

 break; // ... out of while(1)

 if (c < 'a' || c > 'g')

 continue;

 (*func_table[c - 'a'])();

 }

} ///:~

At this point, you might be able to imagine how this technique
could be useful when creating some sort of interpreter or list
processing program.

Make: managing separate

compilation
When using separate compilation (breaking code into a number of
translation units), you need some way to automatically compile
each file and to tell the linker to build all the pieces – along with the
appropriate libraries and startup code – into an executable file.
Most compilers allow you to do this with a single command-line
statement. For the GNU C++ compiler, for example, you might say

g++ SourceFile1.cpp SourceFile2.cpp

3: The C in C++ 203

The problem with this approach is that the compiler will first
compile each individual file, regardless of whether that file needs to
be rebuilt or not. With many files in a project, it can become
prohibitive to recompile everything if you’ve changed only a single
file.

The solution to this problem, developed on Unix but available
everywhere in some form, is a program called make. The make
utility manages all the individual files in a project by following the
instructions in a text file called a makefile. When you edit some of
the files in a project and type make, the make program follows the
guidelines in the makefile to compare the dates on the source code
files to the dates on the corresponding target files, and if a source
code file date is more recent than its target file, make invokes the
compiler on the source code file. make only recompiles the source
code files that were changed, and any other source-code files that
are affected by the modified files. By using make, you don’t have to
re-compile all the files in your project every time you make a
change, nor do you have to check to see that everything was built
properly. The makefile contains all the commands to put your
project together. Learning to use make will save you a lot of time
and frustration. You’ll also discover that make is the typical way
that you install new software on a Linux/Unix machine (although
those makefiles tend to be far more complicated than the ones
presented in this book, and you’ll often automatically generate a
makefile for your particular machine as part of the installation
process).

Because make is available in some form for virtually all C++
compilers (and even if it isn’t, you can use freely-available makes
with any compiler), it will be the tool used throughout this book.
However, compiler vendors have also created their own project
building tools. These tools ask you which files are in your project
and determine all the relationships themselves. These tools use
something similar to a makefile, generally called a project file, but
the programming environment maintains this file so you don’t have
to worry about it. The configuration and use of project files varies
from one development environment to another, so you must find
the appropriate documentation on how to use them (although

204 Thinking in C++ www.BruceEckel.com

project file tools provided by compiler vendors are usually so simple
to use that you can learn them by playing around – my favorite
form of education).

The makefiles used within this book should work even if you are
also using a specific vendor’s project-building tool.

Make activities
When you type make (or whatever the name of your “make”
program happens to be), the make program looks in the current
directory for a file named makefile, which you’ve created if it’s
your project. This file lists dependencies between source code files.
make looks at the dates on files. If a dependent file has an older
date than a file it depends on, make executes the rule given after
the dependency.

All comments in makefiles start with a # and continue to the end
of the line.

As a simple example, the makefile for a program called “hello”
might contain:

A comment

hello.exe: hello.cpp

 mycompiler hello.cpp

This says that hello.exe (the target) depends on hello.cpp. When
hello.cpp has a newer date than hello.exe, make executes the
“rule” mycompiler hello.cpp. There may be multiple
dependencies and multiple rules. Many make programs require
that all the rules begin with a tab. Other than that, whitespace is
generally ignored so you can format for readability.

The rules are not restricted to being calls to the compiler; you can
call any program you want from within make. By creating groups
of interdependent dependency-rule sets, you can modify your
source code files, type make and be certain that all the affected
files will be rebuilt correctly.

3: The C in C++ 205

Macros
A makefile may contain macros (note that these are completely
different from C/C++ preprocessor macros). Macros allow
convenient string replacement. The makefiles in this book use a
macro to invoke the C++ compiler. For example,

CPP = mycompiler

hello.exe: hello.cpp

 $(CPP) hello.cpp

The = is used to identify CPP as a macro, and the $ and
parentheses expand the macro. In this case, the expansion means
that the macro call $(CPP) will be replaced with the string
mycompiler. With the macro above, if you want to change to a
different compiler called cpp, you just change the macro to:

CPP = cpp

You can also add compiler flags, etc., to the macro, or use separate
macros to add compiler flags.

Suffix Rules
It becomes tedious to tell make how to invoke the compiler for
every single cpp file in your project, when you know it’s the same
basic process each time. Since make is designed to be a time-saver,
it also has a way to abbreviate actions, as long as they depend on file
name suffixes. These abbreviations are called suffix rules. A suffix
rule is the way to teach make how to convert a file with one type of
extension (.cpp, for example) into a file with another type of
extension (.obj or .exe). Once you teach make the rules for
producing one kind of file from another, all you have to do is tell
make which files depend on which other files. When make finds a
file with a date earlier than the file it depends on, it uses the rule to
create a new file.

The suffix rule tells make that it doesn’t need explicit rules to build
everything, but instead it can figure out how to build things based
on their file extension. In this case it says “To build a file that ends
in exe from one that ends in cpp, invoke the following command.”
Here’s what it looks like for the example above:

206 Thinking in C++ www.BruceEckel.com

CPP = mycompiler

.SUFFIXES: .exe .cpp

.cpp.exe:

 $(CPP) $<

The .SUFFIXES directive tells make that it should watch out for
any of the following file-name extensions because they have special
meaning for this particular makefile. Next you see the suffix rule
.cpp.exe, which says “Here’s how to convert any file with an
extension of cpp to one with an extension of exe” (when the cpp
file is more recent than the exe file). As before, the $(CPP) macro
is used, but then you see something new: $<. Because this begins
with a ‘$’ it’s a macro, but this is one of make’s special built-in
macros. The $< can be used only in suffix rules, and it means
“whatever prerequisite triggered the rule” (sometimes called the
dependent), which in this case translates to “the cpp file that needs
to be compiled.”

Once the suffix rules have been set up, you can simply say, for
example, “make Union.exe,” and the suffix rule will kick in, even
though there’s no mention of “Union” anywhere in the makefile.

Default targets
After the macros and suffix rules, make looks for the first “target”
in a file, and builds that, unless you specify differently. So for the
following makefile:

CPP = mycompiler

.SUFFIXES: .exe .cpp

.cpp.exe:

 $(CPP) $<

target1.exe:

target2.exe:

If you just type ‘make’, then target1.exe will be built (using the
default suffix rule) because that’s the first target that make
encounters. To build target2.exe you’d have to explicitly say
‘make target2.exe’. This becomes tedious, so you normally create
a default “dummy” target that depends on all the rest of the targets,
like this:

CPP = mycompiler

3: The C in C++ 207

.SUFFIXES: .exe .cpp

.cpp.exe:

 $(CPP) $<

all: target1.exe target2.exe

Here, ‘all’ does not exist and there’s no file called ‘all’, so every time
you type make, the program sees ‘all’ as the first target in the list
(and thus the default target), then it sees that ‘all’ does not exist so
it had better make it by checking all the dependencies. So it looks at
target1.exe and (using the suffix rule) sees whether (1)
target1.exe exists and (2) whether target1.cpp is more recent
than target1.exe, and if so runs the suffix rule (if you provide an
explicit rule for a particular target, that rule is used instead). Then it
moves on to the next file in the default target list. Thus, by creating
a default target list (typically called ‘all’ by convention, but you can
call it anything) you can cause every executable in your project to be
made simply by typing ‘make’. In addition, you can have other
non-default target lists that do other things – for example, you
could set it up so that typing ‘make debug’ rebuilds all your files
with debugging wired in.

Makefiles in this book
Using the program ExtractCode.cpp from Volume 2 of this book,
all the code listings in this book are automatically extracted from
the ASCII text version of this book and placed in subdirectories
according to their chapters. In addition, ExtractCode.cpp creates
several makefiles in each subdirectory (with different names) so
you can simply move into that subdirectory and type make -f
mycompiler.makefile (substituting the name of your compiler
for ‘mycompiler’, the ‘-f’ flag says “use what follows as the
makefile”). Finally, ExtractCode.cpp creates a “master”
makefile in the root directory where the book’s files have been
expanded, and this makefile descends into each subdirectory and
calls make with the appropriate makefile. This way you can
compile all the code in the book by invoking a single make
command, and the process will stop whenever your compiler is
unable to handle a particular file (note that a Standard C++
conforming compiler should be able to compile all the files in this
book). Because implementations of make vary from system to

208 Thinking in C++ www.BruceEckel.com

system, only the most basic, common features are used in the
generated makefiles.

An example makefile
As mentioned, the code-extraction tool ExtractCode.cpp
automatically generates makefiles for each chapter. Because of
this, the makefiles for each chapter will not be placed in the book
(all the makefiles are packaged with the source code, which you can
download from www.BruceEckel.com). However, it’s useful to see
an example of a makefile. What follows is a shortened version of
the one that was automatically generated for this chapter by the
book’s extraction tool. You’ll find more than one makefile in each
subdirectory (they have different names; you invoke a specific one
with ‘make -f’). This one is for GNU C++:

CPP = g++

OFLAG = -o

.SUFFIXES : .o .cpp .c

.cpp.o :

 $(CPP) $(CPPFLAGS) -c $<

.c.o :

 $(CPP) $(CPPFLAGS) -c $<

all: \

 Return \

 Declare \

 Ifthen \

 Guess \

 Guess2

Rest of the files for this chapter not shown

Return: Return.o

 $(CPP) $(OFLAG)Return Return.o

Declare: Declare.o

 $(CPP) $(OFLAG)Declare Declare.o

Ifthen: Ifthen.o

 $(CPP) $(OFLAG)Ifthen Ifthen.o

Guess: Guess.o

 $(CPP) $(OFLAG)Guess Guess.o

3: The C in C++ 209

Guess2: Guess2.o

 $(CPP) $(OFLAG)Guess2 Guess2.o

Return.o: Return.cpp

Declare.o: Declare.cpp

Ifthen.o: Ifthen.cpp

Guess.o: Guess.cpp

Guess2.o: Guess2.cpp

The macro CPP is set to the name of the compiler. To use a different
compiler, you can either edit the makefile or change the value of
the macro on the command line, like this:

make CPP=cpp

Note, however, that ExtractCode.cpp has an automatic scheme to
automatically build makefiles for additional compilers.

The second macro OFLAG is the flag that’s used to indicate the
name of the output file. Although many compilers automatically
assume the output file has the same base name as the input file,
others don’t (such as Linux/Unix compilers, which default to
creating a file called a.out).

You can see that there are two suffix rules here, one for cpp files
and one for .c files (in case any C source code needs to be
compiled). The default target is all, and each line for this target is
“continued” by using the backslash, up until Guess2, which is the
last one in the list and thus has no backslash. There are many more
files in this chapter, but only these are shown here for the sake of
brevity.

The suffix rules take care of creating object files (with a .o
extension) from cpp files, but in general you need to explicitly state
rules for creating the executable, because normally an executable is
created by linking many different object files and make cannot
guess what those are. Also, in this case (Linux/Unix) there is no
standard extension for executables so a suffix rule won’t work for
these simple situations. Thus, you see all the rules for building the
final executables explicitly stated.

210 Thinking in C++ www.BruceEckel.com

This makefile takes the absolute safest route of using as few make
features as possible; it only uses the basic make concepts of targets
and dependencies, as well as macros. This way it is virtually assured
of working with as many make programs as possible. It tends to
produce a larger makefile, but that’s not so bad since it’s
automatically generated by ExtractCode.cpp.

There are lots of other make features that this book will not use, as
well as newer and cleverer versions and variations of make with
advanced shortcuts that can save a lot of time. Your local
documentation may describe the further features of your particular
make, and you can learn more about make from Managing
Projects with Make by Oram and Talbott (O’Reilly, 1993). Also, if
your compiler vendor does not supply a make or it uses a non-
standard make, you can find GNU make for virtually any platform
in existence by searching the Internet for GNU archives (of which
there are many).

Summary
This chapter was a fairly intense tour through all the fundamental
features of C++ syntax, most of which are inherited from and in
common with C (and result in C++’s vaunted backwards
compatibility with C). Although some C++ features were introduced
here, this tour is primarily intended for people who are conversant
in programming, and simply need to be given an introduction to the
syntax basics of C and C++. If you’re already a C programmer, you
may have even seen one or two things about C here that were
unfamiliar, aside from the C++ features that were most likely new
to you. However, if this chapter has still seemed a bit
overwhelming, you should go through the CD ROM course
Thinking in C: Foundations for C++ and Java (which contains
lectures, exercises, and guided solutions), which is bound into this
book, and also available at www.BruceEckel.com.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

3: The C in C++ 211

1. Create a header file (with an extension of ‘.h’). In this file,
declare a group of functions by varying the argument lists
and return values from among the following: void, char,
int, and float. Now create a .cpp file that includes your
header file and creates definitions for all of these
functions. Each definition should simply print out the
function name, argument list, and return type so you
know it’s been called. Create a second .cpp file that
includes your header file and defines int main(),
containing calls to all of your functions. Compile and run
your program.

2. Write a program that uses two nested for loops and the
modulus operator (%) to detect and print prime numbers
(integral numbers that are not evenly divisible by any
other numbers except for themselves and 1).

3. Write a program that uses a while loop to read words
from standard input (cin) into a string. This is an
“infinite” while loop, which you break out of (and exit
the program) using a break statement. For each word
that is read, evaluate it by first using a sequence of if
statements to “map” an integral value to the word, and
then use a switch statement that uses that integral value
as its selector (this sequence of events is not meant to be
good programming style; it’s just supposed to give you
exercise with control flow). Inside each case, print
something meaningful. You must decide what the
“interesting” words are and what the meaning is. You
must also decide what word will signal the end of the
program. Test the program by redirecting a file into the
program’s standard input (if you want to save typing, this
file can be your program’s source file).

4. Modify Menu.cpp to use switch statements instead of
if statements.

5. Write a program that evaluates the two expressions in the
section labeled “precedence.”

6. Modify YourPets2.cpp so that it uses various different
data types (char, int, float, double, and their variants).
Run the program and create a map of the resulting
memory layout. If you have access to more than one kind

212 Thinking in C++ www.BruceEckel.com

of machine, operating system, or compiler, try this
experiment with as many variations as you can manage.

7. Create two functions, one that takes a string* and one
that takes a string&. Each of these functions should
modify the outside string object in its own unique way.
In main(), create and initialize a string object, print it,
then pass it to each of the two functions, printing the
results.

8. Write a program that uses all the trigraphs to see if your
compiler supports them.

9. Compile and run Static.cpp. Remove the static
keyword from the code, compile and run it again, and
explain what happens.

10. Try to compile and link FileStatic.cpp with
FileStatic2.cpp. What does the resulting error message
mean?

11. Modify Boolean.cpp so that it works with double
values instead of ints.

12. Modify Boolean.cpp and Bitwise.cpp so they use the
explicit operators (if your compiler is conformant to the
C++ Standard it will support these).

13. Modify Bitwise.cpp to use the functions from
Rotation.cpp. Make sure you display the results in such
a way that it’s clear what’s happening during rotations.

14. Modify Ifthen.cpp to use the ternary if-else operator
(?:).

15. Create a struct that holds two string objects and one
int. Use a typedef for the struct name. Create an
instance of the struct, initialize all three values in your
instance, and print them out. Take the address of your
instance and assign it to a pointer to your struct type.
Change the three values in your instance and print them
out, all using the pointer.

16. Create a program that uses an enumeration of colors.
Create a variable of this enum type and print out all the
numbers that correspond with the color names, using a
for loop.

3: The C in C++ 213

17. Experiment with Union.cpp by removing various
union elements to see the effects on the size of the
resulting union. Try assigning to one element (thus one
type) of the union and printing out a via a different
element (thus a different type) to see what happens.

18. Create a program that defines two int arrays, one right
after the other. Index off the end of the first array into the
second, and make an assignment. Print out the second
array to see the changes cause by this. Now try defining a
char variable between the first array definition and the
second, and repeat the experiment. You may want to
create an array printing function to simplify your coding.

19. Modify ArrayAddresses.cpp to work with the data
types char, long int, float, and double.

20. Apply the technique in ArrayAddresses.cpp to print
out the size of the struct and the addresses of the array
elements in StructArray.cpp.

21. Create an array of string objects and assign a string to
each element. Print out the array using a for loop.

22. Create two new programs starting from ArgsToInts.cpp
so they use atol() and atof(), respectively.

23. Modify PointerIncrement2.cpp so it uses a union
instead of a struct.

24. Modify PointerArithmetic.cpp to work with long and
long double.

25. Define a float variable. Take its address, cast that
address to an unsigned char, and assign it to an
unsigned char pointer. Using this pointer and [],
index into the float variable and use the printBinary()
function defined in this chapter to print out a map of the
float (go from 0 to sizeof(float)). Change the value of
the float and see if you can figure out what’s going on
(the float contains encoded data).

26. Define an array of int. Take the starting address of that
array and use static_cast to convert it into an void*.
Write a function that takes a void*, a number (indicating
a number of bytes), and a value (indicating the value to
which each byte should be set) as arguments. The

214 Thinking in C++ www.BruceEckel.com

function should set each byte in the specified range to the
specified value. Try out the function on your array of int.

27. Create a const array of double and a volatile array of
double. Index through each array and use const_cast
to cast each element to non-const and non-volatile,
respectively, and assign a value to each element.

28. Create a function that takes a pointer to an array of
double and a value indicating the size of that array. The
function should print each element in the array. Now
create an array of double and initialize each element to
zero, then use your function to print the array. Next use
reinterpret_cast to cast the starting address of your
array to an unsigned char*, and set each byte of the
array to 1 (hint: you’ll need to use sizeof to calculate the
number of bytes in a double). Now use your array-
printing function to print the results. Why do you think
each element was not set to the value 1.0?

29. (Challenging) Modify FloatingAsBinary.cpp so that it
prints out each part of the double as a separate group of
bits. You’ll have to replace the calls to printBinary()
with your own specialized code (which you can derive
from printBinary()) in order to do this, and you’ll also
have to look up and understand the floating-point format
along with the byte ordering for your compiler (this is the
challenging part).

30. Create a makefile that not only compiles YourPets1.cpp
and YourPets2.cpp (for your particular compiler) but
also executes both programs as part of the default target
behavior. Make sure you use suffix rules.

31. Modify StringizingExpressions.cpp so that P(A) is
conditionally #ifdefed to allow the debugging code to be
automatically stripped out by setting a command-line
flag. You will need to consult your compiler’s
documentation to see how to define and undefine
preprocessor values on the compiler command line.

32. Define a function that takes a double argument and
returns an int. Create and initialize a pointer to this
function, and call the function through your pointer.

3: The C in C++ 215

33. Declare a pointer to a function taking an int argument
and returning a pointer to a function that takes a char
argument and returns a float.

34. Modify FunctionTable.cpp so that each function
returns a string (instead of printing out a message) and
so that this value is printed inside of main().

35. Create a makefile for one of the previous exercises (of
your choice) that allows you to type make for a
production build of the program, and make debug for a
build of the program including debugging information.

 216 217

4: Data Abstraction
C++ is a productivity enhancement tool. Why else

would you make the effort (and it is an effort,

regardless of how easy we attempt to make the

transition)

218 Thinking in C++ www.BruceEckel.com

to switch from some language that you already know and are
productive with to a new language in which you’re going to be less
productive for a while, until you get the hang of it? It’s because
you’ve become convinced that you’re going to get big gains by using
this new tool.

Productivity, in computer programming terms, means that fewer
people can make much more complex and impressive programs in
less time. There are certainly other issues when it comes to
choosing a language, such as efficiency (does the nature of the
language cause slowdown and code bloat?), safety (does the
language help you ensure that your program will always do what
you plan, and handle errors gracefully?), and maintenance (does
the language help you create code that is easy to understand,
modify, and extend?). These are certainly important factors that
will be examined in this book.

But raw productivity means a program that formerly took three of
you a week to write now takes one of you a day or two. This touches
several levels of economics. You’re happy because you get the rush
of power that comes from building something, your client (or boss)
is happy because products are produced faster and with fewer
people, and the customers are happy because they get products
more cheaply. The only way to get massive increases in productivity
is to leverage off other people’s code. That is, to use libraries.

A library is simply a bunch of code that someone else has written
and packaged together. Often, the most minimal package is a file
with an extension like lib and one or more header files to tell your
compiler what’s in the library. The linker knows how to search
through the library file and extract the appropriate compiled code.
But that’s only one way to deliver a library. On platforms that span
many architectures, such as Linux/Unix, often the only sensible
way to deliver a library is with source code, so it can be reconfigured
and recompiled on the new target.

Thus, libraries are probably the most important way to improve
productivity, and one of the primary design goals of C++ is to make
library use easier. This implies that there’s something hard about

4: Data Abstraction 219

using libraries in C. Understanding this factor will give you a first
insight into the design of C++, and thus insight into how to use it.

A tiny C-like library
A library usually starts out as a collection of functions, but if you
have used third-party C libraries you know there’s usually more to it
than that because there’s more to life than behavior, actions, and
functions. There are also characteristics (blue, pounds, texture,
luminance), which are represented by data. And when you start to
deal with a set of characteristics in C, it is very convenient to clump
them together into a struct, especially if you want to represent
more than one similar thing in your problem space. Then you can
make a variable of this struct for each thing.

Thus, most C libraries have a set of structs and a set of functions
that act on those structs. As an example of what such a system
looks like, consider a programming tool that acts like an array, but
whose size can be established at runtime, when it is created. I’ll call
it a CStash. Although it’s written in C++, it has the style of what
you’d write in C:

//: C04:CLib.h

// Header file for a C-like library

// An array-like entity created at runtime

typedef struct CStashTag {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

} CStash;

void initialize(CStash* s, int size);

void cleanup(CStash* s);

int add(CStash* s, const void* element);

void* fetch(CStash* s, int index);

int count(CStash* s);

void inflate(CStash* s, int increase);

///:~

220 Thinking in C++ www.BruceEckel.com

A tag name like CStashTag is generally used for a struct in case
you need to reference the struct inside itself. For example, when
creating a linked list (each element in your list contains a pointer to
the next element), you need a pointer to the next struct variable, so
you need a way to identify the type of that pointer within the struct
body. Also, you'll almost universally see the typedef as shown
above for every struct in a C library. This is done so you can treat
the struct as if it were a new type and define variables of that
struct like this:

CStash A, B, C;

The storage pointer is an unsigned char*. An unsigned char is
the smallest piece of storage a C compiler supports, although on
some machines it can be the same size as the largest. It’s
implementation dependent, but is often one byte long. You might
think that because the CStash is designed to hold any type of
variable, a void* would be more appropriate here. However, the
purpose is not to treat this storage as a block of some unknown
type, but rather as a block of contiguous bytes.

The source code for the implementation file (which you may not get
if you buy a library commercially – you might get only a compiled
obj or lib or dll, etc.) looks like this:

//: C04:CLib.cpp {O}

// Implementation of example C-like library

// Declare structure and functions:

#include "CLib.h"

#include <iostream>

#include <cassert>

using namespace std;

// Quantity of elements to add

// when increasing storage:

const int increment = 100;

void initialize(CStash* s, int sz) {

 s->size = sz;

 s->quantity = 0;

 s->storage = 0;

 s->next = 0;

}

4: Data Abstraction 221

int add(CStash* s, const void* element) {

 if(s->next >= s->quantity) //Enough space left?

 inflate(s, increment);

 // Copy element into storage,

 // starting at next empty space:

 int startBytes = s->next * s->size;

 unsigned char* e = (unsigned char*)element;

 for(int i = 0; i < s->size; i++)

 s->storage[startBytes + i] = e[i];

 s->next++;

 return(s->next - 1); // Index number

}

void* fetch(CStash* s, int index) {

 // Check index boundaries:

 assert(0 <= index);

 if(index >= s->next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return &(s->storage[index * s->size]);

}

int count(CStash* s) {

 return s->next; // Elements in CStash

}

void inflate(CStash* s, int increase) {

 assert(increase > 0);

 int newQuantity = s->quantity + increase;

 int newBytes = newQuantity * s->size;

 int oldBytes = s->quantity * s->size;

 unsigned char* b = new unsigned char[newBytes];

 for(int i = 0; i < oldBytes; i++)

 b[i] = s->storage[i]; // Copy old to new

 delete [](s->storage); // Old storage

 s->storage = b; // Point to new memory

 s->quantity = newQuantity;

}

void cleanup(CStash* s) {

 if(s->storage != 0) {

 cout << "freeing storage" << endl;

 delete []s->storage;

 }

222 Thinking in C++ www.BruceEckel.com

} ///:~

initialize() performs the necessary setup for struct CStash by
setting the internal variables to appropriate values. Initially, the
storage pointer is set to zero – no initial storage is allocated.

The add() function inserts an element into the CStash at the next
available location. First, it checks to see if there is any available
space left. If not, it expands the storage using the inflate()
function, described later.

Because the compiler doesn’t know the specific type of the variable
being stored (all the function gets is a void*), you can’t just do an
assignment, which would certainly be the convenient thing. Instead,
you must copy the variable byte-by-byte. The most straightforward
way to perform the copying is with array indexing. Typically, there
are already data bytes in storage, and this is indicated by the value
of next. To start with the right byte offset, next is multiplied by the
size of each element (in bytes) to produce startBytes. Then the
argument element is cast to an unsigned char* so that it can be
addressed byte-by-byte and copied into the available storage
space. next is incremented so that it indicates the next available
piece of storage, and the “index number” where the value was
stored so that value can be retrieved using this index number with
fetch().

fetch() checks to see that the index isn’t out of bounds and then
returns the address of the desired variable, calculated using the
index argument. Since index indicates the number of elements to
offset into the CStash, it must be multiplied by the number of bytes
occupied by each piece to produce the numerical offset in bytes.
When this offset is used to index into storage using array indexing,
you don’t get the address, but instead the byte at the address. To
produce the address, you must use the address-of operator &.

count() may look a bit strange at first to a seasoned C
programmer. It seems like a lot of trouble to go through to do
something that would probably be a lot easier to do by hand. If you
have a struct CStash called intStash, for example, it would seem
much more straightforward to find out how many elements it has

4: Data Abstraction 223

by saying intStash.next instead of making a function call (which
has overhead), such as count(&intStash). However, if you
wanted to change the internal representation of CStash and thus
the way the count was calculated, the function call interface allows
the necessary flexibility. But alas, most programmers won’t bother
to find out about your “better” design for the library. They’ll look at
the struct and grab the next value directly, and possibly even
change next without your permission. If only there were some way
for the library designer to have better control over things like this!
(Yes, that’s foreshadowing.)

Dynamic storage allocation
You never know the maximum amount of storage you might need
for a CStash, so the memory pointed to by storage is allocated
from the heap. The heap is a big block of memory used for
allocating smaller pieces at runtime. You use the heap when you
don’t know the size of the memory you’ll need while you’re writing a
program. That is, only at runtime will you find out that you need
space to hold 200 Airplane variables instead of 20. In Standard C,
dynamic-memory allocation functions include malloc(),
calloc(), realloc(), and free(). Instead of library calls, however,
C++ has a more sophisticated (albeit simpler to use) approach to
dynamic memory that is integrated into the language via the
keywords new and delete.

The inflate() function uses new to get a bigger chunk of space for
the CStash. In this situation, we will only expand memory and not
shrink it, and the assert() will guarantee that a negative number is
not passed to inflate() as the increase value. The new number of
elements that can be held (after inflate() completes) is calculated
as newQuantity, and this is multiplied by the number of bytes per
element to produce newBytes, which will be the number of bytes
in the allocation. So that we know how many bytes to copy over
from the old location, oldBytes is calculated using the old
quantity.

The actual storage allocation occurs in the new-expression, which is
the expression involving the new keyword:

224 Thinking in C++ www.BruceEckel.com

new unsigned char[newBytes];

The general form of the new-expression is:

new Type;

in which Type describes the type of variable you want allocated on
the heap. In this case, we want an array of unsigned char that is
newBytes long, so that is what appears as the Type. You can also
allocate something as simple as an int by saying:

new int;

and although this is rarely done, you can see that the form is
consistent.

A new-expression returns a pointer to an object of the exact type
that you asked for. So if you say new Type, you get back a pointer
to a Type. If you say new int, you get back a pointer to an int. If
you want a new unsigned char array, you get back a pointer to
the first element of that array. The compiler will ensure that you
assign the return value of the new-expression to a pointer of the
correct type.

Of course, any time you request memory it’s possible for the request
to fail, if there is no more memory. As you will learn, C++ has
mechanisms that come into play if the memory-allocation operation
is unsuccessful.

Once the new storage is allocated, the data in the old storage must
be copied to the new storage; this is again accomplished with array
indexing, copying one byte at a time in a loop. After the data is
copied, the old storage must be released so that it can be used by
other parts of the program if they need new storage. The delete
keyword is the complement of new, and must be applied to release
any storage that is allocated with new (if you forget to use delete,
that storage remains unavailable, and if this so-called memory leak
happens enough, you’ll run out of memory). In addition, there’s a
special syntax when you’re deleting an array. It’s as if you must
remind the compiler that this pointer is not just pointing to one

4: Data Abstraction 225

object, but to an array of objects: you put a set of empty square
brackets in front of the pointer to be deleted:

delete []myArray;

Once the old storage has been deleted, the pointer to the new
storage can be assigned to the storage pointer, the quantity is
adjusted, and inflate() has completed its job.

Note that the heap manager is fairly primitive. It gives you chunks
of memory and takes them back when you delete them. There’s no
inherent facility for heap compaction, which compresses the heap
to provide bigger free chunks. If a program allocates and frees heap
storage for a while, you can end up with a fragmented heap that has
lots of memory free, but without any pieces that are big enough to
allocate the size you’re looking for at the moment. A heap
compactor complicates a program because it moves memory
chunks around, so your pointers won’t retain their proper values.
Some operating environments have heap compaction built in, but
they require you to use special memory handles (which can be
temporarily converted to pointers, after locking the memory so the
heap compactor can’t move it) instead of pointers. You can also
build your own heap-compaction scheme, but this is not a task to be
undertaken lightly.

When you create a variable on the stack at compile-time, the
storage for that variable is automatically created and freed by the
compiler. The compiler knows exactly how much storage is needed,
and it knows the lifetime of the variables because of scoping. With
dynamic memory allocation, however, the compiler doesn’t know
how much storage you’re going to need, and it doesn’t know the
lifetime of that storage. That is, the storage doesn’t get cleaned up
automatically. Therefore, you’re responsible for releasing the
storage using delete, which tells the heap manager that storage can
be used by the next call to new. The logical place for this to happen
in the library is in the cleanup() function because that is where all
the closing-up housekeeping is done.

To test the library, two CStashes are created. The first holds ints
and the second holds arrays of 80 chars:

226 Thinking in C++ www.BruceEckel.com

//: C04:CLibTest.cpp

//{L} CLib

// Test the C-like library

#include "CLib.h"

#include <fstream>

#include <iostream>

#include <string>

#include <cassert>

using namespace std;

int main() {

 // Define variables at the beginning

 // of the block, as in C:

 CStash intStash, stringStash;

 int i;

 char* cp;

 ifstream in;

 string line;

 const int bufsize = 80;

 // Now remember to initialize the variables:

 initialize(&intStash, sizeof(int));

 for(i = 0; i < 100; i++)

 add(&intStash, &i);

 for(i = 0; i < count(&intStash); i++)

 cout << "fetch(&intStash, " << i << ") = "

 << *(int*)fetch(&intStash, i)

 << endl;

 // Holds 80-character strings:

 initialize(&stringStash, sizeof(char)*bufsize);

 in.open("CLibTest.cpp");

 assert(in);

 while(getline(in, line))

 add(&stringStash, line.c_str());

 i = 0;

 while((cp = (char*)fetch(&stringStash,i++))!=0)

 cout << "fetch(&stringStash, " << i << ") = "

 << cp << endl;

 cleanup(&intStash);

 cleanup(&stringStash);

} ///:~

Following the form required by C, all the variables are created at the
beginning of the scope of main(). Of course, you must remember
to initialize the CStash variables later in the block by calling

4: Data Abstraction 227

initialize(). One of the problems with C libraries is that you must
carefully convey to the user the importance of the initialization and
cleanup functions. If these functions aren’t called, there will be a lot
of trouble. Unfortunately, the user doesn’t always wonder if
initialization and cleanup are mandatory. They know what they
want to accomplish, and they’re not as concerned about you
jumping up and down saying, “Hey, wait, you have to do this first!”
Some users have even been known to initialize the elements of a
structure themselves. There’s certainly no mechanism in C to
prevent it (more foreshadowing).

The intStash is filled up with integers, and the stringStash is
filled with character arrays. These character arrays are produced by
opening the source code file, CLibTest.cpp, and reading the lines
from it into a string called line, and then producing a pointer to
the character representation of line using the member function
c_str().

After each Stash is loaded, it is displayed. The intStash is printed
using a for loop, which uses count() to establish its limit. The
stringStash is printed with a while, which breaks out when
fetch() returns zero to indicate it is out of bounds.

You’ll also notice an additional cast in

cp = (char*)fetch(&stringStash,i++)

This is due to the stricter type checking in C++, which does not
allow you to simply assign a void* to any other type (C allows this).

Bad guesses
There is one more important issue you should understand before
we look at the general problems in creating a C library. Note that
the CLib.h header file must be included in any file that refers to
CStash because the compiler can’t even guess at what that
structure looks like. However, it can guess at what a function looks
like; this sounds like a feature but it turns out to be a major C
pitfall.

228 Thinking in C++ www.BruceEckel.com

Although you should always declare functions by including a header
file, function declarations aren’t essential in C. It’s possible in C
(but not in C++) to call a function that you haven’t declared. A good
compiler will warn you that you probably ought to declare a
function first, but it isn’t enforced by the C language standard. This
is a dangerous practice, because the C compiler can assume that a
function that you call with an int argument has an argument list
containing int, even if it may actually contain a float. This can
produce bugs that are very difficult to find, as you will see.

Each separate C implementation file (with an extension of .c) is a
translation unit. That is, the compiler is run separately on each
translation unit, and when it is running it is aware of only that unit.
Thus, any information you provide by including header files is quite
important because it determines the compiler’s understanding of
the rest of your program. Declarations in header files are
particularly important, because everywhere the header is included,
the compiler will know exactly what to do. If, for example, you have
a declaration in a header file that says void func(float), the
compiler knows that if you call that function with an integer
argument, it should convert the int to a float as it passes the
argument (this is called promotion). Without the declaration, the C
compiler would simply assume that a function func(int) existed, it
wouldn’t do the promotion, and the wrong data would quietly be
passed into func().

For each translation unit, the compiler creates an object file, with
an extension of .o or .obj or something similar. These object files,
along with the necessary start-up code, must be collected by the
linker into the executable program. During linking, all the external
references must be resolved. For example, in CLibTest.cpp,
functions such as initialize() and fetch() are declared (that is,
the compiler is told what they look like) and used, but not defined.
They are defined elsewhere, in CLib.cpp. Thus, the calls in
CLib.cpp are external references. The linker must, when it puts all
the object files together, take the unresolved external references
and find the addresses they actually refer to. Those addresses are
put into the executable program to replace the external references.

4: Data Abstraction 229

It’s important to realize that in C, the external references that the
linker searches for are simply function names, generally with an
underscore in front of them. So all the linker has to do is match up
the function name where it is called and the function body in the
object file, and it’s done. If you accidentally made a call that the
compiler interpreted as func(int) and there’s a function body for
func(float) in some other object file, the linker will see _func in
one place and _func in another, and it will think everything’s OK.
The func() at the calling location will push an int onto the stack,
and the func() function body will expect a float to be on the stack.
If the function only reads the value and doesn’t write to it, it won’t
blow up the stack. In fact, the float value it reads off the stack
might even make some kind of sense. That’s worse because it’s
harder to find the bug.

What's wrong?
We are remarkably adaptable, even in situations in which perhaps
we shouldn’t adapt. The style of the CStash library has been a
staple for C programmers, but if you look at it for a while, you might
notice that it’s rather . . . awkward. When you use it, you have to
pass the address of the structure to every single function in the
library. When reading the code, the mechanism of the library gets
mixed with the meaning of the function calls, which is confusing
when you’re trying to understand what’s going on.

One of the biggest obstacles, however, to using libraries in C is the
problem of name clashes. C has a single name space for functions;
that is, when the linker looks for a function name, it looks in a
single master list. In addition, when the compiler is working on a
translation unit, it can work only with a single function with a given
name.

Now suppose you decide to buy two libraries from two different
vendors, and each library has a structure that must be initialized
and cleaned up. Both vendors decided that initialize() and
cleanup() are good names. If you include both their header files
in a single translation unit, what does the C compiler do?
Fortunately, C gives you an error, telling you there’s a type

230 Thinking in C++ www.BruceEckel.com

mismatch in the two different argument lists of the declared
functions. But even if you don’t include them in the same
translation unit, the linker will still have problems. A good linker
will detect that there’s a name clash, but some linkers take the first
function name they find, by searching through the list of object files
in the order you give them in the link list. (This can even be thought
of as a feature because it allows you to replace a library function
with your own version.)

In either event, you can’t use two C libraries that contain a function
with the identical name. To solve this problem, C library vendors
will often prepend a sequence of unique characters to the beginning
of all their function names. So initialize() and cleanup() might
become CStash_initialize() and CStash_cleanup(). This is a
logical thing to do because it “decorates” the name of the struct the
function works on with the name of the function.

Now it’s time to take the first step toward creating classes in C++.
Variable names inside a struct do not clash with global variable
names. So why not take advantage of this for function names, when
those functions operate on a particular struct? That is, why not
make functions members of structs?

The basic object
Step one is exactly that. C++ functions can be placed inside structs
as “member functions.” Here’s what it looks like after converting
the C version of CStash to the C++ Stash:

//: C04:CppLib.h

// C-like library converted to C++

struct Stash {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

 // Functions!

 void initialize(int size);

4: Data Abstraction 231

 void cleanup();

 int add(const void* element);

 void* fetch(int index);

 int count();

 void inflate(int increase);

}; ///:~

First, notice there is no typedef. Instead of requiring you to create
a typedef, the C++ compiler turns the name of the structure into a
new type name for the program (just as int, char, float and
double are type names).

All the data members are exactly the same as before, but now the
functions are inside the body of the struct. In addition, notice that
the first argument from the C version of the library has been
removed. In C++, instead of forcing you to pass the address of the
structure as the first argument to all the functions that operate on
that structure, the compiler secretly does this for you. Now the only
arguments for the functions are concerned with what the function
does, not the mechanism of the function’s operation.

It’s important to realize that the function code is effectively the
same as it was with the C version of the library. The number of
arguments is the same (even though you don’t see the structure
address being passed in, it’s still there), and there’s only one
function body for each function. That is, just because you say

Stash A, B, C;

doesn’t mean you get a different add() function for each variable.

So the code that’s generated is almost identical to what you would
have written for the C version of the library. Interestingly enough,
this includes the “name decoration” you probably would have done
to produce Stash_initialize(), Stash_cleanup(), and so on.
When the function name is inside the struct, the compiler
effectively does the same thing. Therefore, initialize() inside the
structure Stash will not collide with a function named initialize()
inside any other structure, or even a global function named
initialize(). Most of the time you don’t have to worry about the
function name decoration – you use the undecorated name. But

232 Thinking in C++ www.BruceEckel.com

sometimes you do need to be able to specify that this initialize()
belongs to the struct Stash, and not to any other struct. In
particular, when you’re defining the function you need to fully
specify which one it is. To accomplish this full specification, C++
has an operator (::) called the scope resolution operator (named so
because names can now be in different scopes: at global scope or
within the scope of a struct). For example, if you want to specify
initialize(), which belongs to Stash, you say
Stash::initialize(int size). You can see how the scope resolution
operator is used in the function definitions:

//: C04:CppLib.cpp {O}

// C library converted to C++

// Declare structure and functions:

#include "CppLib.h"

#include <iostream>

#include <cassert>

using namespace std;

// Quantity of elements to add

// when increasing storage:

const int increment = 100;

void Stash::initialize(int sz) {

 size = sz;

 quantity = 0;

 storage = 0;

 next = 0;

}

int Stash::add(const void* element) {

 if(next >= quantity) // Enough space left?

 inflate(increment);

 // Copy element into storage,

 // starting at next empty space:

 int startBytes = next * size;

 unsigned char* e = (unsigned char*)element;

 for(int i = 0; i < size; i++)

 storage[startBytes + i] = e[i];

 next++;

 return(next - 1); // Index number

}

void* Stash::fetch(int index) {

4: Data Abstraction 233

 // Check index boundaries:

 assert(0 <= index);

 if(index >= next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return &(storage[index * size]);

}

int Stash::count() {

 return next; // Number of elements in CStash

}

void Stash::inflate(int increase) {

 assert(increase > 0);

 int newQuantity = quantity + increase;

 int newBytes = newQuantity * size;

 int oldBytes = quantity * size;

 unsigned char* b = new unsigned char[newBytes];

 for(int i = 0; i < oldBytes; i++)

 b[i] = storage[i]; // Copy old to new

 delete []storage; // Old storage

 storage = b; // Point to new memory

 quantity = newQuantity;

}

void Stash::cleanup() {

 if(storage != 0) {

 cout << "freeing storage" << endl;

 delete []storage;

 }

} ///:~

There are several other things that are different between C and
C++. First, the declarations in the header files are required by the
compiler. In C++ you cannot call a function without declaring it
first. The compiler will issue an error message otherwise. This is an
important way to ensure that function calls are consistent between
the point where they are called and the point where they are
defined. By forcing you to declare the function before you call it, the
C++ compiler virtually ensures that you will perform this
declaration by including the header file. If you also include the
same header file in the place where the functions are defined, then
the compiler checks to make sure that the declaration in the header

234 Thinking in C++ www.BruceEckel.com

and the function definition match up. This means that the header
file becomes a validated repository for function declarations and
ensures that functions are used consistently throughout all
translation units in the project.

Of course, global functions can still be declared by hand every place
where they are defined and used. (This is so tedious that it becomes
very unlikely.) However, structures must always be declared before
they are defined or used, and the most convenient place to put a
structure definition is in a header file, except for those you
intentionally hide in a file.

You can see that all the member functions look almost the same as
when they were C functions, except for the scope resolution and the
fact that the first argument from the C version of the library is no
longer explicit. It’s still there, of course, because the function has to
be able to work on a particular struct variable. But notice, inside
the member function, that the member selection is also gone! Thus,
instead of saying s–>size = sz; you say size = sz; and eliminate
the tedious s–>, which didn’t really add anything to the meaning of
what you were doing anyway. The C++ compiler is apparently doing
this for you. Indeed, it is taking the “secret” first argument (the
address of the structure that we were previously passing in by hand)
and applying the member selector whenever you refer to one of the
data members of a struct. This means that whenever you are inside
the member function of another struct, you can refer to any
member (including another member function) by simply giving its
name. The compiler will search through the local structure’s names
before looking for a global version of that name. You’ll find that this
feature means that not only is your code easier to write, it’s a lot
easier to read.

But what if, for some reason, you want to be able to get your hands
on the address of the structure? In the C version of the library it was
easy because each function’s first argument was a CStash* called s.
In C++, things are even more consistent. There’s a special keyword,
called this, which produces the address of the struct. It’s the
equivalent of the ‘s’ in the C version of the library. So we can revert
to the C style of things by saying

4: Data Abstraction 235

this->size = Size;

The code generated by the compiler is exactly the same, so you
don’t need to use this in such a fashion; occasionally, you’ll see
code where people explicitly use this-> everywhere but it doesn’t
add anything to the meaning of the code and often indicates an
inexperienced programmer. Usually, you don’t use this often, but
when you need it, it’s there (some of the examples later in the book
will use this).

There’s one last item to mention. In C, you could assign a void* to
any other pointer like this:

int i = 10;

void* vp = &i; // OK in both C and C++

int* ip = vp; // Only acceptable in C

and there was no complaint from the compiler. But in C++, this
statement is not allowed. Why? Because C is not so particular about
type information, so it allows you to assign a pointer with an
unspecified type to a pointer with a specified type. Not so with C++.
Type is critical in C++, and the compiler stamps its foot when there
are any violations of type information. This has always been
important, but it is especially important in C++ because you have
member functions in structs. If you could pass pointers to structs
around with impunity in C++, then you could end up calling a
member function for a struct that doesn’t even logically exist for
that struct! A real recipe for disaster. Therefore, while C++ allows
the assignment of any type of pointer to a void* (this was the
original intent of void*, which is required to be large enough to
hold a pointer to any type), it will not allow you to assign a void
pointer to any other type of pointer. A cast is always required to tell
the reader and the compiler that you really do want to treat it as the
destination type.

This brings up an interesting issue. One of the important goals for
C++ is to compile as much existing C code as possible to allow for
an easy transition to the new language. However, this doesn’t mean
any code that C allows will automatically be allowed in C++. There
are a number of things the C compiler lets you get away with that
are dangerous and error-prone. (We’ll look at them as the book

236 Thinking in C++ www.BruceEckel.com

progresses.) The C++ compiler generates warnings and errors for
these situations. This is often much more of an advantage than a
hindrance. In fact, there are many situations in which you are trying
to run down an error in C and just can’t find it, but as soon as you
recompile the program in C++, the compiler points out the
problem! In C, you’ll often find that you can get the program to
compile, but then you have to get it to work. In C++, when the
program compiles correctly, it often works, too! This is because the
language is a lot stricter about type.

You can see a number of new things in the way the C++ version of
Stash is used in the following test program:

//: C04:CppLibTest.cpp

//{L} CppLib

// Test of C++ library

#include "CppLib.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main() {

 Stash intStash;

 intStash.initialize(sizeof(int));

 for(int i = 0; i < 100; i++)

 intStash.add(&i);

 for(int j = 0; j < intStash.count(); j++)

 cout << "intStash.fetch(" << j << ") = "

 << *(int*)intStash.fetch(j)

 << endl;

 // Holds 80-character strings:

 Stash stringStash;

 const int bufsize = 80;

 stringStash.initialize(sizeof(char) * bufsize);

 ifstream in("CppLibTest.cpp");

 assure(in, "CppLibTest.cpp");

 string line;

 while(getline(in, line))

 stringStash.add(line.c_str());

 int k = 0;

 char* cp;

4: Data Abstraction 237

 while((cp =(char*)stringStash.fetch(k++)) != 0)

 cout << "stringStash.fetch(" << k << ") = "

 << cp << endl;

 intStash.cleanup();

 stringStash.cleanup();

} ///:~

One thing you’ll notice is that the variables are all defined “on the
fly” (as introduced in the previous chapter). That is, they are
defined at any point in the scope, rather than being restricted – as
in C – to the beginning of the scope.

The code is quite similar to CLibTest.cpp, but when a member
function is called, the call occurs using the member selection
operator ‘.’ preceded by the name of the variable. This is a
convenient syntax because it mimics the selection of a data member
of the structure. The difference is that this is a function member, so
it has an argument list.

Of course, the call that the compiler actually generates looks much
more like the original C library function. Thus, considering name
decoration and the passing of this, the C++ function call
intStash.initialize(sizeof(int), 100) becomes something like
Stash_initialize(&intStash, sizeof(int), 100). If you ever
wonder what’s going on underneath the covers, remember that the
original C++ compiler cfront from AT&T produced C code as its
output, which was then compiled by the underlying C compiler.
This approach meant that cfront could be quickly ported to any
machine that had a C compiler, and it helped to rapidly disseminate
C++ compiler technology. But because the C++ compiler had to
generate C, you know that there must be some way to represent
C++ syntax in C (some compilers still allow you to produce C code).

There’s one other change from ClibTest.cpp, which is the
introduction of the require.h header file. This is a header file that
I created for this book to perform more sophisticated error checking
than that provided by assert(). It contains several functions,
including the one used here called assure(), which is used for
files. This function checks to see if the file has successfully been
opened, and if not it reports to standard error that the file could not
be opened (thus it needs the name of the file as the second

238 Thinking in C++ www.BruceEckel.com

argument) and exits the program. The require.h functions will be
used throughout the book, in particular to ensure that there are the
right number of command-line arguments and that files are opened
properly. The require.h functions replace repetitive and
distracting error-checking code, and yet they provide essentially
useful error messages. These functions will be fully explained later
in the book.

What's an object?
Now that you’ve seen an initial example, it’s time to step back and
take a look at some terminology. The act of bringing functions
inside structures is the root of what C++ adds to C, and it
introduces a new way of thinking about structures: as concepts. In
C, a struct is an agglomeration of data, a way to package data so
you can treat it in a clump. But it’s hard to think about it as
anything but a programming convenience. The functions that
operate on those structures are elsewhere. However, with functions
in the package, the structure becomes a new creature, capable of
describing both characteristics (like a C struct does) and
behaviors. The concept of an object, a free-standing, bounded entity
that can remember and act, suggests itself.

In C++, an object is just a variable, and the purest definition is “a
region of storage” (this is a more specific way of saying, “an object
must have a unique identifier,” which in the case of C++ is a unique
memory address). It’s a place where you can store data, and it’s
implied that there are also operations that can be performed on this
data.

Unfortunately, there’s not complete consistency across languages
when it comes to these terms, although they are fairly well-
accepted. You will also sometimes encounter disagreement about
what an object-oriented language is, although that seems to be
reasonably well sorted out by now. There are languages that are
object-based, which means that they have objects like the C++
structures-with-functions that you’ve seen so far. This, however, is
only part of the picture when it comes to an object-oriented

4: Data Abstraction 239

language, and languages that stop at packaging functions inside
data structures are object-based, not object-oriented.

Abstract data typing
The ability to package data with functions allows you to create a
new data type. This is often called encapsulation1. An existing data
type may have several pieces of data packaged together. For
example, a float has an exponent, a mantissa, and a sign bit. You
can tell it to do things: add to another float or to an int, and so on.
It has characteristics and behavior.

The definition of Stash creates a new data type. You can add(),
fetch(), and inflate(). You create one by saying Stash s, just as
you create a float by saying float f. A Stash also has
characteristics and behavior. Even though it acts like a real, built-in
data type, we refer to it as an abstract data type, perhaps because it
allows us to abstract a concept from the problem space into the
solution space. In addition, the C++ compiler treats it like a new
data type, and if you say a function expects a Stash, the compiler
makes sure you pass a Stash to that function. So the same level of
type checking happens with abstract data types (sometimes called
user-defined types) as with built-in types.

You can immediately see a difference, however, in the way you
perform operations on objects. You say
object.memberFunction(arglist). This is “calling a member
function for an object.” But in object-oriented parlance, this is also
referred to as “sending a message to an object.” So for a Stash s,
the statement s.add(&i) “sends a message to s” saying, “add()
this to yourself.” In fact, object-oriented programming can be
summed up in a single phrase: sending messages to objects. Really,
that’s all you do – create a bunch of objects and send messages to
them. The trick, of course, is figuring out what your objects and

1 This term can cause debate. Some people use it as defined here; others use it to
describe access control, discussed in the following chapter.

240 Thinking in C++ www.BruceEckel.com

messages are, but once you accomplish this the implementation in
C++ is surprisingly straightforward.

Object details
A question that often comes up in seminars is, “How big is an
object, and what does it look like?” The answer is “about what you
expect from a C struct.” In fact, the code the C compiler produces
for a C struct (with no C++ adornments) will usually look exactly
the same as the code produced by a C++ compiler. This is
reassuring to those C programmers who depend on the details of
size and layout in their code, and for some reason directly access
structure bytes instead of using identifiers (relying on a particular
size and layout for a structure is a nonportable activity).

The size of a struct is the combined size of all of its members.
Sometimes when the compiler lays out a struct, it adds extra bytes
to make the boundaries come out neatly – this may increase
execution efficiency. In Chapter 15, you’ll see how in some cases
“secret” pointers are added to the structure, but you don’t need to
worry about that right now.

You can determine the size of a struct using the sizeof operator.
Here’s a small example:

//: C04:Sizeof.cpp

// Sizes of structs

#include "CLib.h"

#include "CppLib.h"

#include <iostream>

using namespace std;

struct A {

 int i[100];

};

struct B {

 void f();

};

void B::f() {}

4: Data Abstraction 241

int main() {

 cout << "sizeof struct A = " << sizeof(A)

 << " bytes" << endl;

 cout << "sizeof struct B = " << sizeof(B)

 << " bytes" << endl;

 cout << "sizeof CStash in C = "

 << sizeof(CStash) << " bytes" << endl;

 cout << "sizeof Stash in C++ = "

 << sizeof(Stash) << " bytes" << endl;

} ///:~

On my machine (your results may vary) the first print statement
produces 200 because each int occupies two bytes. struct B is
something of an anomaly because it is a struct with no data
members. In C, this is illegal, but in C++ we need the option of
creating a struct whose sole task is to scope function names, so it is
allowed. Still, the result produced by the second print statement is a
somewhat surprising nonzero value. In early versions of the
language, the size was zero, but an awkward situation arises when
you create such objects: They have the same address as the object
created directly after them, and so are not distinct. One of the
fundamental rules of objects is that each object must have a unique
address, so structures with no data members will always have some
minimum nonzero size.

The last two sizeof statements show you that the size of the
structure in C++ is the same as the size of the equivalent version in
C. C++ tries not to add any unnecessary overhead.

Header file etiquette
When you create a struct containing member functions, you are
creating a new data type. In general, you want this type to be easily
accessible to yourself and others. In addition, you want to separate
the interface (the declaration) from the implementation (the
definition of the member functions) so the implementation can be
changed without forcing a re-compile of the entire system. You
achieve this end by putting the declaration for your new type in a
header file.

242 Thinking in C++ www.BruceEckel.com

When I first learned to program in C, the header file was a mystery
to me. Many C books don’t seem to emphasize it, and the compiler
didn’t enforce function declarations, so it seemed optional most of
the time, except when structures were declared. In C++ the use of
header files becomes crystal clear. They are virtually mandatory for
easy program development, and you put very specific information
in them: declarations. The header file tells the compiler what is
available in your library. You can use the library even if you only
possess the header file along with the object file or library file; you
don’t need the source code for the cpp file. The header file is where
the interface specification is stored.

Although it is not enforced by the compiler, the best approach to
building large projects in C is to use libraries; collect associated
functions into the same object module or library, and use a header
file to hold all the declarations for the functions. It is de rigueur in
C++; you could throw any function into a C library, but the C++
abstract data type determines the functions that are associated by
dint of their common access to the data in a struct. Any member
function must be declared in the struct declaration; you cannot put
it elsewhere. The use of function libraries was encouraged in C and
institutionalized in C++.

Importance of header files
When using a function from a library, C allows you the option of
ignoring the header file and simply declaring the function by hand.
In the past, people would sometimes do this to speed up the
compiler just a bit by avoiding the task of opening and including the
file (this is usually not an issue with modern compilers). For
example, here’s an extremely lazy declaration of the C function
printf() (from <stdio.h>):

printf(...);

4: Data Abstraction 243

The ellipses specify a variable argument list2, which says: printf()
has some arguments, each of which has a type, but ignore that. Just
take whatever arguments you see and accept them. By using this
kind of declaration, you suspend all error checking on the
arguments.

This practice can cause subtle problems. If you declare functions by
hand, in one file you may make a mistake. Since the compiler sees
only your hand-declaration in that file, it may be able to adapt to
your mistake. The program will then link correctly, but the use of
the function in that one file will be faulty. This is a tough error to
find, and is easily avoided by using a header file.

If you place all your function declarations in a header file, and
include that header everywhere you use the function and where you
define the function, you ensure a consistent declaration across the
whole system. You also ensure that the declaration and the
definition match by including the header in the definition file.

If a struct is declared in a header file in C++, you must include the
header file everywhere a struct is used and where struct member
functions are defined. The C++ compiler will give an error message
if you try to call a regular function, or to call or define a member
function, without declaring it first. By enforcing the proper use of
header files, the language ensures consistency in libraries, and
reduces bugs by forcing the same interface to be used everywhere.

The header is a contract between you and the user of your library.
The contract describes your data structures, and states the
arguments and return values for the function calls. It says, “Here’s
what my library does.” The user needs some of this information to
develop the application and the compiler needs all of it to generate
proper code. The user of the struct simply includes the header file,
creates objects (instances) of that struct, and links in the object
module or library (i.e.: the compiled code).

2 To write a function definition for a function that takes a true variable argument list,
you must use varargs, although these should be avoided in C++. You can find details
about the use of varargs in your C manual.

244 Thinking in C++ www.BruceEckel.com

The compiler enforces the contract by requiring you to declare all
structures and functions before they are used and, in the case of
member functions, before they are defined. Thus, you’re forced to
put the declarations in the header and to include the header in the
file where the member functions are defined and the file(s) where
they are used. Because a single header file describing your library is
included throughout the system, the compiler can ensure
consistency and prevent errors.

There are certain issues that you must be aware of in order to
organize your code properly and write effective header files. The
first issue concerns what you can put into header files. The basic
rule is “only declarations,” that is, only information to the compiler
but nothing that allocates storage by generating code or creating
variables. This is because the header file will typically be included in
several translation units in a project, and if storage for one
identifier is allocated in more than one place, the linker will come
up with a multiple definition error (this is C++’s one definition rule:
You can declare things as many times as you want, but there can be
only one actual definition for each thing).

This rule isn’t completely hard and fast. If you define a variable that
is “file static” (has visibility only within a file) inside a header file,
there will be multiple instances of that data across the project, but
the linker won’t have a collision3. Basically, you don’t want to do
anything in the header file that will cause an ambiguity at link time.

The multiple-declaration problem
The second header-file issue is this: when you put a struct
declaration in a header file, it is possible for the file to be included
more than once in a complicated program. Iostreams are a good
example. Any time a struct does I/O it may include one of the
iostream headers. If the cpp file you are working on uses more than
one kind of struct (typically including a header file for each one),
you run the risk of including the <iostream> header more than
once and re-declaring iostreams.

3 However, in Standard C++ file static is a deprecated feature.

4: Data Abstraction 245

The compiler considers the redeclaration of a structure (this
includes both structs and classes) to be an error, since it would
otherwise allow you to use the same name for different types. To
prevent this error when multiple header files are included, you need
to build some intelligence into your header files using the
preprocessor (Standard C++ header files like <iostream> already
have this “intelligence”).

Both C and C++ allow you to redeclare a function, as long as the two
declarations match, but neither will allow the redeclaration of a
structure. In C++ this rule is especially important because if the
compiler allowed you to redeclare a structure and the two
declarations differed, which one would it use?

The problem of redeclaration comes up quite a bit in C++ because
each data type (structure with functions) generally has its own
header file, and you have to include one header in another if you
want to create another data type that uses the first one. In any cpp
file in your project, it’s likely that you’ll include several files that
include the same header file. During a single compilation, the
compiler can see the same header file several times. Unless you do
something about it, the compiler will see the redeclaration of your
structure and report a compile-time error. To solve the problem,
you need to know a bit more about the preprocessor.

The preprocessor directives

#define, #ifdef, and #endif
The preprocessor directive #define can be used to create compile-
time flags. You have two choices: you can simply tell the
preprocessor that the flag is defined, without specifying a value:

#define FLAG

or you can give it a value (which is the typical C way to define a
constant):

#define PI 3.14159

In either case, the label can now be tested by the preprocessor to see
if it has been defined:

246 Thinking in C++ www.BruceEckel.com

#ifdef FLAG

This will yield a true result, and the code following the #ifdef will
be included in the package sent to the compiler. This inclusion
stops when the preprocessor encounters the statement

#endif

or

#endif // FLAG

Any non-comment after the #endif on the same line is illegal, even
though some compilers may accept it. The #ifdef/#endif pairs
may be nested within each other.

The complement of #define is #undef (short for “un-define”),
which will make an #ifdef statement using the same variable yield
a false result. #undef will also cause the preprocessor to stop using
a macro. The complement of #ifdef is #ifndef, which will yield a
true if the label has not been defined (this is the one we will use in
header files).

There are other useful features in the C preprocessor. You should
check your local documentation for the full set.

A standard for header files
In each header file that contains a structure, you should first check
to see if this header has already been included in this particular cpp
file. You do this by testing a preprocessor flag. If the flag isn’t set,
the file wasn’t included and you should set the flag (so the structure
can’t get re-declared) and declare the structure. If the flag was set
then that type has already been declared so you should just ignore
the code that declares it. Here’s how the header file should look:

#ifndef HEADER_FLAG

#define HEADER_FLAG

// Type declaration here...

#endif // HEADER_FLAG

4: Data Abstraction 247

As you can see, the first time the header file is included, the
contents of the header file (including your type declaration) will be
included by the preprocessor. All the subsequent times it is
included – in a single compilation unit – the type declaration will
be ignored. The name HEADER_FLAG can be any unique name,
but a reliable standard to follow is to capitalize the name of the
header file and replace periods with underscores (leading
underscores, however, are reserved for system names). Here’s an
example:

//: C04:Simple.h

// Simple header that prevents re-definition

#ifndef SIMPLE_H

#define SIMPLE_H

struct Simple {

 int i,j,k;

 initialize() { i = j = k = 0; }

};

#endif // SIMPLE_H ///:~

Although the SIMPLE_H after the #endif is commented out and
thus ignored by the preprocessor, it is useful for documentation.

These preprocessor statements that prevent multiple inclusion are
often referred to as include guards.

Namespaces in headers
You’ll notice that using directives are present in nearly all the cpp
files in this book, usually in the form:

using namespace std;

Since std is the namespace that surrounds the entire Standard C++
library, this particular using directive allows the names in the
Standard C++ library to be used without qualification. However,
you’ll virtually never see a using directive in a header file (at least,
not outside of a scope). The reason is that the using directive
eliminates the protection of that particular namespace, and the
effect lasts until the end of the current compilation unit. If you put a
using directive (outside of a scope) in a header file, it means that

248 Thinking in C++ www.BruceEckel.com

this loss of “namespace protection” will occur with any file that
includes this header, which often means other header files. Thus, if
you start putting using directives in header files, it’s very easy to
end up “turning off” namespaces practically everywhere, and
thereby neutralizing the beneficial effects of namespaces.

In short: don’t put using directives in header files.

Using headers in projects
When building a project in C++, you’ll usually create it by bringing
together a lot of different types (data structures with associated
functions). You’ll usually put the declaration for each type or group
of associated types in a separate header file, then define the
functions for that type in a translation unit. When you use that type,
you must include the header file to perform the declarations
properly.

Sometimes that pattern will be followed in this book, but more
often the examples will be very small, so everything – the structure
declarations, function definitions, and the main() function – may
appear in a single file. However, keep in mind that you’ll want to
use separate files and header files in practice.

Nested structures
The convenience of taking data and function names out of the
global name space extends to structures. You can nest a structure
within another structure, and therefore keep associated elements
together. The declaration syntax is what you would expect, as you
can see in the following structure, which implements a push-down
stack as a simple linked list so it “never” runs out of memory:

//: C04:Stack.h

// Nested struct in linked list

#ifndef STACK_H

#define STACK_H

struct Stack {

 struct Link {

4: Data Abstraction 249

 void* data;

 Link* next;

 void initialize(void* dat, Link* nxt);

 }* head;

 void initialize();

 void push(void* dat);

 void* peek();

 void* pop();

 void cleanup();

};

#endif // STACK_H ///:~

The nested struct is called Link, and it contains a pointer to the
next Link in the list and a pointer to the data stored in the Link. If
the next pointer is zero, it means you’re at the end of the list.

Notice that the head pointer is defined right after the declaration
for struct Link, instead of a separate definition Link* head. This
is a syntax that came from C, but it emphasizes the importance of
the semicolon after the structure declaration; the semicolon
indicates the end of the comma-separated list of definitions of that
structure type. (Usually the list is empty.)

The nested structure has its own initialize() function, like all the
structures presented so far, to ensure proper initialization. Stack
has both an initialize() and cleanup() function, as well as
push(), which takes a pointer to the data you wish to store (it
assumes this has been allocated on the heap), and pop(), which
returns the data pointer from the top of the Stack and removes the
top element. (When you pop() an element, you are responsible for
destroying the object pointed to by the data.) The peek() function
also returns the data pointer from the top element, but it leaves the
top element on the Stack.

Here are the definitions for the member functions:

//: C04:Stack.cpp {O}

// Linked list with nesting

#include "Stack.h"

#include "../require.h"

using namespace std;

250 Thinking in C++ www.BruceEckel.com

void

Stack::Link::initialize(void* dat, Link* nxt) {

 data = dat;

 next = nxt;

}

void Stack::initialize() { head = 0; }

void Stack::push(void* dat) {

 Link* newLink = new Link;

 newLink->initialize(dat, head);

 head = newLink;

}

void* Stack::peek() {

 require(head != 0, "Stack empty");

 return head->data;

}

void* Stack::pop() {

 if(head == 0) return 0;

 void* result = head->data;

 Link* oldHead = head;

 head = head->next;

 delete oldHead;

 return result;

}

void Stack::cleanup() {

 require(head == 0, "Stack not empty");

} ///:~

The first definition is particularly interesting because it shows you
how to define a member of a nested structure. You simply use an
additional level of scope resolution to specify the name of the
enclosing struct. Stack::Link::initialize() takes the arguments
and assigns them to its members.

Stack::initialize() sets head to zero, so the object knows it has
an empty list.

Stack::push() takes the argument, which is a pointer to the
variable you want to keep track of, and pushes it on the Stack.

4: Data Abstraction 251

First, it uses new to allocate storage for the Link it will insert at
the top. Then it calls Link’s initialize() function to assign the
appropriate values to the members of the Link. Notice that the
next pointer is assigned to the current head; then head is
assigned to the new Link pointer. This effectively pushes the Link
in at the top of the list.

Stack::pop() captures the data pointer at the current top of the
Stack; then it moves the head pointer down and deletes the old
top of the Stack, finally returning the captured pointer. When
pop() removes the last element, then head again becomes zero,
meaning the Stack is empty.

Stack::cleanup() doesn’t actually do any cleanup. Instead, it
establishes a firm policy that “you (the client programmer using this
Stack object) are responsible for popping all the elements off this
Stack and deleting them.” The require() is used to indicate that a
programming error has occurred if the Stack is not empty.

Why couldn’t the Stack destructor be responsible for all the objects
that the client programmer didn’t pop()? The problem is that the
Stack is holding void pointers, and you’ll learn in Chapter 13 that
calling delete for a void* doesn’t clean things up properly. The
subject of “who’s responsible for the memory” is not even that
simple, as we’ll see in later chapters.

Here’s an example to test the Stack:

//: C04:StackTest.cpp

//{L} Stack

//{T} StackTest.cpp

// Test of nested linked list

#include "Stack.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1); // File name is argument

252 Thinking in C++ www.BruceEckel.com

 ifstream in(argv[1]);

 assure(in, argv[1]);

 Stack textlines;

 textlines.initialize();

 string line;

 // Read file and store lines in the Stack:

 while(getline(in, line))

 textlines.push(new string(line));

 // Pop the lines from the Stack and print them:

 string* s;

 while((s = (string*)textlines.pop()) != 0) {

 cout << *s << endl;

 delete s;

 }

 textlines.cleanup();

} ///:~

This is similar to the earlier example, but it pushes lines from a file
(as string pointers) on the Stack and then pops them off, which
results in the file being printed out in reverse order. Note that the
pop() member function returns a void* and this must be cast
back to a string* before it can be used. To print the string, the
pointer is dereferenced.

As textlines is being filled, the contents of line is “cloned” for each
push() by making a new string(line). The value returned from
the new-expression is a pointer to the new string that was created
and that copied the information from line. If you had simply
passed the address of line to push(), you would end up with a
Stack filled with identical addresses, all pointing to line. You’ll
learn more about this “cloning” process later in the book.

The file name is taken from the command line. To guarantee that
there are enough arguments on the command line, you see a second
function used from the require.h header file: requireArgs(),
which compares argc to the desired number of arguments and
prints an appropriate error message and exits the program if there
aren’t enough arguments.

4: Data Abstraction 253

Global scope resolution
The scope resolution operator gets you out of situations in which
the name the compiler chooses by default (the “nearest” name) isn’t
what you want. For example, suppose you have a structure with a
local identifier a, and you want to select a global identifier a from
inside a member function. The compiler would default to choosing
the local one, so you must tell it to do otherwise. When you want to
specify a global name using scope resolution, you use the operator
with nothing in front of it. Here’s an example that shows global
scope resolution for both a variable and a function:

//: C04:Scoperes.cpp

// Global scope resolution

int a;

void f() {}

struct S {

 int a;

 void f();

};

void S::f() {

 ::f(); // Would be recursive otherwise!

 ::a++; // Select the global a

 a--; // The a at struct scope

}

int main() { S s; f(); } ///:~

Without scope resolution in S::f(), the compiler would default to
selecting the member versions of f() and a.

Summary
In this chapter, you’ve learned the fundamental “twist” of C++: that
you can place functions inside of structures. This new type of
structure is called an abstract data type, and variables you create
using this structure are called objects, or instances, of that type.
Calling a member function for an object is called sending a message
to that object. The primary action in object-oriented programming
is sending messages to objects.

254 Thinking in C++ www.BruceEckel.com

Although packaging data and functions together is a significant
benefit for code organization and makes library use easier because
it prevents name clashes by hiding the names, there’s a lot more you
can do to make programming safer in C++. In the next chapter,
you’ll learn how to protect some members of a struct so that only
you can manipulate them. This establishes a clear boundary
between what the user of the structure can change and what only
the programmer may change.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from http://www.BruceEckel.com.

1. In the Standard C library, the function puts() prints a
char array to the console (so you can say puts("hello")).
Write a C program that uses puts() but does not include
<stdio.h> or otherwise declare the function. Compile
this program with your C compiler. (Some C++ compilers
are not distinct from their C compilers; in this case you
may need to discover a command-line flag that forces a C
compilation.) Now compile it with the C++ compiler and
note the difference.

2. Create a struct declaration with a single member
function, then create a definition for that member
function. Create an object of your new data type, and call
the member function.

3. Change your solution to Exercise 2 so the struct is
declared in a properly “guarded” header file, with the
definition in one cpp file and your main() in another.

4. Create a struct with a single int data member, and two
global functions, each of which takes a pointer to that
struct. The first function has a second int argument and
sets the struct’s int to the argument value, the second
displays the int from the struct. Test the functions.

5. Repeat Exercise 4 but move the functions so they are
member functions of the struct, and test again.

6. Create a class that (redundantly) performs data member
selection and a member function call using the this

4: Data Abstraction 255

keyword (which refers to the address of the current
object).

7. Make a Stash that holds doubles. Fill it with 25 double
values, then print them out to the console.

8. Repeat Exercise 7 with Stack.

9. Create a file containing a function f() that takes an int
argument and prints it to the console using the printf()
function in <stdio.h> by saying: printf(“%d\n”, i) in
which i is the int you wish to print. Create a separate file
containing main(), and in this file declare f() to take a
float argument. Call f() from inside main(). Try to
compile and link your program with the C++ compiler
and see what happens. Now compile and link the
program using the C compiler, and see what happens
when it runs. Explain the behavior.

10. Find out how to produce assembly language from your C
and C++ compilers. Write a function in C and a struct
with a single member function in C++. Produce assembly
language from each and find the function names that are
produced by your C function and your C++ member
function, so you can see what sort of name decoration
occurs inside the compiler.

11. Write a program with conditionally-compiled code in
main(), so that when a preprocessor value is defined
one message is printed, but when it is not defined
another message is printed. Compile this code
experimenting with a #define within the program, then
discover the way your compiler takes preprocessor
definitions on the command line and experiment with
that.

12. Write a program that uses assert() with an argument
that is always false (zero) to see what happens when you
run it. Now compile it with #define NDEBUG and run
it again to see the difference.

13. Create an abstract data type that represents a videotape
in a video rental store. Try to consider all the data and
operations that may be necessary for the Video type to
work well within the video rental management system.

256 Thinking in C++ www.BruceEckel.com

Include a print() member function that displays
information about the Video.

14. Create a Stack object to hold the Video objects from
Exercise 13. Create several Video objects, store them in
the Stack, then display them using Video::print().

15. Write a program that prints out all the sizes for the
fundamental data types on your computer using sizeof.

16. Modify Stash to use a vector<char> as its underlying
data structure.

17. Dynamically create pieces of storage of the following
types, using new: int, long, an array of 100 chars, an
array of 100 floats. Print the addresses of these and then
free the storage using delete.

18. Write a function that takes a char* argument. Using
new, dynamically allocate an array of char that is the
size of the char array that’s passed to the function. Using
array indexing, copy the characters from the argument to
the dynamically allocated array (don’t forget the null
terminator) and return the pointer to the copy. In your
main(), test the function by passing a static quoted
character array, then take the result of that and pass it
back into the function. Print both strings and both
pointers so you can see they are different storage. Using
delete, clean up all the dynamic storage.

19. Show an example of a structure declared within another
structure (a nested structure). Declare data members in
both structs, and declare and define member functions
in both structs. Write a main() that tests your new
types.

20. How big is a structure? Write a piece of code that prints
the size of various structures. Create structures that have
data members only and ones that have data members and
function members. Then create a structure that has no
members at all. Print out the sizes of all these. Explain
the reason for the result of the structure with no data
members at all.

21. C++ automatically creates the equivalent of a typedef for
structs, as you’ve seen in this chapter. It also does this

4: Data Abstraction 257

for enumerations and unions. Write a small program that
demonstrates this.

22. Create a Stack that holds Stashes. Each Stash will hold
five lines from an input file. Create the Stashes using
new. Read a file into your Stack, then reprint it in its
original form by extracting it from the Stack.

23. Modify Exercise 22 so that you create a struct that
encapsulates the Stack of Stashes. The user should only
add and get lines via member functions, but under the
covers the struct happens to use a Stack of Stashes.

24. Create a struct that holds an int and a pointer to
another instance of the same struct. Write a function
that takes the address of one of these structs and an int
indicating the length of the list you want created. This
function will make a whole chain of these structs (a
linked list), starting from the argument (the head of the
list), with each one pointing to the next. Make the new
structs using new, and put the count (which object
number this is) in the int. In the last struct in the list,
put a zero value in the pointer to indicate that it’s the end.
Write a second function that takes the head of your list
and moves through to the end, printing out both the
pointer value and the int value for each one.

25. Repeat Exercise 24, but put the functions inside a struct
instead of using “raw” structs and functions.

 259

5: Hiding the

Implementation
A typical C library contains a struct and some

associated functions to act on that struct. So far,

you've seen how C++ takes functions that are

conceptually associated and makes them literally

associated by

260 Thinking in C++ www.BruceEckel.com

putting the function declarations inside the scope of the struct,
changing the way functions are called for the struct, eliminating
the passing of the structure address as the first argument, and
adding a new type name to the program (so you don’t have to create
a typedef for the struct tag).

These are all convenient – they help you organize your code and
make it easier to write and read. However, there are other
important issues when making libraries easier in C++, especially
the issues of safety and control. This chapter looks at the subject of
boundaries in structures.

Setting limits
In any relationship it’s important to have boundaries that are
respected by all parties involved. When you create a library, you
establish a relationship with the client programmer who uses that
library to build an application or another library.

In a C struct, as with most things in C, there are no rules. Client
programmers can do anything they want with that struct, and
there’s no way to force any particular behaviors. For example, even
though you saw in the last chapter the importance of the functions
named initialize() and cleanup(), the client programmer has
the option not to call those functions. (We’ll look at a better
approach in the next chapter.) And even though you would really
prefer that the client programmer not directly manipulate some of
the members of your struct, in C there’s no way to prevent it.
Everything’s naked to the world.

There are two reasons for controlling access to members. The first
is to keep the client programmer’s hands off tools they shouldn’t
touch, tools that are necessary for the internal machinations of the
data type, but not part of the interface the client programmer needs
to solve their particular problems. This is actually a service to client
programmers because they can easily see what’s important to them
and what they can ignore.

5: Hiding the Implementation 261

The second reason for access control is to allow the library designer
to change the internal workings of the structure without worrying
about how it will affect the client programmer. In the Stack
example in the last chapter, you might want to allocate the storage
in big chunks, for speed, rather than creating new storage each time
an element is added. If the interface and implementation are clearly
separated and protected, you can accomplish this and require only a
relink by the client programmer.

C++ access control
C++ introduces three new keywords to set the boundaries in a
structure: public, private, and protected. Their use and meaning
are remarkably straightforward. These access specifiers are used
only in a structure declaration, and they change the boundary for all
the declarations that follow them. Whenever you use an access
specifier, it must be followed by a colon.

public means all member declarations that follow are available to
everyone. public members are like struct members. For example,
the following struct declarations are identical:

//: C05:Public.cpp

// Public is just like C's struct

struct A {

 int i;

 char j;

 float f;

 void func();

};

void A::func() {}

struct B {

public:

 int i;

 char j;

 float f;

 void func();

};

262 Thinking in C++ www.BruceEckel.com

void B::func() {}

int main() {

 A a; B b;

 a.i = b.i = 1;

 a.j = b.j = 'c';

 a.f = b.f = 3.14159;

 a.func();

 b.func();

} ///:~

The private keyword, on the other hand, means that no one can
access that member except you, the creator of the type, inside
function members of that type. private is a brick wall between you
and the client programmer; if someone tries to access a private
member, they’ll get a compile-time error. In struct B in the
example above, you may want to make portions of the
representation (that is, the data members) hidden, accessible only
to you:

//: C05:Private.cpp

// Setting the boundary

struct B {

private:

 char j;

 float f;

public:

 int i;

 void func();

};

void B::func() {

 i = 0;

 j = '0';

 f = 0.0;

};

int main() {

 B b;

 b.i = 1; // OK, public

//! b.j = '1'; // Illegal, private

//! b.f = 1.0; // Illegal, private

5: Hiding the Implementation 263

} ///:~

Although func() can access any member of B (because func() is a
member of B, thus automatically granting it permission), an
ordinary global function like main() cannot. Of course, neither
can member functions of other structures. Only the functions that
are clearly stated in the structure declaration (the “contract”) can
have access to private members.

There is no required order for access specifiers, and they may
appear more than once. They affect all the members declared after
them and before the next access specifier.

protected
The last access specifier is protected. protected acts just like
private, with one exception that we can’t really talk about right
now: “Inherited” structures (which cannot access private
members) are granted access to protected members. This will
become clearer in Chapter 14 when inheritance is introduced. For
current purposes, consider protected to be just like private.

Friends
What if you want to explicitly grant access to a function that isn’t a
member of the current structure? This is accomplished by declaring
that function a friend inside the structure declaration. It’s
important that the friend declaration occurs inside the structure
declaration because you (and the compiler) must be able to read the
structure declaration and see every rule about the size and behavior
of that data type. And a very important rule in any relationship is,
“Who can access my private implementation?”

The class controls which code has access to its members. There’s no
magic way to “break in” from the outside if you aren’t a friend; you
can’t declare a new class and say, “Hi, I’m a friend of Bob!” and
expect to see the private and protected members of Bob.

264 Thinking in C++ www.BruceEckel.com

You can declare a global function as a friend, and you can also
declare a member function of another structure, or even an entire
structure, as a friend. Here’s an example :

//: C05:Friend.cpp

// Friend allows special access

// Declaration (incomplete type specification):

struct X;

struct Y {

 void f(X*);

};

struct X { // Definition

private:

 int i;

public:

 void initialize();

 friend void g(X*, int); // Global friend

 friend void Y::f(X*); // Struct member friend

 friend struct Z; // Entire struct is a friend

 friend void h();

};

void X::initialize() {

 i = 0;

}

void g(X* x, int i) {

 x->i = i;

}

void Y::f(X* x) {

 x->i = 47;

}

struct Z {

private:

 int j;

public:

 void initialize();

 void g(X* x);

};

5: Hiding the Implementation 265

void Z::initialize() {

 j = 99;

}

void Z::g(X* x) {

 x->i += j;

}

void h() {

 X x;

 x.i = 100; // Direct data manipulation

}

int main() {

 X x;

 Z z;

 z.g(&x);

} ///:~

struct Y has a member function f() that will modify an object of
type X. This is a bit of a conundrum because the C++ compiler
requires you to declare everything before you can refer to it, so
struct Y must be declared before its member Y::f(X*) can be
declared as a friend in struct X. But for Y::f(X*) to be declared,
struct X must be declared first!

Here’s the solution. Notice that Y::f(X*) takes the address of an X
object. This is critical because the compiler always knows how to
pass an address, which is of a fixed size regardless of the object
being passed, even if it doesn’t have full information about the size
of the type. If you try to pass the whole object, however, the
compiler must see the entire structure definition of X, to know the
size and how to pass it, before it allows you to declare a function
such as Y::g(X).

By passing the address of an X, the compiler allows you to make an
incomplete type specification of X prior to declaring Y::f(X*). This
is accomplished in the declaration:

struct X;

266 Thinking in C++ www.BruceEckel.com

This declaration simply tells the compiler there’s a struct by that
name, so it’s OK to refer to it as long as you don’t require any more
knowledge than the name.

Now, in struct X, the function Y::f(X*) can be declared as a
friend with no problem. If you tried to declare it before the
compiler had seen the full specification for Y, it would have given
you an error. This is a safety feature to ensure consistency and
eliminate bugs.

Notice the two other friend functions. The first declares an
ordinary global function g() as a friend. But g() has not been
previously declared at the global scope! It turns out that friend can
be used this way to simultaneously declare the function and give it
friend status. This extends to entire structures:

friend struct Z;

is an incomplete type specification for Z, and it gives the entire
structure friend status.

Nested friends
Making a structure nested doesn’t automatically give it access to
private members. To accomplish this, you must follow a particular
form: first, declare (without defining) the nested structure, then
declare it as a friend, and finally define the structure. The
structure definition must be separate from the friend declaration,
otherwise it would be seen by the compiler as a non-member.
Here’s an example:

//: C05:NestFriend.cpp

// Nested friends

#include <iostream>

#include <cstring> // memset()

using namespace std;

const int sz = 20;

struct Holder {

private:

 int a[sz];

public:

5: Hiding the Implementation 267

 void initialize();

 struct Pointer;

 friend Pointer;

 struct Pointer {

 private:

 Holder* h;

 int* p;

 public:

 void initialize(Holder* h);

 // Move around in the array:

 void next();

 void previous();

 void top();

 void end();

 // Access values:

 int read();

 void set(int i);

 };

};

void Holder::initialize() {

 memset(a, 0, sz * sizeof(int));

}

void Holder::Pointer::initialize(Holder* rv) {

 h = rv;

 p = rv->a;

}

void Holder::Pointer::next() {

 if(p < &(h->a[sz - 1])) p++;

}

void Holder::Pointer::previous() {

 if(p > &(h->a[0])) p--;

}

void Holder::Pointer::top() {

 p = &(h->a[0]);

}

void Holder::Pointer::end() {

 p = &(h->a[sz - 1]);

}

268 Thinking in C++ www.BruceEckel.com

int Holder::Pointer::read() {

 return *p;

}

void Holder::Pointer::set(int i) {

 *p = i;

}

int main() {

 Holder h;

 Holder::Pointer hp, hp2;

 int i;

 h.initialize();

 hp.initialize(&h);

 hp2.initialize(&h);

 for(i = 0; i < sz; i++) {

 hp.set(i);

 hp.next();

 }

 hp.top();

 hp2.end();

 for(i = 0; i < sz; i++) {

 cout << "hp = " << hp.read()

 << ", hp2 = " << hp2.read() << endl;

 hp.next();

 hp2.previous();

 }

} ///:~

Once Pointer is declared, it is granted access to the private
members of Holder by saying:

friend Pointer;

The struct Holder contains an array of ints and the Pointer
allows you to access them. Because Pointer is strongly associated
with Holder, it’s sensible to make it a member structure of
Holder. But because Pointer is a separate class from Holder,
you can make more than one of them in main() and use them to
select different parts of the array. Pointer is a structure instead of
a raw C pointer, so you can guarantee that it will always safely point
inside the Holder.

5: Hiding the Implementation 269

The Standard C library function memset() (in <cstring>) is used
for convenience in the program above. It sets all memory starting at
a particular address (the first argument) to a particular value (the
second argument) for n bytes past the starting address (n is the
third argument). Of course, you could have simply used a loop to
iterate through all the memory, but memset() is available, well-
tested (so it’s less likely you’ll introduce an error), and probably
more efficient than if you coded it by hand.

Is it pure?
The class definition gives you an audit trail, so you can see from
looking at the class which functions have permission to modify the
private parts of the class. If a function is a friend, it means that it
isn’t a member, but you want to give permission to modify private
data anyway, and it must be listed in the class definition so
everyone can see that it’s one of the privileged functions.

C++ is a hybrid object-oriented language, not a pure one, and
friend was added to get around practical problems that crop up.
It’s fine to point out that this makes the language less “pure,”
because C++ is designed to be pragmatic, not to aspire to an
abstract ideal.

Object layout
Chapter 4 stated that a struct written for a C compiler and later
compiled with C++ would be unchanged. This referred primarily to
the object layout of the struct, that is, where the storage for the
individual variables is positioned in the memory allocated for the
object. If the C++ compiler changed the layout of C structs, then
any C code you wrote that inadvisably took advantage of knowledge
of the positions of variables in the struct would break.

When you start using access specifiers, however, you’ve moved
completely into the C++ realm, and things change a bit. Within a
particular “access block” (a group of declarations delimited by
access specifiers), the variables are guaranteed to be laid out
contiguously, as in C. However, the access blocks may not appear in

270 Thinking in C++ www.BruceEckel.com

the object in the order that you declare them. Although the
compiler will usually lay the blocks out exactly as you see them,
there is no rule about it, because a particular machine architecture
and/or operating environment may have explicit support for
private and protected that might require those blocks to be
placed in special memory locations. The language specification
doesn’t want to restrict this kind of advantage.

Access specifiers are part of the structure and don’t affect the
objects created from the structure. All of the access specification
information disappears before the program is run; generally this
happens during compilation. In a running program, objects become
“regions of storage” and nothing more. If you really want to, you
can break all the rules and access the memory directly, as you can in
C. C++ is not designed to prevent you from doing unwise things. It
just provides you with a much easier, highly desirable alternative.

In general, it’s not a good idea to depend on anything that’s
implementation-specific when you’re writing a program. When you
must have implementation-specific dependencies, encapsulate
them inside a structure so that any porting changes are focused in
one place.

The class
Access control is often referred to as implementation hiding.
Including functions within structures (often referred to as
encapsulation1) produces a data type with characteristics and
behaviors, but access control puts boundaries within that data type,
for two important reasons. The first is to establish what the client
programmers can and can’t use. You can build your internal
mechanisms into the structure without worrying that client
programmers will think that these mechanisms are part of the
interface they should be using.

1 As noted before, sometimes access control is referred to as encapsulation.

5: Hiding the Implementation 271

This feeds directly into the second reason, which is to separate the
interface from the implementation. If the structure is used in a set
of programs, but the client programmers can’t do anything but send
messages to the public interface, then you can change anything
that’s private without requiring modifications to their code.

Encapsulation and access control, taken together, invent something
more than a C struct. We’re now in the world of object-oriented
programming, where a structure is describing a class of objects as
you would describe a class of fishes or a class of birds: Any object
belonging to this class will share these characteristics and
behaviors. That’s what the structure declaration has become, a
description of the way all objects of this type will look and act.

In the original OOP language, Simula-67, the keyword class was
used to describe a new data type. This apparently inspired
Stroustrup to choose the same keyword for C++, to emphasize that
this was the focal point of the whole language: the creation of new
data types that are more than just C structs with functions. This
certainly seems like adequate justification for a new keyword.

However, the use of class in C++ comes close to being an
unnecessary keyword. It’s identical to the struct keyword in
absolutely every way except one: class defaults to private,
whereas struct defaults to public. Here are two structures that
produce the same result:

//: C05:Class.cpp

// Similarity of struct and class

struct A {

private:

 int i, j, k;

public:

 int f();

 void g();

};

int A::f() {

 return i + j + k;

}

272 Thinking in C++ www.BruceEckel.com

void A::g() {

 i = j = k = 0;

}

// Identical results are produced with:

class B {

 int i, j, k;

public:

 int f();

 void g();

};

int B::f() {

 return i + j + k;

}

void B::g() {

 i = j = k = 0;

}

int main() {

 A a;

 B b;

 a.f(); a.g();

 b.f(); b.g();

} ///:~

The class is the fundamental OOP concept in C++. It is one of the
keywords that will not be set in bold in this book – it becomes
annoying with a word repeated as often as “class.” The shift to
classes is so important that I suspect Stroustrup’s preference would
have been to throw struct out altogether, but the need for
backwards compatibility with C wouldn’t allow that.

Many people prefer a style of creating classes that is more struct-
like than class-like, because you override the “default-to-private”
behavior of the class by starting out with public elements:

class X {

public:

 void interface_function();

private:

5: Hiding the Implementation 273

 void private_function();

 int internal_representation;

};

The logic behind this is that it makes more sense for the reader to
see the members of interest first, then they can ignore anything that
says private. Indeed, the only reasons all the other members must
be declared in the class at all are so the compiler knows how big the
objects are and can allocate them properly, and so it can guarantee
consistency.

The examples in this book, however, will put the private members
first, like this:

class X {

 void private_function();

 int internal_representation;

public:

 void {e:

};

Some people even go to the trouble of decorating their own private
names:

class Y {

public:

 void f();

private:

 int mX; // "Self-decorated" name

};

Because mX is already hidden in the scope of Y, the m (for
“member”) is unnecessary. However, in projects with many global
variables (something you should strive to avoid, but which is
sometimes inevitable in existing projects), it is helpful to be able to
distinguish inside a member function definition which data is global
and which is a member.

Modifying Stash to use access control
It makes sense to take the examples from Chapter 4 and modify
them to use classes and access control. Notice how the client
programmer portion of the interface is now clearly distinguished, so

274 Thinking in C++ www.BruceEckel.com

there’s no possibility of client programmers accidentally
manipulating a part of the class that they shouldn’t.

//: C05:Stash.h

// Converted to use access control

#ifndef STASH_H

#define STASH_H

class Stash {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

 void inflate(int increase);

public:

 void initialize(int size);

 void cleanup();

 int add(void* element);

 void* fetch(int index);

 int count();

};

#endif // STASH_H ///:~

The inflate() function has been made private because it is used
only by the add() function and is thus part of the underlying
implementation, not the interface. This means that, sometime later,
you can change the underlying implementation to use a different
system for memory management.

Other than the name of the include file, the header above is the only
thing that’s been changed for this example. The implementation file
and test file are the same.

Modifying Stack to use access control
As a second example, here’s the Stack turned into a class. Now the
nested data structure is private, which is nice because it ensures
that the client programmer will neither have to look at it nor be able
to depend on the internal representation of the Stack:

//: C05:Stack2.h

// Nested structs via linked list

5: Hiding the Implementation 275

#ifndef STACK2_H

#define STACK2_H

class Stack {

 struct Link {

 void* data;

 Link* next;

 void initialize(void* dat, Link* nxt);

 }* head;

public:

 void initialize();

 void push(void* dat);

 void* peek();

 void* pop();

 void cleanup();

};

#endif // STACK2_H ///:~

As before, the implementation doesn’t change and so it is not
repeated here. The test, too, is identical. The only thing that’s been
changed is the robustness of the class interface. The real value of
access control is to prevent you from crossing boundaries during
development. In fact, the compiler is the only thing that knows
about the protection level of class members. There is no access
control information mangled into the member name that carries
through to the linker. All the protection checking is done by the
compiler; it has vanished by runtime.

Notice that the interface presented to the client programmer is now
truly that of a push-down stack. It happens to be implemented as a
linked list, but you can change that without affecting what the client
programmer interacts with, or (more importantly) a single line of
client code.

Handle classes
Access control in C++ allows you to separate interface from
implementation, but the implementation hiding is only partial. The
compiler must still see the declarations for all parts of an object in
order to create and manipulate it properly. You could imagine a
programming language that requires only the public interface of an

276 Thinking in C++ www.BruceEckel.com

object and allows the private implementation to be hidden, but C++
performs type checking statically (at compile time) as much as
possible. This means that you’ll learn as early as possible if there’s
an error. It also means that your program is more efficient.
However, including the private implementation has two effects: the
implementation is visible even if you can’t easily access it, and it can
cause needless recompilation.

Hiding the implementation
Some projects cannot afford to have their implementation visible to
the client programmer. It may show strategic information in a
library header file that the company doesn’t want available to
competitors. You may be working on a system where security is an
issue – an encryption algorithm, for example – and you don’t want
to expose any clues in a header file that might help people to crack
the code. Or you may be putting your library in a “hostile”
environment, where the programmers will directly access the
private components anyway, using pointers and casting. In all these
situations, it’s valuable to have the actual structure compiled inside
an implementation file rather than exposed in a header file.

Reducing recompilation
The project manager in your programming environment will cause
a recompilation of a file if that file is touched (that is, modified) or if
another file it’s dependent upon – that is, an included header file –
is touched. This means that any time you make a change to a class,
whether it’s to the public interface or to the private member
declarations, you’ll force a recompilation of anything that includes
that header file. This is often referred to as the fragile base-class
problem. For a large project in its early stages this can be very
unwieldy because the underlying implementation may change
often; if the project is very big, the time for compiles can prohibit
rapid turnaround.

5: Hiding the Implementation 277

The technique to solve this is sometimes called handle classes or
the “Cheshire cat”2 – everything about the implementation
disappears except for a single pointer, the “smile.” The pointer
refers to a structure whose definition is in the implementation file
along with all the member function definitions. Thus, as long as the
interface is unchanged, the header file is untouched. The
implementation can change at will, and only the implementation
file needs to be recompiled and relinked with the project.

Here’s a simple example demonstrating the technique. The header
file contains only the public interface and a single pointer of an
incompletely specified class:

//: C05:Handle.h

// Handle classes

#ifndef HANDLE_H

#define HANDLE_H

class Handle {

 struct Cheshire; // Class declaration only

 Cheshire* smile;

public:

 void initialize();

 void cleanup();

 int read();

 void change(int);

};

#endif // HANDLE_H ///:~

This is all the client programmer is able to see. The line

struct Cheshire;

is an incomplete type specification or a class declaration (A class
definition includes the body of the class.) It tells the compiler that
Cheshire is a structure name, but it doesn’t give any details about
the struct. This is only enough information to create a pointer to
the struct; you can’t create an object until the structure body has

2 This name is attributed to John Carolan, one of the early pioneers in C++, and of
course, Lewis Carroll. This technique can also be seen as a form of the “bridge” design
pattern, described in Volume 2.

278 Thinking in C++ www.BruceEckel.com

been provided. In this technique, that structure body is hidden
away in the implementation file:

//: C05:Handle.cpp {O}

// Handle implementation

#include "Handle.h"

#include "../require.h"

// Define Handle's implementation:

struct Handle::Cheshire {

 int i;

};

void Handle::initialize() {

 smile = new Cheshire;

 smile->i = 0;

}

void Handle::cleanup() {

 delete smile;

}

int Handle::read() {

 return smile->i;

}

void Handle::change(int x) {

 smile->i = x;

} ///:~

Cheshire is a nested structure, so it must be defined with scope
resolution:

struct Handle::Cheshire {

In Handle::initialize(), storage is allocated for a Cheshire
structure, and in Handle::cleanup() this storage is released. This
storage is used in lieu of all the data elements you’d normally put
into the private section of the class. When you compile
Handle.cpp, this structure definition is hidden away in the object
file where no one can see it. If you change the elements of
Cheshire, the only file that must be recompiled is Handle.cpp
because the header file is untouched.

5: Hiding the Implementation 279

The use of Handle is like the use of any class: include the header,
create objects, and send messages.

//: C05:UseHandle.cpp

//{L} Handle

// Use the Handle class

#include "Handle.h"

int main() {

 Handle u;

 u.initialize();

 u.read();

 u.change(1);

 u.cleanup();

} ///:~

The only thing the client programmer can access is the public
interface, so as long as the implementation is the only thing that
changes, the file above never needs recompilation. Thus, although
this isn’t perfect implementation hiding, it’s a big improvement.

Summary
Access control in C++ gives valuable control to the creator of a
class. The users of the class can clearly see exactly what they can use
and what to ignore. More important, though, is the ability to ensure
that no client programmer becomes dependent on any part of the
underlying implementation of a class. If you know this as the
creator of the class, you can change the underlying implementation
with the knowledge that no client programmer will be affected by
the changes because they can’t access that part of the class.

When you have the ability to change the underlying
implementation, you can not only improve your design at some
later time, but you also have the freedom to make mistakes. No
matter how carefully you plan and design, you’ll make mistakes.
Knowing that it’s relatively safe to make these mistakes means
you’ll be more experimental, you’ll learn faster, and you’ll finish
your project sooner.

280 Thinking in C++ www.BruceEckel.com

The public interface to a class is what the client programmer does
see, so that is the most important part of the class to get “right”
during analysis and design. But even that allows you some leeway
for change. If you don’t get the interface right the first time, you can
add more functions, as long as you don’t remove any that client
programmers have already used in their code.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create a class with public, private, and protected data
members and function members. Create an object of this
class and see what kind of compiler messages you get
when you try to access all the class members.

2. Write a struct called Lib that contains three string
objects a, b, and c. In main() create a Lib object called
x and assign to x.a, x.b, and x.c. Print out the values.
Now replace a, b, and c with an array of string s[3].
Show that your code in main() breaks as a result of the
change. Now create a class called Libc, with private
string objects a, b, and c, and member functions
seta(), geta(), setb(), getb(), setc(), and getc() to
set and get the values. Write main() as before. Now
change the private string objects a, b, and c to a
private array of string s[3]. Show that the code in
main() does not break as a result of the change.

3. Create a class and a global friend function that
manipulates the private data in the class.

4. Write two classes, each of which has a member function
that takes a pointer to an object of the other class. Create
instances of both objects in main() and call the
aforementioned member function in each class.

5. Create three classes. The first class contains private
data, and grants friendship to the entire second class and
to a member function of the third class. In main(),
demonstrate that all of these work correctly.

5: Hiding the Implementation 281

6. Create a Hen class. Inside this, nest a Nest class. Inside
Nest, place an Egg class. Each class should have a
display() member function. In main(), create an
instance of each class and call the display() function for
each one.

7. Modify Exercise 6 so that Nest and Egg each contain
private data. Grant friendship to allow the enclosing
classes access to this private data.

8. Create a class with data members distributed among
numerous public, private, and protected sections.
Add a member function showMap() that prints the
names of each of these data members and their
addresses. If possible, compile and run this program on
more than one compiler and/or computer and/or
operating system to see if there are layout differences in
the object.

9. Copy the implementation and test files for Stash in
Chapter 4 so that you can compile and test Stash.h in
this chapter.

10. Place objects of the Hen class from Exercise 6 in a
Stash. Fetch them out and print them (if you have not
already done so, you will need to add Hen::print()).

11. Copy the implementation and test files for Stack in
Chapter 4 so that you can compile and test Stack2.h in
this chapter.

12. Place objects of the Hen class from Exercise 6 in a
Stack. Fetch them out and print them (if you have not
already done so, you will need to add Hen::print()).

13. Modify Cheshire in Handle.cpp, and verify that your
project manager recompiles and relinks only this file, but
doesn’t recompile UseHandle.cpp.

14. Create a StackOfInt class (a stack that holds ints) using
the “Cheshire cat” technique that hides the low-level data
structure you use to store the elements in a class called
StackImp. Implement two versions of StackImp: one
that uses a fixed-length array of int, and one that uses a
vector<int>. Have a preset maximum size for the stack
so you don’t have to worry about expanding the array in

282 Thinking in C++ www.BruceEckel.com

the first version. Note that the StackOfInt.h class
doesn’t have to change with StackImp.

 283

6: Initialization

& Cleanup
Chapter 4 made a significant improvement in library

use by taking all the scattered components of a typical

C library and encapsulating them into a structure (an

abstract data type, called a class from now on).

284 Thinking in C++ www.BruceEckel.com

This not only provides a single unified point of entry into a library
component, but it also hides the names of the functions within the
class name. In Chapter 5, access control (implementation hiding)
was introduced. This gives the class designer a way to establish
clear boundaries for determining what the client programmer is
allowed to manipulate and what is off limits. It means the internal
mechanisms of a data type’s operation are under the control and
discretion of the class designer, and it’s clear to client programmers
what members they can and should pay attention to.

Together, encapsulation and access control make a significant step
in improving the ease of library use. The concept of “new data type”
they provide is better in some ways than the existing built-in data
types from C. The C++ compiler can now provide type-checking
guarantees for that data type and thus ensure a level of safety when
that data type is being used.

When it comes to safety, however, there’s a lot more the compiler
can do for us than C provides. In this and future chapters, you’ll see
additional features that have been engineered into C++ that make
the bugs in your program almost leap out and grab you, sometimes
before you even compile the program, but usually in the form of
compiler warnings and errors. For this reason, you will soon get
used to the unlikely-sounding scenario that a C++ program that
compiles often runs right the first time.

Two of these safety issues are initialization and cleanup. A large
segment of C bugs occur when the programmer forgets to initialize
or clean up a variable. This is especially true with C libraries, when
client programmers don’t know how to initialize a struct, or even
that they must. (Libraries often do not include an initialization
function, so the client programmer is forced to initialize the struct
by hand.) Cleanup is a special problem because C programmers are
comfortable with forgetting about variables once they are finished,
so any cleaning up that may be necessary for a library’s struct is
often missed.

In C++, the concept of initialization and cleanup is essential for
easy library use and to eliminate the many subtle bugs that occur
when the client programmer forgets to perform these activities.

6: Initialization & Cleanup 285

This chapter examines the features in C++ that help guarantee
proper initialization and cleanup.

Guaranteed initialization with the

constructor
Both the Stash and Stack classes defined previously have a
function called initialize(), which hints by its name that it should
be called before using the object in any other way. Unfortunately,
this means the client programmer must ensure proper
initialization. Client programmers are prone to miss details like
initialization in their headlong rush to make your amazing library
solve their problem. In C++, initialization is too important to leave
to the client programmer. The class designer can guarantee
initialization of every object by providing a special function called
the constructor. If a class has a constructor, the compiler
automatically calls that constructor at the point an object is created,
before client programmers can get their hands on the object. The
constructor call isn’t even an option for the client programmer; it is
performed by the compiler at the point the object is defined.

The next challenge is what to name this function. There are two
issues. The first is that any name you use is something that can
potentially clash with a name you might like to use as a member in
the class. The second is that because the compiler is responsible for
calling the constructor, it must always know which function to call.
The solution Stroustrup chose seems the easiest and most logical:
the name of the constructor is the same as the name of the class. It
makes sense that such a function will be called automatically on
initialization.

Here’s a simple class with a constructor:

class X {

 int i;

public:

 X(); // Constructor

};

286 Thinking in C++ www.BruceEckel.com

Now, when an object is defined,

void f() {

 X a;

 // ...

}

the same thing happens as if a were an int: storage is allocated for
the object. But when the program reaches the sequence point (point
of execution) where a is defined, the constructor is called
automatically. That is, the compiler quietly inserts the call to
X::X() for the object a at the point of definition. Like any member
function, the first (secret) argument to the constructor is the this
pointer – the address of the object for which it is being called. In the
case of the constructor, however, this is pointing to an un-
initialized block of memory, and it’s the job of the constructor to
initialize this memory properly.

Like any function, the constructor can have arguments to allow you
to specify how an object is created, give it initialization values, and
so on. Constructor arguments provide you with a way to guarantee
that all parts of your object are initialized to appropriate values. For
example, if a class Tree has a constructor that takes a single integer
argument denoting the height of the tree, then you must create a
tree object like this:

Tree t(12); // 12-foot tree

If Tree(int) is your only constructor, the compiler won’t let you
create an object any other way. (We’ll look at multiple constructors
and different ways to call constructors in the next chapter.)

That’s really all there is to a constructor; it’s a specially named
function that is called automatically by the compiler for every object
at the point of that object’s creation. Despite it’s simplicity, it is
exceptionally valuable because it eliminates a large class of
problems and makes the code easier to write and read. In the
preceding code fragment, for example, you don’t see an explicit
function call to some initialize() function that is conceptually
separate from definition. In C++, definition and initialization are
unified concepts – you can’t have one without the other.

6: Initialization & Cleanup 287

Both the constructor and destructor are very unusual types of
functions: they have no return value. This is distinctly different
from a void return value, in which the function returns nothing but
you still have the option to make it something else. Constructors
and destructors return nothing and you don’t have an option. The
acts of bringing an object into and out of the program are special,
like birth and death, and the compiler always makes the function
calls itself, to make sure they happen. If there were a return value,
and if you could select your own, the compiler would somehow have
to know what to do with the return value, or the client programmer
would have to explicitly call constructors and destructors, which
would eliminate their safety.

Guaranteed cleanup with the

destructor
As a C programmer, you often think about the importance of
initialization, but it’s rarer to think about cleanup. After all, what do
you need to do to clean up an int? Just forget about it. However,
with libraries, just “letting go” of an object once you’re done with it
is not so safe. What if it modifies some piece of hardware, or puts
something on the screen, or allocates storage on the heap? If you
just forget about it, your object never achieves closure upon its exit
from this world. In C++, cleanup is as important as initialization
and is therefore guaranteed with the destructor.

The syntax for the destructor is similar to that for the constructor:
the class name is used for the name of the function. However, the
destructor is distinguished from the constructor by a leading tilde
(~). In addition, the destructor never has any arguments because
destruction never needs any options. Here’s the declaration for a
destructor:

class Y {

public:

 ~Y();

};

288 Thinking in C++ www.BruceEckel.com

The destructor is called automatically by the compiler when the
object goes out of scope. You can see where the constructor gets
called by the point of definition of the object, but the only evidence
for a destructor call is the closing brace of the scope that surrounds
the object. Yet the destructor is still called, even when you use goto
to jump out of a scope. (goto still exists in C++ for backward
compatibility with C and for the times when it comes in handy.) You
should note that a nonlocal goto, implemented by the Standard C
library functions setjmp() and longjmp(), doesn’t cause
destructors to be called. (This is the specification, even if your
compiler doesn’t implement it that way. Relying on a feature that
isn’t in the specification means your code is nonportable.)

Here’s an example demonstrating the features of constructors and
destructors you’ve seen so far:

//: C06:Constructor1.cpp

// Constructors & destructors

#include <iostream>

using namespace std;

class Tree {

 int height;

public:

 Tree(int initialHeight); // Constructor

 ~Tree(); // Destructor

 void grow(int years);

 void printsize();

};

Tree::Tree(int initialHeight) {

 height = initialHeight;

}

Tree::~Tree() {

 cout << "inside Tree destructor" << endl;

 printsize();

}

void Tree::grow(int years) {

 height += years;

}

6: Initialization & Cleanup 289

void Tree::printsize() {

 cout << "Tree height is " << height << endl;

}

int main() {

 cout << "before opening brace" << endl;

 {

 Tree t(12);

 cout << "after Tree creation" << endl;

 t.printsize();

 t.grow(4);

 cout << "before closing brace" << endl;

 }

 cout << "after closing brace" << endl;

} ///:~

Here’s the output of the above program:

before opening brace

after Tree creation

Tree height is 12

before closing brace

inside Tree destructor

Tree height is 16

after closing brace

You can see that the destructor is automatically called at the closing
brace of the scope that encloses it.

Elimination of the definition block
In C, you must always define all the variables at the beginning of a
block, after the opening brace. This is not an uncommon
requirement in programming languages, and the reason given has
often been that it’s “good programming style.” On this point, I have
my suspicions. It has always seemed inconvenient to me, as a
programmer, to pop back to the beginning of a block every time I
need a new variable. I also find code more readable when the
variable definition is close to its point of use.

Perhaps these arguments are stylistic. In C++, however, there’s a
significant problem in being forced to define all objects at the

290 Thinking in C++ www.BruceEckel.com

beginning of a scope. If a constructor exists, it must be called when
the object is created. However, if the constructor takes one or more
initialization arguments, how do you know you will have that
initialization information at the beginning of a scope? In the
general programming situation, you won’t. Because C has no
concept of private, this separation of definition and initialization is
no problem. However, C++ guarantees that when an object is
created, it is simultaneously initialized. This ensures that you will
have no uninitialized objects running around in your system. C
doesn’t care; in fact, C encourages this practice by requiring you to
define variables at the beginning of a block before you necessarily
have the initialization information1.

In general, C++ will not allow you to create an object before you
have the initialization information for the constructor. Because of
this, the language wouldn’t be feasible if you had to define variables
at the beginning of a scope. In fact, the style of the language seems
to encourage the definition of an object as close to its point of use as
possible. In C++, any rule that applies to an “object” automatically
refers to an object of a built-in type as well. This means that any
class object or variable of a built-in type can also be defined at any
point in a scope. It also means that you can wait until you have the
information for a variable before defining it, so you can always
define and initialize at the same time:

//: C06:DefineInitialize.cpp

// Defining variables anywhere

#include "../require.h"

#include <iostream>

#include <string>

using namespace std;

class G {

 int i;

public:

 G(int ii);

};

1 C99, The updated version of Standard C, allows variables to be defined at any point
in a scope, like C++.

6: Initialization & Cleanup 291

G::G(int ii) { i = ii; }

int main() {

 cout << "initialization value? ";

 int retval = 0;

 cin >> retval;

 require(retval != 0);

 int y = retval + 3;

 G g(y);

} ///:~

You can see that some code is executed, then retval is defined,
initialized, and used to capture user input, and then y and g are
defined. C, on the other hand, does not allow a variable to be
defined anywhere except at the beginning of the scope.

In general, you should define variables as close to their point of use
as possible, and always initialize them when they are defined. (This
is a stylistic suggestion for built-in types, where initialization is
optional.) This is a safety issue. By reducing the duration of the
variable’s availability within the scope, you are reducing the chance
it will be misused in some other part of the scope. In addition,
readability is improved because the reader doesn’t have to jump
back and forth to the beginning of the scope to know the type of a
variable.

for loops
In C++, you will often see a for loop counter defined right inside
the for expression:

for(int j = 0; j < 100; j++) {

 cout << "j = " << j << endl;

}

for(int i = 0; i < 100; i++)

 cout << "i = " << i << endl;

The statements above are important special cases, which cause
confusion to new C++ programmers.

292 Thinking in C++ www.BruceEckel.com

The variables i and j are defined directly inside the for expression
(which you cannot do in C). They are then available for use in the
for loop. It’s a very convenient syntax because the context removes
all question about the purpose of i and j, so you don’t need to use
such ungainly names as i_loop_counter for clarity.

However, some confusion may result if you expect the lifetimes of
the variables i and j to extend beyond the scope of the for loop –
they do not2.

Chapter 3 points out that while and switch statements also allow
the definition of objects in their control expressions, although this
usage seems far less important than with the for loop.

Watch out for local variables that hide variables from the enclosing
scope. In general, using the same name for a nested variable and a
variable that is global to that scope is confusing and error prone3.

I find small scopes an indicator of good design. If you have several
pages for a single function, perhaps you’re trying to do too much
with that function. More granular functions are not only more
useful, but it’s also easier to find bugs.

Storage allocation
A variable can now be defined at any point in a scope, so it might
seem that the storage for a variable may not be defined until its
point of definition. It’s actually more likely that the compiler will
follow the practice in C of allocating all the storage for a scope at the
opening brace of that scope. It doesn’t matter because, as a
programmer, you can’t access the storage (a.k.a. the object) until it
has been defined4. Although the storage is allocated at the
beginning of the block, the constructor call doesn’t happen until the

2 An earlier iteration of the C++ draft standard said the variable lifetime extended to
the end of the scope that enclosed the for loop. Some compilers still implement that,
but it is not correct so your code will only be portable if you limit the scope to the for
loop.
3 The Java language considers this such a bad idea that it flags such code as an error.
4 OK, you probably could by fooling around with pointers, but you’d be very, very bad.

6: Initialization & Cleanup 293

sequence point where the object is defined because the identifier
isn’t available until then. The compiler even checks to make sure
that you don’t put the object definition (and thus the constructor
call) where the sequence point only conditionally passes through it,
such as in a switch statement or somewhere a goto can jump past
it. Uncommenting the statements in the following code will
generate a warning or an error:

//: C06:Nojump.cpp

// Can't jump past constructors

class X {

public:

 X();

};

X::X() {}

void f(int i) {

 if(i < 10) {

 //! goto jump1; // Error: goto bypasses init

 }

 X x1; // Constructor called here

 jump1:

 switch(i) {

 case 1 :

 X x2; // Constructor called here

 break;

 //! case 2 : // Error: case bypasses init

 X x3; // Constructor called here

 break;

 }

}

int main() {

 f(9);

 f(11);

}///:~

In the code above, both the goto and the switch can potentially
jump past the sequence point where a constructor is called. That
object will then be in scope even if the constructor hasn’t been
called, so the compiler gives an error message. This once again

294 Thinking in C++ www.BruceEckel.com

guarantees that an object cannot be created unless it is also
initialized.

All the storage allocation discussed here happens, of course, on the
stack. The storage is allocated by the compiler by moving the stack
pointer “down” (a relative term, which may indicate an increase or
decrease of the actual stack pointer value, depending on your
machine). Objects can also be allocated on the heap using new,
which is something we’ll explore further in Chapter 13.

Stash with constructors and

destructors
The examples from previous chapters have obvious functions that
map to constructors and destructors: initialize() and cleanup().
Here’s the Stash header using constructors and destructors:

//: C06:Stash2.h

// With constructors & destructors

#ifndef STASH2_H

#define STASH2_H

class Stash {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

 void inflate(int increase);

public:

 Stash(int size);

 ~Stash();

 int add(void* element);

 void* fetch(int index);

 int count();

};

#endif // STASH2_H ///:~

The only member function definitions that are changed are
initialize() and cleanup(), which have been replaced with a
constructor and destructor:

6: Initialization & Cleanup 295

//: C06:Stash2.cpp {O}

// Constructors & destructors

#include "Stash2.h"

#include "../require.h"

#include <iostream>

#include <cassert>

using namespace std;

const int increment = 100;

Stash::Stash(int sz) {

 size = sz;

 quantity = 0;

 storage = 0;

 next = 0;

}

int Stash::add(void* element) {

 if(next >= quantity) // Enough space left?

 inflate(increment);

 // Copy element into storage,

 // starting at next empty space:

 int startBytes = next * size;

 unsigned char* e = (unsigned char*)element;

 for(int i = 0; i < size; i++)

 storage[startBytes + i] = e[i];

 next++;

 return(next - 1); // Index number

}

void* Stash::fetch(int index) {

 require(0 <= index, "Stash::fetch (-)index");

 if(index >= next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return &(storage[index * size]);

}

int Stash::count() {

 return next; // Number of elements in CStash

}

void Stash::inflate(int increase) {

 require(increase > 0,

 "Stash::inflate zero or negative increase");

 int newQuantity = quantity + increase;

296 Thinking in C++ www.BruceEckel.com

 int newBytes = newQuantity * size;

 int oldBytes = quantity * size;

 unsigned char* b = new unsigned char[newBytes];

 for(int i = 0; i < oldBytes; i++)

 b[i] = storage[i]; // Copy old to new

 delete [](storage); // Old storage

 storage = b; // Point to new memory

 quantity = newQuantity;

}

Stash::~Stash() {

 if(storage != 0) {

 cout << "freeing storage" << endl;

 delete []storage;

 }

} ///:~

You can see that the require.h functions are being used to watch
for programmer errors, instead of assert(). The output of a failed
assert() is not as useful as that of the require.h functions (which
will be shown later in the book).

Because inflate() is private, the only way a require() could fail is
if one of the other member functions accidentally passed an
incorrect value to inflate(). If you are certain this can’t happen,
you could consider removing the require(), but you might keep in
mind that until the class is stable, there’s always the possibility that
new code might be added to the class that could cause errors. The
cost of the require() is low (and could be automatically removed
using the preprocessor) and the value of code robustness is high.

Notice in the following test program how the definitions for Stash
objects appear right before they are needed, and how the
initialization appears as part of the definition, in the constructor
argument list:

//: C06:Stash2Test.cpp

//{L} Stash2

// Constructors & destructors

#include "Stash2.h"

#include "../require.h"

#include <fstream>

#include <iostream>

6: Initialization & Cleanup 297

#include <string>

using namespace std;

int main() {

 Stash intStash(sizeof(int));

 for(int i = 0; i < 100; i++)

 intStash.add(&i);

 for(int j = 0; j < intStash.count(); j++)

 cout << "intStash.fetch(" << j << ") = "

 << *(int*)intStash.fetch(j)

 << endl;

 const int bufsize = 80;

 Stash stringStash(sizeof(char) * bufsize);

 ifstream in("Stash2Test.cpp");

 assure(in, " Stash2Test.cpp");

 string line;

 while(getline(in, line))

 stringStash.add((char*)line.c_str());

 int k = 0;

 char* cp;

 while((cp = (char*)stringStash.fetch(k++))!=0)

 cout << "stringStash.fetch(" << k << ") = "

 << cp << endl;

} ///:~

Also notice how the cleanup() calls have been eliminated, but the
destructors are still automatically called when intStash and
stringStash go out of scope.

One thing to be aware of in the Stash examples: I’m being very
careful to use only built-in types; that is, those without destructors.
If you were to try to copy class objects into the Stash, you’d run
into all kinds of problems and it wouldn’t work right. The Standard
C++ Library can actually make correct copies of objects into its
containers, but this is a rather messy and complicated process. In
the following Stack example, you’ll see that pointers are used to
sidestep this issue, and in a later chapter the Stash will be
converted so that it uses pointers.

298 Thinking in C++ www.BruceEckel.com

Stack with constructors &

destructors
Reimplementing the linked list (inside Stack) with constructors
and destructors shows how neatly constructors and destructors
work with new and delete. Here’s the modified header file:

//: C06:Stack3.h

// With constructors/destructors

#ifndef STACK3_H

#define STACK3_H

class Stack {

 struct Link {

 void* data;

 Link* next;

 Link(void* dat, Link* nxt);

 ~Link();

 }* head;

public:

 Stack();

 ~Stack();

 void push(void* dat);

 void* peek();

 void* pop();

};

#endif // STACK3_H ///:~

Not only does Stack have a constructor and destructor, but so does
the nested class Link:

//: C06:Stack3.cpp {O}

// Constructors/destructors

#include "Stack3.h"

#include "../require.h"

using namespace std;

Stack::Link::Link(void* dat, Link* nxt) {

 data = dat;

 next = nxt;

}

Stack::Link::~Link() { }

6: Initialization & Cleanup 299

Stack::Stack() { head = 0; }

void Stack::push(void* dat) {

 head = new Link(dat,head);

}

void* Stack::peek() {

 require(head != 0, "Stack empty");

 return head->data;

}

void* Stack::pop() {

 if(head == 0) return 0;

 void* result = head->data;

 Link* oldHead = head;

 head = head->next;

 delete oldHead;

 return result;

}

Stack::~Stack() {

 require(head == 0, "Stack not empty");

} ///:~

The Link::Link() constructor simply initializes the data and
next pointers, so in Stack::push() the line

head = new Link(dat,head);

not only allocates a new link (using dynamic object creation with
the keyword new, introduced in Chapter 4), but it also neatly
initializes the pointers for that link.

You may wonder why the destructor for Link doesn’t do anything –
in particular, why doesn’t it delete the data pointer? There are two
problems. In Chapter 4, where the Stack was introduced, it was
pointed out that you cannot properly delete a void pointer if it
points to an object (an assertion that will be proven in Chapter 13).
But in addition, if the Link destructor deleted the data pointer,
pop() would end up returning a pointer to a deleted object, which
would definitely be a bug. This is sometimes referred to as the issue
of ownership: the Link and thus the Stack only holds the pointers,

300 Thinking in C++ www.BruceEckel.com

but is not responsible for cleaning them up. This means that you
must be very careful that you know who is responsible. For
example, if you don’t pop() and delete all the pointers on the
Stack, they won’t get cleaned up automatically by the Stack’s
destructor. This can be a sticky issue and leads to memory leaks, so
knowing who is responsible for cleaning up an object can make the
difference between a successful program and a buggy one – that’s
why Stack::~Stack() prints an error message if the Stack object
isn’t empty upon destruction.

Because the allocation and cleanup of the Link objects are hidden
within Stack – it’s part of the underlying implementation – you
don’t see it happening in the test program, although you are
responsible for deleting the pointers that come back from pop():

//: C06:Stack3Test.cpp

//{L} Stack3

//{T} Stack3Test.cpp

// Constructors/destructors

#include "Stack3.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1); // File name is argument

 ifstream in(argv[1]);

 assure(in, argv[1]);

 Stack textlines;

 string line;

 // Read file and store lines in the stack:

 while(getline(in, line))

 textlines.push(new string(line));

 // Pop the lines from the stack and print them:

 string* s;

 while((s = (string*)textlines.pop()) != 0) {

 cout << *s << endl;

 delete s;

 }

} ///:~

6: Initialization & Cleanup 301

In this case, all the lines in textlines are popped and deleted, but if
they weren’t, you’d get a require() message that would mean
there was a memory leak.

Aggregate initialization
An aggregate is just what it sounds like: a bunch of things clumped
together. This definition includes aggregates of mixed types, like
structs and classes. An array is an aggregate of a single type.

Initializing aggregates can be error-prone and tedious. C++
aggregate initialization makes it much safer. When you create an
object that’s an aggregate, all you must do is make an assignment,
and the initialization will be taken care of by the compiler. This
assignment comes in several flavors, depending on the type of
aggregate you’re dealing with, but in all cases the elements in the
assignment must be surrounded by curly braces. For an array of
built-in types this is quite simple:

int a[5] = { 1, 2, 3, 4, 5 };

If you try to give more initializers than there are array elements, the
compiler gives an error message. But what happens if you give
fewer initializers? For example:

int b[6] = {0};

Here, the compiler will use the first initializer for the first array
element, and then use zero for all the elements without initializers.
Notice this initialization behavior doesn’t occur if you define an
array without a list of initializers. So the expression above is a
succinct way to initialize an array to zero, without using a for loop,
and without any possibility of an off-by-one error (Depending on
the compiler, it may also be more efficient than the for loop.)

A second shorthand for arrays is automatic counting, in which you
let the compiler determine the size of the array based on the
number of initializers:

int c[] = { 1, 2, 3, 4 };

302 Thinking in C++ www.BruceEckel.com

Now if you decide to add another element to the array, you simply
add another initializer. If you can set your code up so it needs to be
changed in only one spot, you reduce the chance of errors during
modification. But how do you determine the size of the array? The
expression sizeof c / sizeof *c (size of the entire array divided by
the size of the first element) does the trick in a way that doesn’t
need to be changed if the array size changes5:

for(int i = 0; i < sizeof c / sizeof *c; i++)

 c[i]++;

Because structures are also aggregates, they can be initialized in a
similar fashion. Because a C-style struct has all of its members
public, they can be assigned directly:

struct X {

 int i;

 float f;

 char c;

};

X x1 = { 1, 2.2, 'c' };

If you have an array of such objects, you can initialize them by using
a nested set of curly braces for each object:

X x2[3] = { {1, 1.1, 'a'}, {2, 2.2, 'b'} };

Here, the third object is initialized to zero.

If any of the data members are private (which is typically the case
for a well-designed class in C++), or even if everything’s public but
there’s a constructor, things are different. In the examples above,
the initializers are assigned directly to the elements of the
aggregate, but constructors are a way of forcing initialization to
occur through a formal interface. Here, the constructors must be
called to perform the initialization. So if you have a struct that
looks like this,

5 In Volume 2 of this book (freely available at www.BruceEckel.com), you’ll see a
more succinct calculation of an array size using templates.

6: Initialization & Cleanup 303

struct Y {

 float f;

 int i;

 Y(int a);

};

You must indicate constructor calls. The best approach is the
explicit one as follows:

Y y1[] = { Y(1), Y(2), Y(3) };

You get three objects and three constructor calls. Any time you have
a constructor, whether it’s a struct with all members public or a
class with private data members, all the initialization must go
through the constructor, even if you’re using aggregate
initialization.

Here’s a second example showing multiple constructor arguments:

//: C06:Multiarg.cpp

// Multiple constructor arguments

// with aggregate initialization

#include <iostream>

using namespace std;

class Z {

 int i, j;

public:

 Z(int ii, int jj);

 void print();

};

Z::Z(int ii, int jj) {

 i = ii;

 j = jj;

}

void Z::print() {

 cout << "i = " << i << ", j = " << j << endl;

}

int main() {

 Z zz[] = { Z(1,2), Z(3,4), Z(5,6), Z(7,8) };

 for(int i = 0; i < sizeof zz / sizeof *zz; i++)

304 Thinking in C++ www.BruceEckel.com

 zz[i].print();

} ///:~

Notice that it looks like an explicit constructor is called for each
object in the array.

Default constructors
A default constructor is one that can be called with no arguments. A
default constructor is used to create a “vanilla object,” but it’s also
important when the compiler is told to create an object but isn’t
given any details. For example, if you take the struct Y defined
previously and use it in a definition like this,

Y y2[2] = { Y(1) };

the compiler will complain that it cannot find a default constructor.
The second object in the array wants to be created with no
arguments, and that’s where the compiler looks for a default
constructor. In fact, if you simply define an array of Y objects,

Y y3[7];

the compiler will complain because it must have a default
constructor to initialize every object in the array.

The same problem occurs if you create an individual object like this:

Y y4;

Remember, if you have a constructor, the compiler ensures that
construction always happens, regardless of the situation.

The default constructor is so important that if (and only if) there are
no constructors for a structure (struct or class), the compiler will
automatically create one for you. So this works:

//: C06:AutoDefaultConstructor.cpp

// Automatically-generated default constructor

class V {

 int i; // private

6: Initialization & Cleanup 305

}; // No constructor

int main() {

 V v, v2[10];

} ///:~

If any constructors are defined, however, and there’s no default
constructor, the instances of V above will generate compile-time
errors.

You might think that the compiler-synthesized constructor should
do some intelligent initialization, like setting all the memory for the
object to zero. But it doesn’t – that would add extra overhead but be
out of the programmer’s control. If you want the memory to be
initialized to zero, you must do it yourself by writing the default
constructor explicitly.

Although the compiler will create a default constructor for you, the
behavior of the compiler-synthesized constructor is rarely what you
want. You should treat this feature as a safety net, but use it
sparingly. In general, you should define your constructors explicitly
and not allow the compiler to do it for you.

Summary
The seemingly elaborate mechanisms provided by C++ should give
you a strong hint about the critical importance placed on
initialization and cleanup in the language. As Stroustrup was
designing C++, one of the first observations he made about
productivity in C was that a significant portion of programming
problems are caused by improper initialization of variables. These
kinds of bugs are hard to find, and similar issues apply to improper
cleanup. Because constructors and destructors allow you to
guarantee proper initialization and cleanup (the compiler will not
allow an object to be created and destroyed without the proper
constructor and destructor calls), you get complete control and
safety.

306 Thinking in C++ www.BruceEckel.com

Aggregate initialization is included in a similar vein – it prevents
you from making typical initialization mistakes with aggregates of
built-in types and makes your code more succinct.

Safety during coding is a big issue in C++. Initialization and
cleanup are an important part of this, but you’ll also see other safety
issues as the book progresses.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Write a simple class called Simple with a constructor
that prints something to tell you that it’s been called. In
main() make an object of your class.

2. Add a destructor to Exercise 1 that prints out a message
to tell you that it’s been called.

3. Modify Exercise 2 so that the class contains an int
member. Modify the constructor so that it takes an int
argument that it stores in the class member. Both the
constructor and destructor should print out the int value
as part of their message, so you can see the objects as
they are created and destroyed.

4. Demonstrate that destructors are still called even when
goto is used to jump out of a loop.

5. Write two for loops that print out values from zero to 10.
In the first, define the loop counter before the for loop,
and in the second, define the loop counter in the control
expression of the for loop. For the second part of this
exercise, modify the identifier in the second for loop so
that it as the same name as the loop counter for the first
and see what your compiler does.

6. Modify the Handle.h, Handle.cpp, and
UseHandle.cpp files at the end of Chapter 5 to use
constructors and destructors.

7. Use aggregate initialization to create an array of double
in which you specify the size of the array but do not
provide enough elements. Print out this array using

6: Initialization & Cleanup 307

sizeof to determine the size of the array. Now create an
array of double using aggregate initialization and
automatic counting. Print out the array.

8. Use aggregate initialization to create an array of string
objects. Create a Stack to hold these strings and step
through your array, pushing each string on your Stack.
Finally, pop the strings off your Stack and print each
one.

9. Demonstrate automatic counting and aggregate
initialization with an array of objects of the class you
created in Exercise 3. Add a member function to that
class that prints a message. Calculate the size of the array
and move through it, calling your new member function.

10. Create a class without any constructors, and show that
you can create objects with the default constructor. Now
create a nondefault constructor (one with an argument)
for the class, and try compiling again. Explain what
happened.

 309

7: Function Overloading &

Default Arguments
One of the important features in any programming

language is the convenient use of names.

310 Thinking in C++ www.BruceEckel.com

When you create an object (a variable), you give a name to a region
of storage. A function is a name for an action. By making up names
to describe the system at hand, you create a program that is easier
for people to understand and change. It’s a lot like writing prose –
the goal is to communicate with your readers.

A problem arises when mapping the concept of nuance in human
language onto a programming language. Often, the same word
expresses a number of different meanings, depending on context.
That is, a single word has multiple meanings – it’s overloaded. This
is very useful, especially when it comes to trivial differences. You
say “wash the shirt, wash the car.” It would be silly to be forced to
say, “shirt_wash the shirt, car_wash the car” just so the listener
doesn’t have to make any distinction about the action performed.
Human languages have built-in redundancy, so even if you miss a
few words, you can still determine the meaning. We don’t need
unique identifiers – we can deduce meaning from context.

Most programming languages, however, require that you have a
unique identifier for each function. If you have three different types
of data that you want to print: int, char, and float, you generally
have to create three different function names, for example,
print_int(), print_char(), and print_float(). This loads extra
work on you as you write the program, and on readers as they try to
understand it.

In C++, another factor forces the overloading of function names:
the constructor. Because the constructor’s name is predetermined
by the name of the class, it would seem that there can be only one
constructor. But what if you want to create an object in more than
one way? For example, suppose you build a class that can initialize
itself in a standard way and also by reading information from a file.
You need two constructors, one that takes no arguments (the
default constructor) and one that takes a string as an argument,
which is the name of the file to initialize the object. Both are
constructors, so they must have the same name: the name of the
class. Thus, function overloading is essential to allow the same
function name – the constructor in this case – to be used with
different argument types.

7: Function Overloading & Default Arguments 311

Although function overloading is a must for constructors, it’s a
general convenience and can be used with any function, not just
class member functions. In addition, function overloading means
that if you have two libraries that contain functions of the same
name, they won’t conflict as long as the argument lists are different.
We’ll look at all these factors in detail throughout this chapter.

The theme of this chapter is convenient use of function names.
Function overloading allows you to use the same name for different
functions, but there’s a second way to make calling a function more
convenient. What if you’d like to call the same function in different
ways? When functions have long argument lists, it can become
tedious to write (and confusing to read) the function calls when
most of the arguments are the same for all the calls. A commonly
used feature in C++ is called default arguments. A default
argument is one the compiler inserts if it isn’t specified in the
function call. Thus, the calls f(“hello”), f(“hi”, 1), and
f(“howdy”, 2, ‘c’) can all be calls to the same function. They could
also be calls to three overloaded functions, but when the argument
lists are this similar, you’ll usually want similar behavior, which
calls for a single function.

Function overloading and default arguments really aren’t very
complicated. By the time you reach the end of this chapter, you’ll
understand when to use them and the underlying mechanisms that
implement them during compiling and linking.

More name decoration
In Chapter 4, the concept of name decoration was introduced. In
the code

void f();

class X { void f(); };

the function f() inside the scope of class X does not clash with the
global version of f(). The compiler performs this scoping by
manufacturing different internal names for the global version of f()
and X::f(). In Chapter 4, it was suggested that the names are
simply the class name “decorated” together with the function name,

312 Thinking in C++ www.BruceEckel.com

so the internal names the compiler uses might be _f and _X_f.
However, it turns out that function name decoration involves more
than the class name.

Here’s why. Suppose you want to overload two function names

void print(char);

void print(float);

It doesn’t matter whether they are both inside a class or at the
global scope. The compiler can’t generate unique internal identifiers
if it uses only the scope of the function names. You’d end up with
_print in both cases. The idea of an overloaded function is that you
use the same function name, but different argument lists. Thus, for
overloading to work the compiler must decorate the function name
with the names of the argument types. The functions above, defined
at global scope, produce internal names that might look something
like _print_char and _print_float. It’s worth noting there is no
standard for the way names must be decorated by the compiler, so
you will see very different results from one compiler to another.
(You can see what it looks like by telling the compiler to generate
assembly-language output.) This, of course, causes problems if you
want to buy compiled libraries for a particular compiler and linker
– but even if name decoration were standardized, there would be
other roadblocks because of the way different compilers generate
code.

That’s really all there is to function overloading: you can use the
same function name for different functions as long as the argument
lists are different. The compiler decorates the name, the scope, and
the argument lists to produce internal names for it and the linker to
use.

Overloading on return values
It’s common to wonder, “Why just scopes and argument lists? Why
not return values?” It seems at first that it would make sense to also
decorate the return value with the internal function name. Then you
could overload on return values, as well:

void f();

7: Function Overloading & Default Arguments 313

int f();

This works fine when the compiler can unequivocally determine the
meaning from the context, as in int x = f();. However, in C you’ve
always been able to call a function and ignore the return value (that
is, you can call the function for its side effects). How can the
compiler distinguish which call is meant in this case? Possibly
worse is the difficulty the reader has in knowing which function call
is meant. Overloading solely on return value is a bit too subtle, and
thus isn’t allowed in C++.

Type-safe linkage
There is an added benefit to all of this name decoration. A
particularly sticky problem in C occurs when the client programmer
misdeclares a function, or, worse, a function is called without
declaring it first, and the compiler infers the function declaration
from the way it is called. Sometimes this function declaration is
correct, but when it isn’t, it can be a difficult bug to find.

Because all functions must be declared before they are used in C++,
the opportunity for this problem to pop up is greatly diminished.
The C++ compiler refuses to declare a function automatically for
you, so it’s likely that you will include the appropriate header file.
However, if for some reason you still manage to misdeclare a
function, either by declaring by hand or including the wrong header
file (perhaps one that is out of date), the name decoration provides
a safety net that is often referred to as type-safe linkage.

Consider the following scenario. In one file is the definition for a
function:

//: C07:Def.cpp {O}

// Function definition

void f(int) {}

///:~

In the second file, the function is misdeclared and then called:

//: C07:Use.cpp

//{L} Def

314 Thinking in C++ www.BruceEckel.com

// Function misdeclaration

void f(char);

int main() {

//! f(1); // Causes a linker error

} ///:~

Even though you can see that the function is actually f(int), the
compiler doesn’t know this because it was told – through an explicit
declaration – that the function is f(char). Thus, the compilation is
successful. In C, the linker would also be successful, but not in C++.
Because the compiler decorates the names, the definition becomes
something like f_int, whereas the use of the function is f_char.
When the linker tries to resolve the reference to f_char, it can only
find f_int, and it gives you an error message. This is type-safe
linkage. Although the problem doesn’t occur all that often, when it
does it can be incredibly difficult to find, especially in a large
project. This is one of the cases where you can easily find a difficult
error in a C program simply by running it through the C++
compiler.

Overloading example
We can now modify earlier examples to use function overloading.
As stated before, an immediately useful place for overloading is in
constructors. You can see this in the following version of the Stash
class:

//: C07:Stash3.h

// Function overloading

#ifndef STASH3_H

#define STASH3_H

class Stash {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

 void inflate(int increase);

public:

7: Function Overloading & Default Arguments 315

 Stash(int size); // Zero quantity

 Stash(int size, int initQuantity);

 ~Stash();

 int add(void* element);

 void* fetch(int index);

 int count();

};

#endif // STASH3_H ///:~

The first Stash() constructor is the same as before, but the second
one has a Quantity argument to indicate the initial number of
storage places to be allocated. In the definition, you can see that the
internal value of quantity is set to zero, along with the storage
pointer. In the second constructor, the call to
inflate(initQuantity) increases quantity to the allocated size:

//: C07:Stash3.cpp {O}

// Function overloading

#include "Stash3.h"

#include "../require.h"

#include <iostream>

#include <cassert>

using namespace std;

const int increment = 100;

Stash::Stash(int sz) {

 size = sz;

 quantity = 0;

 next = 0;

 storage = 0;

}

Stash::Stash(int sz, int initQuantity) {

 size = sz;

 quantity = 0;

 next = 0;

 storage = 0;

 inflate(initQuantity);

}

Stash::~Stash() {

 if(storage != 0) {

 cout << "freeing storage" << endl;

 delete []storage;

316 Thinking in C++ www.BruceEckel.com

 }

}

int Stash::add(void* element) {

 if(next >= quantity) // Enough space left?

 inflate(increment);

 // Copy element into storage,

 // starting at next empty space:

 int startBytes = next * size;

 unsigned char* e = (unsigned char*)element;

 for(int i = 0; i < size; i++)

 storage[startBytes + i] = e[i];

 next++;

 return(next - 1); // Index number

}

void* Stash::fetch(int index) {

 require(0 <= index, "Stash::fetch (-)index");

 if(index >= next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return &(storage[index * size]);

}

int Stash::count() {

 return next; // Number of elements in CStash

}

void Stash::inflate(int increase) {

 assert(increase >= 0);

 if(increase == 0) return;

 int newQuantity = quantity + increase;

 int newBytes = newQuantity * size;

 int oldBytes = quantity * size;

 unsigned char* b = new unsigned char[newBytes];

 for(int i = 0; i < oldBytes; i++)

 b[i] = storage[i]; // Copy old to new

 delete [](storage); // Release old storage

 storage = b; // Point to new memory

 quantity = newQuantity; // Adjust the size

} ///:~

When you use the first constructor no memory is allocated for
storage. The allocation happens the first time you try to add() an

7: Function Overloading & Default Arguments 317

object and any time the current block of memory is exceeded inside
add().

Both constructors are exercised in the test program:

//: C07:Stash3Test.cpp

//{L} Stash3

// Function overloading

#include "Stash3.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main() {

 Stash intStash(sizeof(int));

 for(int i = 0; i < 100; i++)

 intStash.add(&i);

 for(int j = 0; j < intStash.count(); j++)

 cout << "intStash.fetch(" << j << ") = "

 << *(int*)intStash.fetch(j)

 << endl;

 const int bufsize = 80;

 Stash stringStash(sizeof(char) * bufsize, 100);

 ifstream in("Stash3Test.cpp");

 assure(in, "Stash3Test.cpp");

 string line;

 while(getline(in, line))

 stringStash.add((char*)line.c_str());

 int k = 0;

 char* cp;

 while((cp = (char*)stringStash.fetch(k++))!=0)

 cout << "stringStash.fetch(" << k << ") = "

 << cp << endl;

} ///:~

The constructor call for stringStash uses a second argument;
presumably you know something special about the specific problem
you’re solving that allows you to choose an initial size for the Stash.

318 Thinking in C++ www.BruceEckel.com

unions
As you’ve seen, the only difference between struct and class in
C++ is that struct defaults to public and class defaults to
private. A struct can also have constructors and destructors, as
you might expect. But it turns out that a union can also have a
constructor, destructor, member functions, and even access control.
You can again see the use and benefit of overloading in the
following example:

//: C07:UnionClass.cpp

// Unions with constructors and member functions

#include<iostream>

using namespace std;

union U {

private: // Access control too!

 int i;

 float f;

public:

 U(int a);

 U(float b);

 ~U();

 int read_int();

 float read_float();

};

U::U(int a) { i = a; }

U::U(float b) { f = b;}

U::~U() { cout << "U::~U()\n"; }

int U::read_int() { return i; }

float U::read_float() { return f; }

int main() {

 U X(12), Y(1.9F);

 cout << X.read_int() << endl;

 cout << Y.read_float() << endl;

} ///:~

7: Function Overloading & Default Arguments 319

You might think from the code above that the only difference
between a union and a class is the way the data is stored (that is,
the int and float are overlaid on the same piece of storage).
However, a union cannot be used as a base class during
inheritance, which is quite limiting from an object-oriented design
standpoint (you’ll learn about inheritance in Chapter 14).

Although the member functions civilize access to the union
somewhat, there is still no way to prevent the client programmer
from selecting the wrong element type once the union is
initialized. In the example above, you could say X.read_float()
even though it is inappropriate. However, a “safe” union can be
encapsulated in a class. In the following example, notice how the
enum clarifies the code, and how overloading comes in handy with
the constructors:

//: C07:SuperVar.cpp

// A super-variable

#include <iostream>

using namespace std;

class SuperVar {

 enum {

 character,

 integer,

 floating_point

 } vartype; // Define one

 union { // Anonymous union

 char c;

 int i;

 float f;

 };

public:

 SuperVar(char ch);

 SuperVar(int ii);

 SuperVar(float ff);

 void print();

};

SuperVar::SuperVar(char ch) {

 vartype = character;

 c = ch;

}

320 Thinking in C++ www.BruceEckel.com

SuperVar::SuperVar(int ii) {

 vartype = integer;

 i = ii;

}

SuperVar::SuperVar(float ff) {

 vartype = floating_point;

 f = ff;

}

void SuperVar::print() {

 switch (vartype) {

 case character:

 cout << "character: " << c << endl;

 break;

 case integer:

 cout << "integer: " << i << endl;

 break;

 case floating_point:

 cout << "float: " << f << endl;

 break;

 }

}

int main() {

 SuperVar A('c'), B(12), C(1.44F);

 A.print();

 B.print();

 C.print();

} ///:~

In the code above, the enum has no type name (it is an untagged
enumeration). This is acceptable if you are going to immediately
define instances of the enum, as is done here. There is no need to
refer to the enum’s type name in the future, so the type name is
optional.

The union has no type name and no variable name. This is called
an anonymous union, and creates space for the union but doesn’t
require accessing the union elements with a variable name and the
dot operator. For instance, if your anonymous union is:

//: C07:AnonymousUnion.cpp

7: Function Overloading & Default Arguments 321

int main() {

 union {

 int i;

 float f;

 };

 // Access members without using qualifiers:

 i = 12;

 f = 1.22;

} ///:~

Note that you access members of an anonymous union just as if
they were ordinary variables. The only difference is that both
variables occupy the same space. If the anonymous union is at file
scope (outside all functions and classes) then it must be declared
static so it has internal linkage.

Although SuperVar is now safe, its usefulness is a bit dubious
because the reason for using a union in the first place is to save
space, and the addition of vartype takes up quite a bit of space
relative to the data in the union, so the savings are effectively
eliminated. There are a couple of alternatives to make this scheme
workable. If the vartype controlled more than one union instance
– if they were all the same type – then you’d only need one for the
group and it wouldn’t take up more space. A more useful approach
is to have #ifdefs around all the vartype code, which can then
guarantee things are being used correctly during development and
testing. For shipping code, the extra space and time overhead can
be eliminated.

Default arguments
In Stash3.h, examine the two constructors for Stash(). They
don’t seem all that different, do they? In fact, the first constructor
seems to be a special case of the second one with the initial size set
to zero. It’s a bit of a waste of effort to create and maintain two
different versions of a similar function.

C++ provides a remedy with default arguments. A default
argument is a value given in the declaration that the compiler

322 Thinking in C++ www.BruceEckel.com

automatically inserts if you don’t provide a value in the function
call. In the Stash example, we can replace the two functions:

 Stash(int size); // Zero quantity

 Stash(int size, int initQuantity);

with the single function:

 Stash(int size, int initQuantity = 0);

The Stash(int) definition is simply removed – all that is necessary
is the single Stash(int, int) definition.

Now, the two object definitions

 Stash A(100), B(100, 0);

will produce exactly the same results. The identical constructor is
called in both cases, but for A, the second argument is
automatically substituted by the compiler when it sees the first
argument is an int and that there is no second argument. The
compiler has seen the default argument, so it knows it can still
make the function call if it substitutes this second argument, which
is what you’ve told it to do by making it a default.

Default arguments are a convenience, as function overloading is a
convenience. Both features allow you to use a single function name
in different situations. The difference is that with default arguments
the compiler is substituting arguments when you don’t want to put
them in yourself. The preceding example is a good place to use
default arguments instead of function overloading; otherwise you
end up with two or more functions that have similar signatures and
similar behaviors. If the functions have very different behaviors, it
doesn’t usually make sense to use default arguments (for that
matter, you might want to question whether two functions with very
different behaviors should have the same name).

There are two rules you must be aware of when using default
arguments. First, only trailing arguments may be defaulted. That is,
you can’t have a default argument followed by a non-default
argument. Second, once you start using default arguments in a

7: Function Overloading & Default Arguments 323

particular function call, all the subsequent arguments in that
function’s argument list must be defaulted (this follows from the
first rule).

Default arguments are only placed in the declaration of a function
(typically placed in a header file). The compiler must see the default
value before it can use it. Sometimes people will place the
commented values of the default arguments in the function
definition, for documentation purposes

void fn(int x /* = 0 */) { // ...

Placeholder arguments
Arguments in a function declaration can be declared without
identifiers. When these are used with default arguments, it can look
a bit funny. You can end up with

void f(int x, int = 0, float = 1.1);

In C++ you don’t need identifiers in the function definition, either:

void f(int x, int, float flt) { /* ... */ }

In the function body, x and flt can be referenced, but not the
middle argument, because it has no name. Function calls must still
provide a value for the placeholder, though: f(1) or f(1,2,3.0). This
syntax allows you to put the argument in as a placeholder without
using it. The idea is that you might want to change the function
definition to use the placeholder later, without changing all the code
where the function is called. Of course, you can accomplish the
same thing by using a named argument, but if you define the
argument for the function body without using it, most compilers
will give you a warning message, assuming you’ve made a logical
error. By intentionally leaving the argument name out, you
suppress this warning.

More important, if you start out using a function argument and
later decide that you don’t need it, you can effectively remove it
without generating warnings, and yet not disturb any client code
that was calling the previous version of the function.

324 Thinking in C++ www.BruceEckel.com

Choosing overloading vs. default

arguments
Both function overloading and default arguments provide a
convenience for calling function names. However, it can seem
confusing at times to know which technique to use. For example,
consider the following tool that is designed to automatically manage
blocks of memory for you:

//: C07:Mem.h

#ifndef MEM_H

#define MEM_H

typedef unsigned char byte;

class Mem {

 byte* mem;

 int size;

 void ensureMinSize(int minSize);

public:

 Mem();

 Mem(int sz);

 ~Mem();

 int msize();

 byte* pointer();

 byte* pointer(int minSize);

};

#endif // MEM_H ///:~

A Mem object holds a block of bytes and makes sure that you have
enough storage. The default constructor doesn’t allocate any
storage, and the second constructor ensures that there is sz storage
in the Mem object. The destructor releases the storage, msize()
tells you how many bytes there are currently in the Mem object,
and pointer() produces a pointer to the starting address of the
storage (Mem is a fairly low-level tool). There’s an overloaded
version of pointer() in which client programmers can say that
they want a pointer to a block of bytes that is at least minSize
large, and the member function ensures this.

Both the constructor and the pointer() member function use the
private ensureMinSize() member function to increase the size

7: Function Overloading & Default Arguments 325

of the memory block (notice that it’s not safe to hold the result of
pointer() if the memory is resized).

Here’s the implementation of the class:

//: C07:Mem.cpp {O}

#include "Mem.h"

#include <cstring>

using namespace std;

Mem::Mem() { mem = 0; size = 0; }

Mem::Mem(int sz) {

 mem = 0;

 size = 0;

 ensureMinSize(sz);

}

Mem::~Mem() { delete []mem; }

int Mem::msize() { return size; }

void Mem::ensureMinSize(int minSize) {

 if(size < minSize) {

 byte* newmem = new byte[minSize];

 memset(newmem + size, 0, minSize - size);

 memcpy(newmem, mem, size);

 delete []mem;

 mem = newmem;

 size = minSize;

 }

}

byte* Mem::pointer() { return mem; }

byte* Mem::pointer(int minSize) {

 ensureMinSize(minSize);

 return mem;

} ///:~

You can see that ensureMinSize() is the only function
responsible for allocating memory, and that it is used from the
second constructor and the second overloaded form of pointer().
Inside ensureMinSize(), nothing needs to be done if the size is

326 Thinking in C++ www.BruceEckel.com

large enough. If new storage must be allocated in order to make the
block bigger (which is also the case when the block is of size zero
after default construction), the new “extra” portion is set to zero
using the Standard C library function memset(), which was
introduced in Chapter 5. The subsequent function call is to the
Standard C library function memcpy(), which in this case copies
the existing bytes from mem to newmem (typically in an efficient
fashion). Finally, the old memory is deleted and the new memory
and sizes are assigned to the appropriate members.

The Mem class is designed to be used as a tool within other classes
to simplify their memory management (it could also be used to hide
a more sophisticated memory-management system provided, for
example, by the operating system). Appropriately, it is tested here
by creating a simple “string” class:

//: C07:MemTest.cpp

// Testing the Mem class

//{L} Mem

#include "Mem.h"

#include <cstring>

#include <iostream>

using namespace std;

class MyString {

 Mem* buf;

public:

 MyString();

 MyString(char* str);

 ~MyString();

 void concat(char* str);

 void print(ostream& os);

};

MyString::MyString() { buf = 0; }

MyString::MyString(char* str) {

 buf = new Mem(strlen(str) + 1);

 strcpy((char*)buf->pointer(), str);

}

void MyString::concat(char* str) {

 if(!buf) buf = new Mem;

7: Function Overloading & Default Arguments 327

 strcat((char*)buf->pointer(

 buf->msize() + strlen(str) + 1), str);

}

void MyString::print(ostream& os) {

 if(!buf) return;

 os << buf->pointer() << endl;

}

MyString::~MyString() { delete buf; }

int main() {

 MyString s("My test string");

 s.print(cout);

 s.concat(" some additional stuff");

 s.print(cout);

 MyString s2;

 s2.concat("Using default constructor");

 s2.print(cout);

} ///:~

All you can do with this class is to create a MyString, concatenate
text, and print to an ostream. The class only contains a pointer to
a Mem, but note the distinction between the default constructor,
which sets the pointer to zero, and the second constructor, which
creates a Mem and copies data into it. The advantage of the default
constructor is that you can create, for example, a large array of
empty MyString objects very cheaply, since the size of each object
is only one pointer and the only overhead of the default constructor
is that of assigning to zero. The cost of a MyString only begins to
accrue when you concatenate data; at that point the Mem object is
created if it hasn’t been already. However, if you use the default
constructor and never concatenate any data, the destructor call is
still safe because calling delete for zero is defined such that it does
not try to release storage or otherwise cause problems.

If you look at these two constructors it might at first seem like this
is a prime candidate for default arguments. However, if you drop
the default constructor and write the remaining constructor with a
default argument:

MyString(char* str = "");

328 Thinking in C++ www.BruceEckel.com

everything will work correctly, but you’ll lose the previous efficiency
benefit since a Mem object will always be created. To get the
efficiency back, you must modify the constructor:

MyString::MyString(char* str) {

 if(!*str) { // Pointing at an empty string

 buf = 0;

 return;

 }

 buf = new Mem(strlen(str) + 1);

 strcpy((char*)buf->pointer(), str);

}

This means, in effect, that the default value becomes a flag that
causes a separate piece of code to be executed than if a non-default
value is used. Although it seems innocent enough with a small
constructor like this one, in general this practice can cause
problems. If you have to look for the default rather than treating it
as an ordinary value, that should be a clue that you will end up with
effectively two different functions inside a single function body: one
version for the normal case and one for the default. You might as
well split it up into two distinct function bodies and let the compiler
do the selection. This results in a slight (but usually invisible)
increase in efficiency, because the extra argument isn’t passed and
the extra code for the conditional isn’t executed. More importantly,
you are keeping the code for two separate functions in two separate
functions rather than combining them into one using default
arguments, which will result in easier maintainability, especially if
the functions are large.

On the other hand, consider the Mem class. If you look at the
definitions of the two constructors and the two pointer()
functions, you can see that using default arguments in both cases
will not cause the member function definitions to change at all.
Thus, the class could easily be:

//: C07:Mem2.h

#ifndef MEM2_H

#define MEM2_H

typedef unsigned char byte;

class Mem {

7: Function Overloading & Default Arguments 329

 byte* mem;

 int size;

 void ensureMinSize(int minSize);

public:

 Mem(int sz = 0);

 ~Mem();

 int msize();

 byte* pointer(int minSize = 0);

};

#endif // MEM2_H ///:~

Notice that a call to ensureMinSize(0) will always be quite
efficient.

Although in both of these cases I based some of the decision-
making process on the issue of efficiency, you must be careful not to
fall into the trap of thinking only about efficiency (fascinating as it
is). The most important issue in class design is the interface of the
class (its public members, which are available to the client
programmer). If these produce a class that is easy to use and reuse,
then you have a success; you can always tune for efficiency if
necessary but the effect of a class that is designed badly because the
programmer is over-focused on efficiency issues can be dire. Your
primary concern should be that the interface makes sense to those
who use it and who read the resulting code. Notice that in
MemTest.cpp the usage of MyString does not change regardless
of whether a default constructor is used or whether the efficiency is
high or low.

Summary
As a guideline, you shouldn’t use a default argument as a flag upon
which to conditionally execute code. You should instead break the
function into two or more overloaded functions if you can. A default
argument should be a value you would ordinarily put in that
position. It’s a value that is more likely to occur than all the rest, so
client programmers can generally ignore it or use it only if they
want to change it from the default value.

330 Thinking in C++ www.BruceEckel.com

The default argument is included to make function calls easier,
especially when those functions have many arguments with typical
values. Not only is it much easier to write the calls, it’s easier to read
them, especially if the class creator can order the arguments so the
least-modified defaults appear latest in the list.

An especially important use of default arguments is when you start
out with a function with a set of arguments, and after it’s been used
for a while you discover you need to add arguments. By defaulting
all the new arguments, you ensure that all client code using the
previous interface is not disturbed.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create a Text class that contains a string object to hold
the text of a file. Give it two constructors: a default
constructor and a constructor that takes a string
argument that is the name of the file to open. When the
second constructor is used, open the file and read the
contents into the string member object. Add a member
function contents() to return the string so (for
example) it can be printed. In main(), open a file using
Text and print the contents.

2. Create a Message class with a constructor that takes a
single string with a default value. Create a private
member string, and in the constructor simply assign the
argument string to your internal string. Create two
overloaded member functions called print(): one that
takes no arguments and simply prints the message stored
in the object, and one that takes a string argument,
which it prints in addition to the internal message. Does
it make sense to use this approach instead of the one used
for the constructor?

3. Determine how to generate assembly output with your
compiler, and run experiments to deduce the name-
decoration scheme.

7: Function Overloading & Default Arguments 331

4. Create a class that contains four member functions, with
0, 1, 2, and 3 int arguments, respectively. Create a
main() that makes an object of your class and calls each
of the member functions. Now modify the class so it has
instead a single member function with all the arguments
defaulted. Does this change your main()?

5. Create a function with two arguments and call it from
main(). Now make one of the arguments a
“placeholder” (no identifier) and see if your call in
main() changes.

6. Modify Stash3.h and Stash3.cpp to use default
arguments in the constructor. Test the constructor by
making two different versions of a Stash object.

7. Create a new version of the Stack class (from Chapter 6)
that contains the default constructor as before, and a
second constructor that takes as its arguments an array of
pointers to objects and the size of that array. This
constructor should move through the array and push
each pointer onto the Stack. Test your class with an
array of string.

8. Modify SuperVar so that there are #ifdefs around all
the vartype code as described in the section on enum.
Make vartype a regular and public enumeration (with
no instance) and modify print() so that it requires a
vartype argument to tell it what to do.

9. Implement Mem2.h and make sure that the modified
class still works with MemTest.cpp.

10. Use class Mem to implement Stash. Note that because
the implementation is private and thus hidden from the
client programmer, the test code does not need to be
modified.

11. In class Mem, add a bool moved() member function
that takes the result of a call to pointer() and tells you
whether the pointer has moved (due to reallocation).
Write a main() that tests your moved() member
function. Does it make more sense to use something like
moved() or to simply call pointer() every time you
need to access the memory in Mem?

 333

8: Constants
The concept of constant (expressed by the const

keyword) was created to allow the programmer to

draw a line between what changes and what doesn’t.

This provides safety and control in a C++

programming project.

334 Thinking in C++ www.BruceEckel.com

Since its origin, const has taken on a number of different purposes.
In the meantime it trickled back into the C language where its
meaning was changed. All this can seem a bit confusing at first, and
in this chapter you’ll learn when, why, and how to use the const
keyword. At the end there’s a discussion of volatile, which is a near
cousin to const (because they both concern change) and has
identical syntax.

The first motivation for const seems to have been to eliminate the
use of preprocessor #defines for value substitution. It has since
been put to use for pointers, function arguments, return types, class
objects and member functions. All of these have slightly different
but conceptually compatible meanings and will be looked at in
separate sections in this chapter.

Value substitution
When programming in C, the preprocessor is liberally used to
create macros and to substitute values. Because the preprocessor
simply does text replacement and has no concept nor facility for
type checking, preprocessor value substitution introduces subtle
problems that can be avoided in C++ by using const values.

The typical use of the preprocessor to substitute values for names in
C looks like this:

#define BUFSIZE 100

BUFSIZE is a name that only exists during preprocessing,
therefore it doesn’t occupy storage and can be placed in a header
file to provide a single value for all translation units that use it. It’s
very important for code maintenance to use value substitution
instead of so-called “magic numbers.” If you use magic numbers in
your code, not only does the reader have no idea where the
numbers come from or what they represent, but if you decide to
change a value, you must perform hand editing, and you have no
trail to follow to ensure you don’t miss one of your values (or
accidentally change one you shouldn’t).

8: Constants 335

Most of the time, BUFSIZE will behave like an ordinary variable,
but not all the time. In addition, there’s no type information. This
can hide bugs that are very difficult to find. C++ uses const to
eliminate these problems by bringing value substitution into the
domain of the compiler. Now you can say

const int bufsize = 100;

You can use bufsize anyplace where the compiler must know the
value at compile time. The compiler can use bufsize to perform
constant folding, which means the compiler will reduce a
complicated constant expression to a simple one by performing the
necessary calculations at compile time. This is especially important
in array definitions:

char buf[bufsize];

You can use const for all the built-in types (char, int, float, and
double) and their variants (as well as class objects, as you’ll see
later in this chapter). Because of subtle bugs that the preprocessor
might introduce, you should always use const instead of #define
value substitution.

const in header files
To use const instead of #define, you must be able to place const
definitions inside header files as you can with #define. This way,
you can place the definition for a const in a single place and
distribute it to translation units by including the header file. A
const in C++ defaults to internal linkage; that is, it is visible only
within the file where it is defined and cannot be seen at link time by
other translation units. You must always assign a value to a const
when you define it, except when you make an explicit declaration
using extern:

extern const int bufsize;

Normally, the C++ compiler avoids creating storage for a const,
but instead holds the definition in its symbol table. When you use
extern with const, however, you force storage to be allocated (this
is also true for certain other cases, such as taking the address of a

336 Thinking in C++ www.BruceEckel.com

const). Storage must be allocated because extern says “use
external linkage,” which means that several translation units must
be able to refer to the item, which requires it to have storage.

In the ordinary case, when extern is not part of the definition, no
storage is allocated. When the const is used, it is simply folded in
at compile time.

The goal of never allocating storage for a const also fails with
complicated structures. Whenever the compiler must allocate
storage, constant folding is prevented (since there’s no way for the
compiler to know for sure what the value of that storage is – if it
could know that, it wouldn’t need to allocate the storage).

Because the compiler cannot always avoid allocating storage for a
const, const definitions must default to internal linkage, that is,
linkage only within that particular translation unit. Otherwise,
linker errors would occur with complicated consts because they
cause storage to be allocated in multiple cpp files. The linker would
then see the same definition in multiple object files, and complain.
Because a const defaults to internal linkage, the linker doesn’t try
to link those definitions across translation units, and there are no
collisions. With built-in types, which are used in the majority of
cases involving constant expressions, the compiler can always
perform constant folding.

Safety consts
The use of const is not limited to replacing #defines in constant
expressions. If you initialize a variable with a value that is produced
at runtime and you know it will not change for the lifetime of that
variable, it is good programming practice to make it a const so the
compiler will give you an error message if you accidentally try to
change it. Here’s an example:

//: C08:Safecons.cpp

// Using const for safety

#include <iostream>

using namespace std;

const int i = 100; // Typical constant

8: Constants 337

const int j = i + 10; // Value from const expr

long address = (long)&j; // Forces storage

char buf[j + 10]; // Still a const expression

int main() {

 cout << "type a character & CR:";

 const char c = cin.get(); // Can't change

 const char c2 = c + 'a';

 cout << c2;

 // ...

} ///:~

You can see that i is a compile-time const, but j is calculated from
i. However, because i is a const, the calculated value for j still
comes from a constant expression and is itself a compile-time
constant. The very next line requires the address of j and therefore
forces the compiler to allocate storage for j. Yet this doesn’t prevent
the use of j in the determination of the size of buf because the
compiler knows j is const and that the value is valid even if storage
was allocated to hold that value at some point in the program.

In main(), you see a different kind of const in the identifier c
because the value cannot be known at compile time. This means
storage is required, and the compiler doesn’t attempt to keep
anything in its symbol table (the same behavior as in C). The
initialization must still happen at the point of definition, and once
the initialization occurs, the value cannot be changed. You can see
that c2 is calculated from c and also that scoping works for consts
as it does for any other type – yet another improvement over the
use of #define.

As a matter of practice, if you think a value shouldn’t change, you
should make it a const. This not only provides insurance against
inadvertent changes, it also allows the compiler to generate more
efficient code by eliminating storage and memory reads.

Aggregates
It’s possible to use const for aggregates, but you’re virtually
assured that the compiler will not be sophisticated enough to keep
an aggregate in its symbol table, so storage will be allocated. In

338 Thinking in C++ www.BruceEckel.com

these situations, const means “a piece of storage that cannot be
changed.” However, the value cannot be used at compile time
because the compiler is not required to know the contents of the
storage at compile time. In the following code, you can see the
statements that are illegal:

//: C08:Constag.cpp

// Constants and aggregates

const int i[] = { 1, 2, 3, 4 };

//! float f[i[3]]; // Illegal

struct S { int i, j; };

const S s[] = { { 1, 2 }, { 3, 4 } };

//! double d[s[1].j]; // Illegal

int main() {} ///:~

In an array definition, the compiler must be able to generate code
that moves the stack pointer to accommodate the array. In both of
the illegal definitions above, the compiler complains because it
cannot find a constant expression in the array definition.

Differences with C
Constants were introduced in early versions of C++ while the
Standard C specification was still being finished. Although the C
committee then decided to include const in C, somehow it came to
mean for them “an ordinary variable that cannot be changed.” In C,
a const always occupies storage and its name is global. The C
compiler cannot treat a const as a compile-time constant. In C, if
you say

const int bufsize = 100;

char buf[bufsize];

you will get an error, even though it seems like a rational thing to
do. Because bufsize occupies storage somewhere, the C compiler
cannot know the value at compile time. You can optionally say

const int bufsize;

in C, but not in C++, and the C compiler accepts it as a declaration
indicating there is storage allocated elsewhere. Because C defaults
to external linkage for consts, this makes sense. C++ defaults to

8: Constants 339

internal linkage for consts so if you want to accomplish the same
thing in C++, you must explicitly change the linkage to external
using extern:

extern const int bufsize; // Declaration only

This line also works in C.

In C++, a const doesn’t necessarily create storage. In C a const
always creates storage. Whether or not storage is reserved for a
const in C++ depends on how it is used. In general, if a const is
used simply to replace a name with a value (just as you would use a
#define), then storage doesn’t have to be created for the const. If
no storage is created (this depends on the complexity of the data
type and the sophistication of the compiler), the values may be
folded into the code for greater efficiency after type checking, not
before, as with #define. If, however, you take an address of a
const (even unknowingly, by passing it to a function that takes a
reference argument) or you define it as extern, then storage is
created for the const.

In C++, a const that is outside all functions has file scope (i.e., it is
invisible outside the file). That is, it defaults to internal linkage.
This is very different from all other identifiers in C++ (and from
const in C!) that default to external linkage. Thus, if you declare a
const of the same name in two different files and you don’t take the
address or define that name as extern, the ideal C++ compiler
won’t allocate storage for the const, but simply fold it into the code.
Because const has implied file scope, you can put it in C++ header
files with no conflicts at link time.

Since a const in C++ defaults to internal linkage, you can’t just
define a const in one file and reference it as an extern in another
file. To give a const external linkage so it can be referenced from
another file, you must explicitly define it as extern, like this:

extern const int x = 1;

Notice that by giving it an initializer and saying it is extern, you
force storage to be created for the const (although the compiler still

340 Thinking in C++ www.BruceEckel.com

has the option of doing constant folding here). The initialization
establishes this as a definition, not a declaration. The declaration:

extern const int x;

in C++ means that the definition exists elsewhere (again, this is not
necessarily true in C). You can now see why C++ requires a const
definition to have an initializer: the initializer distinguishes a
declaration from a definition (in C it’s always a definition, so no
initializer is necessary). With an extern const declaration, the
compiler cannot do constant folding because it doesn’t know the
value.

The C approach to const is not very useful, and if you want to use a
named value inside a constant expression (one that must be
evaluated at compile time), C almost forces you to use #define in
the preprocessor.

Pointers
Pointers can be made const. The compiler will still endeavor to
prevent storage allocation and do constant folding when dealing
with const pointers, but these features seem less useful in this case.
More importantly, the compiler will tell you if you attempt to
change a const pointer, which adds a great deal of safety.

When using const with pointers, you have two options: const can
be applied to what the pointer is pointing to, or the const can be
applied to the address stored in the pointer itself. The syntax for
these is a little confusing at first but becomes comfortable with
practice.

Pointer to const
The trick with a pointer definition, as with any complicated
definition, is to read it starting at the identifier and work your way
out. The const specifier binds to the thing it is “closest to.” So if
you want to prevent any changes to the element you are pointing to,
you write a definition like this:

8: Constants 341

const int* u;

Starting from the identifier, we read “u is a pointer, which points to
a const int.” Here, no initialization is required because you’re
saying that u can point to anything (that is, it is not const), but the
thing it points to cannot be changed.

Here’s the mildly confusing part. You might think that to make the
pointer itself unchangeable, that is, to prevent any change to the
address contained inside u, you would simply move the const to
the other side of the int like this:

int const* v;

It’s not all that crazy to think that this should read “v is a const
pointer to an int.” However, the way it actually reads is “v is an
ordinary pointer to an int that happens to be const.” That is, the
const has bound itself to the int again, and the effect is the same as
the previous definition. The fact that these two definitions are the
same is the confusing point; to prevent this confusion on the part of
your reader, you should probably stick to the first form.

const pointer
To make the pointer itself a const, you must place the const
specifier to the right of the *, like this:

int d = 1;

int* const w = &d;

Now it reads: “w is a pointer, which is const, that points to an int.”
Because the pointer itself is now the const, the compiler requires
that it be given an initial value that will be unchanged for the life of
that pointer. It’s OK, however, to change what that value points to
by saying

*w = 2;

You can also make a const pointer to a const object using either of
two legal forms:

int d = 1;

342 Thinking in C++ www.BruceEckel.com

const int* const x = &d; // (1)

int const* const x2 = &d; // (2)

Now neither the pointer nor the object can be changed.

Some people argue that the second form is more consistent because
the const is always placed to the right of what it modifies. You’ll
have to decide which is clearer for your particular coding style.

Here are the above lines in a compileable file:

//: C08:ConstPointers.cpp

const int* u;

int const* v;

int d = 1;

int* const w = &d;

const int* const x = &d; // (1)

int const* const x2 = &d; // (2)

int main() {} ///:~

Formatting
This book makes a point of only putting one pointer definition on a
line, and initializing each pointer at the point of definition
whenever possible. Because of this, the formatting style of
“attaching” the ‘*’ to the data type is possible:

int* u = &i;

as if int* were a discrete type unto itself. This makes the code easier
to understand, but unfortunately that’s not actually the way things
work. The ‘*’ in fact binds to the identifier, not the type. It can be
placed anywhere between the type name and the identifier. So you
could do this:

int *u = &i, v = 0;

which creates an int* u, as before, and a non-pointer int v.
Because readers often find this confusing, it is best to follow the
form shown in this book.

8: Constants 343

Assignment and type checking
C++ is very particular about type checking, and this extends to
pointer assignments. You can assign the address of a non-const
object to a const pointer because you’re simply promising not to
change something that is OK to change. However, you can’t assign
the address of a const object to a non-const pointer because then
you’re saying you might change the object via the pointer. Of
course, you can always use a cast to force such an assignment, but
this is bad programming practice because you are then breaking the
constness of the object, along with any safety promised by the
const. For example:

//: C08:PointerAssignment.cpp

int d = 1;

const int e = 2;

int* u = &d; // OK -- d not const

//! int* v = &e; // Illegal -- e const

int* w = (int*)&e; // Legal but bad practice

int main() {} ///:~

Although C++ helps prevent errors it does not protect you from
yourself if you want to break the safety mechanisms.

Character array literals
The place where strict constness is not enforced is with character
array literals. You can say

char* cp = "howdy";

and the compiler will accept it without complaint. This is
technically an error because a character array literal (“howdy” in
this case) is created by the compiler as a constant character array,
and the result of the quoted character array is its starting address in
memory. Modifying any of the characters in the array is a runtime
error, although not all compilers enforce this correctly.

So character array literals are actually constant character arrays. Of
course, the compiler lets you get away with treating them as non-
const because there’s so much existing C code that relies on this.
However, if you try to change the values in a character array literal,

344 Thinking in C++ www.BruceEckel.com

the behavior is undefined, although it will probably work on many
machines.

If you want to be able to modify the string, put it in an array:

char cp[] = "howdy";

Since compilers often don’t enforce the difference you won’t be
reminded to use this latter form and so the point becomes rather
subtle.

Function arguments

& return values
The use of const to specify function arguments and return values is
another place where the concept of constants can be confusing. If
you are passing objects by value, specifying const has no meaning
to the client (it means that the passed argument cannot be modified
inside the function). If you are returning an object of a user-defined
type by value as a const, it means the returned value cannot be
modified. If you are passing and returning addresses, const is a
promise that the destination of the address will not be changed.

Passing by const value
You can specify that function arguments are const when passing
them by value, such as

void f1(const int i) {

 i++; // Illegal -- compile-time error

}

but what does this mean? You’re making a promise that the original
value of the variable will not be changed by the function f1().
However, because the argument is passed by value, you
immediately make a copy of the original variable, so the promise to
the client is implicitly kept.

8: Constants 345

Inside the function, the const takes on meaning: the argument
cannot be changed. So it’s really a tool for the creator of the
function, and not the caller.

To avoid confusion to the caller, you can make the argument a
const inside the function, rather than in the argument list. You
could do this with a pointer, but a nicer syntax is achieved with the
reference, a subject that will be fully developed in Chapter 11.
Briefly, a reference is like a constant pointer that is automatically
dereferenced, so it has the effect of being an alias to an object. To
create a reference, you use the & in the definition. So the non-
confusing function definition looks like this:

void f2(int ic) {

 const int& i = ic;

 i++; // Illegal -- compile-time error

}

Again, you’ll get an error message, but this time the constness of
the local object is not part of the function signature; it only has
meaning to the implementation of the function and therefore it’s
hidden from the client.

Returning by const value
A similar truth holds for the return value. If you say that a
function’s return value is const:

const int g();

you are promising that the original variable (inside the function
frame) will not be modified. And again, because you’re returning it
by value, it’s copied so the original value could never be modified
via the return value.

At first, this can make the specification of const seem meaningless.
You can see the apparent lack of effect of returning consts by value
in this example:

//: C08:Constval.cpp

// Returning consts by value

// has no meaning for built-in types

346 Thinking in C++ www.BruceEckel.com

int f3() { return 1; }

const int f4() { return 1; }

int main() {

 const int j = f3(); // Works fine

 int k = f4(); // But this works fine too!

} ///:~

For built-in types, it doesn’t matter whether you return by value as
a const, so you should avoid confusing the client programmer and
leave off the const when returning a built-in type by value.

Returning by value as a const becomes important when you’re
dealing with user-defined types. If a function returns a class object
by value as a const, the return value of that function cannot be an
lvalue (that is, it cannot be assigned to or otherwise modified). For
example:

//: C08:ConstReturnValues.cpp

// Constant return by value

// Result cannot be used as an lvalue

class X {

 int i;

public:

 X(int ii = 0);

 void modify();

};

X::X(int ii) { i = ii; }

void X::modify() { i++; }

X f5() {

 return X();

}

const X f6() {

 return X();

}

void f7(X& x) { // Pass by non-const reference

 x.modify();

8: Constants 347

}

int main() {

 f5() = X(1); // OK -- non-const return value

 f5().modify(); // OK

// Causes compile-time errors:

//! f7(f5());

//! f6() = X(1);

//! f6().modify();

//! f7(f6());

} ///:~

f5() returns a non-const X object, while f6() returns a const X
object. Only the non-const return value can be used as an lvalue.
Thus, it’s important to use const when returning an object by value
if you want to prevent its use as an lvalue.

The reason const has no meaning when you’re returning a built-in
type by value is that the compiler already prevents it from being an
lvalue (because it’s always a value, and not a variable). Only when
you’re returning objects of user-defined types by value does it
become an issue.

The function f7() takes its argument as a non-const reference (an
additional way of handling addresses in C++ and the subject of
Chapter 11). This is effectively the same as taking a non-const
pointer; it’s just that the syntax is different. The reason this won’t
compile in C++ is because of the creation of a temporary.

Temporaries
Sometimes, during the evaluation of an expression, the compiler
must create temporary objects. These are objects like any other:
they require storage and they must be constructed and destroyed.
The difference is that you never see them – the compiler is
responsible for deciding that they’re needed and the details of their
existence. But there is one thing about temporaries: they’re
automatically const. Because you usually won’t be able to get your
hands on a temporary object, telling it to do something that will
change that temporary is almost certainly a mistake because you
won’t be able to use that information. By making all temporaries

348 Thinking in C++ www.BruceEckel.com

automatically const, the compiler informs you when you make that
mistake.

In the above example, f5() returns a non-const X object. But in
the expression:

f7(f5());

the compiler must manufacture a temporary object to hold the
return value of f5() so it can be passed to f7(). This would be fine
if f7() took its argument by value; then the temporary would be
copied into f7() and it wouldn’t matter what happened to the
temporary X. However, f7() takes its argument by reference,
which means in this example takes the address of the temporary X.
Since f7() doesn’t take its argument by const reference, it has
permission to modify the temporary object. But the compiler knows
that the temporary will vanish as soon as the expression evaluation
is complete, and thus any modifications you make to the temporary
X will be lost. By making all temporary objects automatically
const, this situation causes a compile-time error so you don’t get
caught by what would be a very difficult bug to find.

However, notice the expressions that are legal:

 f5() = X(1);

 f5().modify();

Although these pass muster for the compiler, they are actually
problematic. f5() returns an X object, and for the compiler to
satisfy the above expressions it must create a temporary to hold that
return value. So in both expressions the temporary object is being
modified, and as soon as the expression is over the temporary is
cleaned up. As a result, the modifications are lost so this code is
probably a bug – but the compiler doesn’t tell you anything about it.
Expressions like these are simple enough for you to detect the
problem, but when things get more complex it’s possible for a bug
to slip through these cracks.

The way the constness of class objects is preserved is shown later
in the chapter.

8: Constants 349

Passing and returning addresses
If you pass or return an address (either a pointer or a reference), it’s
possible for the client programmer to take it and modify the original
value. If you make the pointer or reference a const, you prevent
this from happening, which may save you some grief. In fact,
whenever you’re passing an address into a function, you should
make it a const if at all possible. If you don’t, you’re excluding the
possibility of using that function with anything that is a const.

The choice of whether to return a pointer or reference to a const
depends on what you want to allow your client programmer to do
with it. Here’s an example that demonstrates the use of const
pointers as function arguments and return values:

//: C08:ConstPointer.cpp

// Constant pointer arg/return

void t(int*) {}

void u(const int* cip) {

//! *cip = 2; // Illegal -- modifies value

 int i = *cip; // OK -- copies value

//! int* ip2 = cip; // Illegal: non-const

}

const char* v() {

 // Returns address of static character array:

 return "result of function v()";

}

const int* const w() {

 static int i;

 return &i;

}

int main() {

 int x = 0;

 int* ip = &x;

 const int* cip = &x;

 t(ip); // OK

//! t(cip); // Not OK

 u(ip); // OK

350 Thinking in C++ www.BruceEckel.com

 u(cip); // Also OK

//! char* cp = v(); // Not OK

 const char* ccp = v(); // OK

//! int* ip2 = w(); // Not OK

 const int* const ccip = w(); // OK

 const int* cip2 = w(); // OK

//! *w() = 1; // Not OK

} ///:~

The function t() takes an ordinary non-const pointer as an
argument, and u() takes a const pointer. Inside u() you can see
that attempting to modify the destination of the const pointer is
illegal, but you can of course copy the information out into a non-
const variable. The compiler also prevents you from creating a
non-const pointer using the address stored inside a const pointer.

The functions v() and w() test return value semantics. v()
returns a const char* that is created from a character array literal.
This statement actually produces the address of the character array
literal, after the compiler creates it and stores it in the static storage
area. As mentioned earlier, this character array is technically a
constant, which is properly expressed by the return value of v().

The return value of w() requires that both the pointer and what it
points to must be const. As with v(), the value returned by w() is
valid after the function returns only because it is static. You never
want to return pointers to local stack variables because they will be
invalid after the function returns and the stack is cleaned up.
(Another common pointer you might return is the address of
storage allocated on the heap, which is still valid after the function
returns.)

In main(), the functions are tested with various arguments. You
can see that t() will accept a non-const pointer argument, but if
you try to pass it a pointer to a const, there’s no promise that t()
will leave the pointer’s destination alone, so the compiler gives you
an error message. u() takes a const pointer, so it will accept both
types of arguments. Thus, a function that takes a const pointer is
more general than one that does not.

8: Constants 351

As expected, the return value of v() can be assigned only to a
pointer to a const. You would also expect that the compiler refuses
to assign the return value of w() to a non-const pointer, and
accepts a const int* const, but it might be a bit surprising to see
that it also accepts a const int*, which is not an exact match to the
return type. Once again, because the value (which is the address
contained in the pointer) is being copied, the promise that the
original variable is untouched is automatically kept. Thus, the
second const in const int* const is only meaningful when you try
to use it as an lvalue, in which case the compiler prevents you.

Standard argument passing
In C it’s very common to pass by value, and when you want to pass
an address your only choice is to use a pointer1. However, neither of
these approaches is preferred in C++. Instead, your first choice
when passing an argument is to pass by reference, and by const
reference at that. To the client programmer, the syntax is identical
to that of passing by value, so there’s no confusion about pointers –
they don’t even have to think about pointers. For the creator of the
function, passing an address is virtually always more efficient than
passing an entire class object, and if you pass by const reference it
means your function will not change the destination of that address,
so the effect from the client programmer’s point of view is exactly
the same as pass-by-value (only more efficient).

Because of the syntax of references (it looks like pass-by-value to
the caller) it’s possible to pass a temporary object to a function that
takes a const reference, whereas you can never pass a temporary
object to a function that takes a pointer – with a pointer, the
address must be explicitly taken. So passing by reference produces a
new situation that never occurs in C: a temporary, which is always
const, can have its address passed to a function. This is why, to
allow temporaries to be passed to functions by reference, the
argument must be a const reference. The following example
demonstrates this:

1 Some folks go as far as saying that everything in C is pass by value, since when you
pass a pointer a copy is made (so you’re passing the pointer by value). However
precise this might be, I think it actually confuses the issue.

352 Thinking in C++ www.BruceEckel.com

//: C08:ConstTemporary.cpp

// Temporaries are const

class X {};

X f() { return X(); } // Return by value

void g1(X&) {} // Pass by non-const reference

void g2(const X&) {} // Pass by const reference

int main() {

 // Error: const temporary created by f():

//! g1(f());

 // OK: g2 takes a const reference:

 g2(f());

} ///:~

f() returns an object of class X by value. That means when you
immediately take the return value of f() and pass it to another
function as in the calls to g1() and g2(), a temporary is created
and that temporary is const. Thus, the call in g1() is an error
because g1() doesn’t take a const reference, but the call to g2() is
OK.

Classes
This section shows the ways you can use const with classes. You
may want to create a local const in a class to use inside constant
expressions that will be evaluated at compile time. However, the
meaning of const is different inside classes, so you must
understand the options in order to create const data members of a
class.

You can also make an entire object const (and as you’ve just seen,
the compiler always makes temporary objects const). But
preserving the constness of an object is more complex. The
compiler can ensure the constness of a built-in type but it cannot
monitor the intricacies of a class. To guarantee the constness of a
class object, the const member function is introduced: only a
const member function may be called for a const object.

8: Constants 353

const in classes
One of the places you’d like to use a const for constant expressions
is inside classes. The typical example is when you’re creating an
array inside a class and you want to use a const instead of a
#define to establish the array size and to use in calculations
involving the array. The array size is something you’d like to keep
hidden inside the class, so if you used a name like size, for
example, you could use that name in another class without a clash.
The preprocessor treats all #defines as global from the point they
are defined, so this will not achieve the desired effect.

You might assume that the logical choice is to place a const inside
the class. This doesn’t produce the desired result. Inside a class,
const partially reverts to its meaning in C. It allocates storage
within each object and represents a value that is initialized once and
then cannot change. The use of const inside a class means “This is
constant for the lifetime of the object.” However, each different
object may contain a different value for that constant.

Thus, when you create an ordinary (non-static) const inside a
class, you cannot give it an initial value. This initialization must
occur in the constructor, of course, but in a special place in the
constructor. Because a const must be initialized at the point it is
created, inside the main body of the constructor the const must
already be initialized. Otherwise you’re left with the choice of
waiting until some point later in the constructor body, which means
the const would be un-initialized for a while. Also, there would be
nothing to keep you from changing the value of the const at various
places in the constructor body.

The constructor initializer list
The special initialization point is called the constructor initializer
list, and it was originally developed for use in inheritance (covered
in Chapter 14). The constructor initializer list – which, as the name
implies, occurs only in the definition of the constructor – is a list of
“constructor calls” that occur after the function argument list and a
colon, but before the opening brace of the constructor body. This is
to remind you that the initialization in the list occurs before any of
the main constructor code is executed. This is the place to put all

354 Thinking in C++ www.BruceEckel.com

const initializations. The proper form for const inside a class is
shown here:

//: C08:ConstInitialization.cpp

// Initializing const in classes

#include <iostream>

using namespace std;

class Fred {

 const int size;

public:

 Fred(int sz);

 void print();

};

Fred::Fred(int sz) : size(sz) {}

void Fred::print() { cout << size << endl; }

int main() {

 Fred a(1), b(2), c(3);

 a.print(), b.print(), c.print();

} ///:~

The form of the constructor initializer list shown above is confusing
at first because you’re not used to seeing a built-in type treated as if
it has a constructor.

“Constructors” for built-in types
As the language developed and more effort was put into making
user-defined types look like built-in types, it became apparent that
there were times when it was helpful to make built-in types look like
user-defined types. In the constructor initializer list, you can treat a
built-in type as if it has a constructor, like this:

//: C08:BuiltInTypeConstructors.cpp

#include <iostream>

using namespace std;

class B {

 int i;

public:

 B(int ii);

 void print();

8: Constants 355

};

B::B(int ii) : i(ii) {}

void B::print() { cout << i << endl; }

int main() {

 B a(1), b(2);

 float pi(3.14159);

 a.print(); b.print();

 cout << pi << endl;

} ///:~

This is especially critical when initializing const data members
because they must be initialized before the function body is entered.

It made sense to extend this “constructor” for built-in types (which
simply means assignment) to the general case, which is why the
float pi(3.14159) definition works in the above code.

It’s often useful to encapsulate a built-in type inside a class to
guarantee initialization with the constructor. For example, here’s an
Integer class:

//: C08:EncapsulatingTypes.cpp

#include <iostream>

using namespace std;

class Integer {

 int i;

public:

 Integer(int ii = 0);

 void print();

};

Integer::Integer(int ii) : i(ii) {}

void Integer::print() { cout << i << ' '; }

int main() {

 Integer i[100];

 for(int j = 0; j < 100; j++)

 i[j].print();

} ///:~

356 Thinking in C++ www.BruceEckel.com

The array of Integers in main() are all automatically initialized to
zero. This initialization isn’t necessarily more costly than a for loop
or memset(). Many compilers easily optimize this to a very fast
process.

Compile-time constants in classes
The above use of const is interesting and probably useful in cases,
but it does not solve the original problem which is: “how do you
make a compile-time constant inside a class?” The answer requires
the use of an additional keyword which will not be fully introduced
until Chapter 10: static. The static keyword, in this situation,
means “there’s only one instance, regardless of how many objects of
the class are created,” which is precisely what we need here: a
member of a class which is constant, and which cannot change from
one object of the class to another. Thus, a static const of a built-in
type can be treated as a compile-time constant.

There is one feature of static const when used inside classes which
is a bit unusual: you must provide the initializer at the point of
definition of the static const. This is something that only occurs
with the static const; as much as you might like to use it in other
situations it won’t work because all other data members must be
initialized in the constructor or in other member functions.

Here’s an example that shows the creation and use of a static
const called size inside a class that represents a stack of string
pointers2:

//: C08:StringStack.cpp

// Using static const to create a

// compile-time constant inside a class

#include <string>

#include <iostream>

using namespace std;

class StringStack {

 static const int size = 100;

2 At the time of this writing, not all compilers supported this feature.

8: Constants 357

 const string* stack[size];

 int index;

public:

 StringStack();

 void push(const string* s);

 const string* pop();

};

StringStack::StringStack() : index(0) {

 memset(stack, 0, size * sizeof(string*));

}

void StringStack::push(const string* s) {

 if(index < size)

 stack[index++] = s;

}

const string* StringStack::pop() {

 if(index > 0) {

 const string* rv = stack[--index];

 stack[index] = 0;

 return rv;

 }

 return 0;

}

string iceCream[] = {

 "pralines & cream",

 "fudge ripple",

 "jamocha almond fudge",

 "wild mountain blackberry",

 "raspberry sorbet",

 "lemon swirl",

 "rocky road",

 "deep chocolate fudge"

};

const int iCsz =

 sizeof iceCream / sizeof *iceCream;

int main() {

 StringStack ss;

 for(int i = 0; i < iCsz; i++)

 ss.push(&iceCream[i]);

 const string* cp;

358 Thinking in C++ www.BruceEckel.com

 while((cp = ss.pop()) != 0)

 cout << *cp << endl;

} ///:~

Since size is used to determine the size of the array stack, it is
indeed a compile-time constant, but one that is hidden inside the
class.

Notice that push() takes a const string* as an argument, pop()
returns a const string*, and StringStack holds const string*. If
this were not true, you couldn’t use a StringStack to hold the
pointers in iceCream. However, it also prevents you from doing
anything that will change the objects contained by StringStack. Of
course, not all containers are designed with this restriction.

The “enum hack” in old code
In older versions of C++, static const was not supported inside
classes. This meant that const was useless for constant expressions
inside classes. However, people still wanted to do this so a typical
solution (usually referred to as the “enum hack”) was to use an
untagged enum with no instances. An enumeration must have all
its values established at compile time, it’s local to the class, and its
values are available for constant expressions. Thus, you will
commonly see:

//: C08:EnumHack.cpp

#include <iostream>

using namespace std;

class Bunch {

 enum { size = 1000 };

 int i[size];

};

int main() {

 cout << "sizeof(Bunch) = " << sizeof(Bunch)

 << ", sizeof(i[1000]) = "

 << sizeof(int[1000]) << endl;

} ///:~

8: Constants 359

The use of enum here is guaranteed to occupy no storage in the
object, and the enumerators are all evaluated at compile time. You
can also explicitly establish the values of the enumerators:

enum { one = 1, two = 2, three };

With integral enum types, the compiler will continue counting
from the last value, so the enumerator three will get the value 3.

In the StringStack.cpp example above, the line:

static const int size = 100;

would be instead:

enum { size = 100 };

Although you’ll often see the enum technique in legacy code, the
static const feature was added to the language to solve just this
problem. However, there is no overwhelming reason that you must
choose static const over the enum hack, and in this book the
enum hack is used because it is supported by more compilers at
the time this book was written.

const objects & member functions
Class member functions can be made const. What does this mean?
To understand, you must first grasp the concept of const objects.

A const object is defined the same for a user-defined type as a
built-in type. For example:

const int i = 1;

const blob b(2);

Here, b is a const object of type blob. Its constructor is called with
an argument of two. For the compiler to enforce constness, it must
ensure that no data members of the object are changed during the
object’s lifetime. It can easily ensure that no public data is modified,
but how is it to know which member functions will change the data
and which ones are “safe” for a const object?

360 Thinking in C++ www.BruceEckel.com

If you declare a member function const, you tell the compiler the
function can be called for a const object. A member function that is
not specifically declared const is treated as one that will modify
data members in an object, and the compiler will not allow you to
call it for a const object.

It doesn’t stop there, however. Just claiming a member function is
const doesn’t guarantee it will act that way, so the compiler forces
you to reiterate the const specification when defining the function.
(The const becomes part of the function signature, so both the
compiler and linker check for constness.) Then it enforces
constness during the function definition by issuing an error
message if you try to change any members of the object or call a
non-const member function. Thus, any member function you
declare const is guaranteed to behave that way in the definition.

To understand the syntax for declaring const member functions,
first notice that preceding the function declaration with const
means the return value is const, so that doesn’t produce the
desired results. Instead, you must place the const specifier after
the argument list. For example,

//: C08:ConstMember.cpp

class X {

 int i;

public:

 X(int ii);

 int f() const;

};

X::X(int ii) : i(ii) {}

int X::f() const { return i; }

int main() {

 X x1(10);

 const X x2(20);

 x1.f();

 x2.f();

} ///:~

Note that the const keyword must be repeated in the definition or
the compiler sees it as a different function. Since f() is a const

8: Constants 361

member function, if it attempts to change i in any way or to call
another member function that is not const, the compiler flags it as
an error.

You can see that a const member function is safe to call with both
const and non-const objects. Thus, you could think of it as the
most general form of a member function (and because of this, it is
unfortunate that member functions do not automatically default to
const). Any function that doesn’t modify member data should be
declared as const, so it can be used with const objects.

Here’s an example that contrasts a const and non-const member
function:

//: C08:Quoter.cpp

// Random quote selection

#include <iostream>

#include <cstdlib> // Random number generator

#include <ctime> // To seed random generator

using namespace std;

class Quoter {

 int lastquote;

public:

 Quoter();

 int lastQuote() const;

 const char* quote();

};

Quoter::Quoter(){

 lastquote = -1;

 srand(time(0)); // Seed random number generator

}

int Quoter::lastQuote() const {

 return lastquote;

}

const char* Quoter::quote() {

 static const char* quotes[] = {

 "Are we having fun yet?",

 "Doctors always know best",

 "Is it ... Atomic?",

362 Thinking in C++ www.BruceEckel.com

 "Fear is obscene",

 "There is no scientific evidence "

 "to support the idea "

 "that life is serious",

 "Things that make us happy, make us wise",

 };

 const int qsize = sizeof quotes/sizeof *quotes;

 int qnum = rand() % qsize;

 while(lastquote >= 0 && qnum == lastquote)

 qnum = rand() % qsize;

 return quotes[lastquote = qnum];

}

int main() {

 Quoter q;

 const Quoter cq;

 cq.lastQuote(); // OK

//! cq.quote(); // Not OK; non const function

 for(int i = 0; i < 20; i++)

 cout << q.quote() << endl;

} ///:~

Neither constructors nor destructors can be const member
functions because they virtually always perform some modification
on the object during initialization and cleanup. The quote()
member function also cannot be const because it modifies the data
member lastquote (see the return statement). However,
lastQuote() makes no modifications, and so it can be const and
can be safely called for the const object cq.

mutable: bitwise vs. logical const
What if you want to create a const member function, but you’d still
like to change some of the data in the object? This is sometimes
referred to as the difference between bitwise const and logical
const (also sometimes called memberwise const). Bitwise const
means that every bit in the object is permanent, so a bit image of
the object will never change. Logical const means that, although
the entire object is conceptually constant, there may be changes on
a member-by-member basis. However, if the compiler is told that
an object is const, it will jealously guard that object to ensure
bitwise constness. To effect logical constness, there are two ways
to change a data member from within a const member function.

8: Constants 363

The first approach is the historical one and is called casting away
constness. It is performed in a rather odd fashion. You take this
(the keyword that produces the address of the current object) and
cast it to a pointer to an object of the current type. It would seem
that this is already such a pointer. However, inside a const
member function it’s actually a const pointer, so by casting it to an
ordinary pointer, you remove the constness for that operation.
Here’s an example:

//: C08:Castaway.cpp

// "Casting away" constness

class Y {

 int i;

public:

 Y();

 void f() const;

};

Y::Y() { i = 0; }

void Y::f() const {

//! i++; // Error -- const member function

 ((Y*)this)->i++; // OK: cast away const-ness

 // Better: use C++ explicit cast syntax:

 (const_cast<Y*>(this))->i++;

}

int main() {

 const Y yy;

 yy.f(); // Actually changes it!

} ///:~

This approach works and you’ll see it used in legacy code, but it is
not the preferred technique. The problem is that this lack of
constness is hidden away in a member function definition, and you
have no clue from the class interface that the data of the object is
actually being modified unless you have access to the source code
(and you must suspect that constness is being cast away, and look
for the cast). To put everything out in the open, you should use the
mutable keyword in the class declaration to specify that a
particular data member may be changed inside a const object:

364 Thinking in C++ www.BruceEckel.com

//: C08:Mutable.cpp

// The "mutable" keyword

class Z {

 int i;

 mutable int j;

public:

 Z();

 void f() const;

};

Z::Z() : i(0), j(0) {}

void Z::f() const {

//! i++; // Error -- const member function

 j++; // OK: mutable

}

int main() {

 const Z zz;

 zz.f(); // Actually changes it!

} ///:~

This way, the user of the class can see from the declaration which
members are likely to be modified in a const member function.

ROMability
If an object is defined as const, it is a candidate to be placed in
read-only memory (ROM), which is often an important
consideration in embedded systems programming. Simply making
an object const, however, is not enough – the requirements for
ROMability are much stricter. Of course, the object must be
bitwise-const, rather than logical-const. This is easy to see if
logical constness is implemented only through the mutable
keyword, but probably not detectable by the compiler if constness
is cast away inside a const member function. In addition,

1. The class or struct must have no user-defined constructors
or destructor.

2. There can be no base classes (covered in Chapter 14) or
member objects with user-defined constructors or
destructors.

8: Constants 365

The effect of a write operation on any part of a const object of a
ROMable type is undefined. Although a suitably formed object may
be placed in ROM, no objects are ever required to be placed in
ROM.

volatile
The syntax of volatile is identical to that for const, but volatile
means “This data may change outside the knowledge of the
compiler.” Somehow, the environment is changing the data
(possibly through multitasking, multithreading or interrupts), and
volatile tells the compiler not to make any assumptions about that
data, especially during optimization.

If the compiler says, “I read this data into a register earlier, and I
haven’t touched that register,” normally it wouldn’t need to read the
data again. But if the data is volatile, the compiler cannot make
such an assumption because the data may have been changed by
another process, and it must reread that data rather than
optimizing the code to remove what would normally be a redundant
read.

You create volatile objects using the same syntax that you use to
create const objects. You can also create const volatile objects,
which can’t be changed by the client programmer but instead
change through some outside agency. Here is an example that
might represent a class associated with some piece of
communication hardware:

//: C08:Volatile.cpp

// The volatile keyword

class Comm {

 const volatile unsigned char byte;

 volatile unsigned char flag;

 enum { bufsize = 100 };

 unsigned char buf[bufsize];

 int index;

public:

 Comm();

366 Thinking in C++ www.BruceEckel.com

 void isr() volatile;

 char read(int index) const;

};

Comm::Comm() : index(0), byte(0), flag(0) {}

// Only a demo; won't actually work

// as an interrupt service routine:

void Comm::isr() volatile {

 flag = 0;

 buf[index++] = byte;

 // Wrap to beginning of buffer:

 if(index >= bufsize) index = 0;

}

char Comm::read(int index) const {

 if(index < 0 || index >= bufsize)

 return 0;

 return buf[index];

}

int main() {

 volatile Comm Port;

 Port.isr(); // OK

//! Port.read(0); // Error, read() not volatile

} ///:~

As with const, you can use volatile for data members, member
functions, and objects themselves. You can only call volatile
member functions for volatile objects.

The reason that isr() can’t actually be used as an interrupt service
routine is that in a member function, the address of the current
object (this) must be secretly passed, and an ISR generally wants
no arguments at all. To solve this problem, you can make isr() a
static member function, a subject covered in Chapter 10.

The syntax of volatile is identical to const, so discussions of the
two are often treated together. The two are referred to in
combination as the c-v qualifier.

8: Constants 367

Summary
The const keyword gives you the ability to define objects, function
arguments, return values and member functions as constants, and
to eliminate the preprocessor for value substitution without losing
any preprocessor benefits. All this provides a significant additional
form of type checking and safety in your programming. The use of
so-called const correctness (the use of const anywhere you possibly
can) can be a lifesaver for projects.

Although you can ignore const and continue to use old C coding
practices, it’s there to help you. Chapters 11 and on begin using
references heavily, and there you’ll see even more about how critical
it is to use const with function arguments.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create three const int values, then add them together to
produce a value that determines the size of an array in an
array definition. Try to compile the same code in C and
see what happens (you can generally force your C++
compiler to run as a C compiler by using a command-line
flag).

2. Prove to yourself that the C and C++ compilers really do
treat constants differently. Create a global const and use
it in a global constant expression; then compile it under
both C and C++.

3. Create example const definitions for all the built-in types
and their variants. Use these in expressions with other
consts to make new const definitions. Make sure they
compile successfully.

4. Create a const definition in a header file, include that
header file in two .cpp files, then compile those files and
link them. You should not get any errors. Now try the
same experiment with C.

368 Thinking in C++ www.BruceEckel.com

5. Create a const whose value is determined at runtime by
reading the time when the program starts (you’ll have to
use the <ctime> standard header). Later in the program,
try to read a second value of the time into your const and
see what happens.

6. Create a const array of char, then try to change one of
the chars.

7. Create an extern const declaration in one file, and put a
main() in that file that prints the value of the extern
const. Provide an extern const definition in a second
file, then compile and link the two files together.

8. Write two pointers to const long using both forms of the
declaration. Point one of them to an array of long.
Demonstrate that you can increment or decrement the
pointer, but you can’t change what it points to.

9. Write a const pointer to a double, and point it at an
array of double. Show that you can change what the
pointer points to, but you can’t increment or decrement
the pointer.

10. Write a const pointer to a const object. Show that you
can only read the value that the pointer points to, but you
can’t change the pointer or what it points to.

11. Remove the comment on the error-generating line of
code in PointerAssignment.cpp to see the error that
your compiler generates.

12. Create a character array literal with a pointer that points
to the beginning of the array. Now use the pointer to
modify elements in the array. Does your compiler report
this as an error? Should it? If it doesn’t, why do you think
that is?

13. Create a function that takes an argument by value as a
const; then try to change that argument in the function
body.

14. Create a function that takes a float by value. Inside the
function, bind a const float& to the argument, and only
use the reference from then on to ensure that the
argument is not changed.

8: Constants 369

15. Modify ConstReturnValues.cpp removing comments
on the error-causing lines one at a time, to see what error
messages your compiler generates.

16. Modify ConstPointer.cpp removing comments on the
error-causing lines one at a time, to see what error
messages your compiler generates.

17. Make a new version of ConstPointer.cpp called
ConstReference.cpp which demonstrates references
instead of pointers (you may need to look forward to
Chapter 11).

18. Modify ConstTemporary.cpp removing the comment
on the error-causing line to see what error messages your
compiler generates.

19. Create a class containing both a const and a non-const
float. Initialize these using the constructor initializer list.

20. Create a class called MyString which contains a string
and has a constructor that initializes the string, and a
print() function. Modify StringStack.cpp so that the
container holds MyString objects, and main() so it
prints them.

21. Create a class containing a const member that you
initialize in the constructor initializer list and an
untagged enumeration that you use to determine an array
size.

22. In ConstMember.cpp, remove the const specifier on
the member function definition, but leave it on the
declaration, to see what kind of compiler error message
you get.

23. Create a class with both const and non-const member
functions. Create const and non-const objects of this
class, and try calling the different types of member
functions for the different types of objects.

24. Create a class with both const and non-const member
functions. Try to call a non-const member function from
a const member function to see what kind of compiler
error message you get.

370 Thinking in C++ www.BruceEckel.com

25. In Mutable.cpp, remove the comment on the error-
causing line to see what sort of error message your
compiler produces.

26. Modify Quoter.cpp by making quote() a const
member function and lastquote mutable.

27. Create a class with a volatile data member. Create both
volatile and non-volatile member functions that
modify the volatile data member, and see what the
compiler says. Create both volatile and non-volatile
objects of your class and try calling both the volatile and
non-volatile member functions to see what is successful
and what kind of error messages the compiler produces.

28. Create a class called bird that can fly() and a class rock
that can’t. Create a rock object, take its address, and
assign that to a void*. Now take the void*, assign it to a
bird* (you’ll have to use a cast), and call fly() through
that pointer. Is it clear why C’s permission to openly
assign via a void* (without a cast) is a “hole” in the
language, which couldn’t be propagated into C++?

 371

9: Inline Functions
One of the important features C++ inherits from C is

efficiency. If the efficiency of C++ were dramatically

less than C, there would be a significant contingent of

programmers who couldn’t justify its use.

372 Thinking in C++ www.BruceEckel.com

In C, one of the ways to preserve efficiency is through the use of
macros, which allow you to make what looks like a function call
without the normal function call overhead. The macro is
implemented with the preprocessor instead of the compiler proper,
and the preprocessor replaces all macro calls directly with the
macro code, so there’s no cost involved from pushing arguments,
making an assembly-language CALL, returning arguments, and
performing an assembly-language RETURN. All the work is
performed by the preprocessor, so you have the convenience and
readability of a function call but it doesn’t cost you anything.

 There are two problems with the use of preprocessor macros in
C++. The first is also true with C: a macro looks like a function call,
but doesn’t always act like one. This can bury difficult-to-find bugs.
The second problem is specific to C++: the preprocessor has no
permission to access class member data. This means preprocessor
macros cannot be used as class member functions.

To retain the efficiency of the preprocessor macro, but to add the
safety and class scoping of true functions, C++ has the inline
function. In this chapter, we’ll look at the problems of preprocessor
macros in C++, how these problems are solved with inline
functions, and guidelines and insights on the way inlines work.

Preprocessor pitfalls
The key to the problems of preprocessor macros is that you can be
fooled into thinking that the behavior of the preprocessor is the
same as the behavior of the compiler. Of course, it was intended
that a macro look and act like a function call, so it’s quite easy to fall
into this fiction. The difficulties begin when the subtle differences
appear.

As a simple example, consider the following:

#define F (x) (x + 1)

Now, if a call is made to F like this

F(1)

9: Inline Functions 373

the preprocessor expands it, somewhat unexpectedly, to the
following:

(x) (x + 1)(1)

The problem occurs because of the gap between F and its opening
parenthesis in the macro definition. When this gap is removed, you
can actually call the macro with the gap

F (1)

and it will still expand properly to

(1 + 1)

The example above is fairly trivial and the problem will make itself
evident right away. The real difficulties occur when using
expressions as arguments in macro calls.

There are two problems. The first is that expressions may expand
inside the macro so that their evaluation precedence is different
from what you expect. For example,

#define FLOOR(x,b) x>=b?0:1

Now, if expressions are used for the arguments

if(FLOOR(a&0x0f,0x07)) // ...

the macro will expand to

if(a&0x0f>=0x07?0:1)

The precedence of & is lower than that of >=, so the macro
evaluation will surprise you. Once you discover the problem, you
can solve it by putting parentheses around everything in the macro
definition. (This is a good practice to use when creating
preprocessor macros.) Thus,

#define FLOOR(x,b) ((x)>=(b)?0:1)

Discovering the problem may be difficult, however, and you may
not find it until after you’ve taken the proper macro behavior for

374 Thinking in C++ www.BruceEckel.com

granted. In the un-parenthesized version of the preceding macro,
most expressions will work correctly because the precedence of >=
is lower than most of the operators like +, /, – –, and even the
bitwise shift operators. So you can easily begin to think that it
works with all expressions, including those using bitwise logical
operators.

The preceding problem can be solved with careful programming
practice: parenthesize everything in a macro. However, the second
difficulty is subtler. Unlike a normal function, every time you use an
argument in a macro, that argument is evaluated. As long as the
macro is called only with ordinary variables, this evaluation is
benign, but if the evaluation of an argument has side effects, then
the results can be surprising and will definitely not mimic function
behavior.

For example, this macro determines whether its argument falls
within a certain range:

#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0)

As long as you use an “ordinary” argument, the macro works very
much like a real function. But as soon as you relax and start
believing it is a real function, the problems start. Thus:

//: C09:MacroSideEffects.cpp

#include "../require.h"

#include <fstream>

using namespace std;

#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0)

int main() {

 ofstream out("macro.out");

 assure(out, "macro.out");

 for(int i = 4; i < 11; i++) {

 int a = i;

 out << "a = " << a << endl << '\t';

 out << "BAND(++a)=" << BAND(++a) << endl;

 out << "\t a = " << a << endl;

 }

} ///:~

9: Inline Functions 375

Notice the use of all upper-case characters in the name of the
macro. This is a helpful practice because it tells the reader this is a
macro and not a function, so if there are problems, it acts as a little
reminder.

Here’s the output produced by the program, which is not at all what
you would have expected from a true function:

a = 4

 BAND(++a)=0

 a = 5

a = 5

 BAND(++a)=8

 a = 8

a = 6

 BAND(++a)=9

 a = 9

a = 7

 BAND(++a)=10

 a = 10

a = 8

 BAND(++a)=0

 a = 10

a = 9

 BAND(++a)=0

 a = 11

a = 10

 BAND(++a)=0

 a = 12

When a is four, only the first part of the conditional occurs, so the
expression is evaluated only once, and the side effect of the macro
call is that a becomes five, which is what you would expect from a
normal function call in the same situation. However, when the
number is within the band, both conditionals are tested, which
results in two increments. The result is produced by evaluating the
argument again, which results in a third increment. Once the
number gets out of the band, both conditionals are still tested so
you get two increments. The side effects are different, depending on
the argument.

376 Thinking in C++ www.BruceEckel.com

This is clearly not the kind of behavior you want from a macro that
looks like a function call. In this case, the obvious solution is to
make it a true function, which of course adds the extra overhead
and may reduce efficiency if you call that function a lot.
Unfortunately, the problem may not always be so obvious, and you
can unknowingly get a library that contains functions and macros
mixed together, so a problem like this can hide some very difficult-
to-find bugs. For example, the putc() macro in cstdio may
evaluate its second argument twice. This is specified in Standard C.
Also, careless implementations of toupper() as a macro may
evaluate the argument more than once, which will give you
unexpected results with toupper(*p++).1

Macros and access
Of course, careful coding and use of preprocessor macros is
required with C, and we could certainly get away with the same
thing in C++ if it weren’t for one problem: a macro has no concept
of the scoping required with member functions. The preprocessor
simply performs text substitution, so you cannot say something like

class X {

 int i;

public:

#define VAL(X::i) // Error

or anything even close. In addition, there would be no indication of
which object you were referring to. There is simply no way to
express class scope in a macro. Without some alternative to
preprocessor macros, programmers will be tempted to make some
data members public for the sake of efficiency, thus exposing the
underlying implementation and preventing changes in that
implementation, as well as eliminating the guarding that private
provides.

1Andrew Koenig goes into more detail in his book C Traps & Pitfalls (Addison-
Wesley, 1989).

9: Inline Functions 377

Inline functions
In solving the C++ problem of a macro with access to private class
members, all the problems associated with preprocessor macros
were eliminated. This was done by bringing the concept of macros
under the control of the compiler where they belong. C++
implements the macro as inline function, which is a true function in
every sense. Any behavior you expect from an ordinary function,
you get from an inline function. The only difference is that an inline
function is expanded in place, like a preprocessor macro, so the
overhead of the function call is eliminated. Thus, you should
(almost) never use macros, only inline functions.

Any function defined within a class body is automatically inline, but
you can also make a non-class function inline by preceding it with
the inline keyword. However, for it to have any effect, you must
include the function body with the declaration, otherwise the
compiler will treat it as an ordinary function declaration. Thus,

inline int plusOne(int x);

has no effect at all other than declaring the function (which may or
may not get an inline definition sometime later). The successful
approach provides the function body:

inline int plusOne(int x) { return ++x; }

Notice that the compiler will check (as it always does) for the proper
use of the function argument list and return value (performing any
necessary conversions), something the preprocessor is incapable of.
Also, if you try to write the above as a preprocessor macro, you get
an unwanted side effect.

You’ll almost always want to put inline definitions in a header file.
When the compiler sees such a definition, it puts the function type
(the signature combined with the return value) and the function
body in its symbol table. When you use the function, the compiler
checks to ensure the call is correct and the return value is being
used correctly, and then substitutes the function body for the
function call, thus eliminating the overhead. The inline code does
occupy space, but if the function is small, this can actually take less

378 Thinking in C++ www.BruceEckel.com

space than the code generated to do an ordinary function call
(pushing arguments on the stack and doing the CALL).

An inline function in a header file has a special status, since you
must include the header file containing the function and its
definition in every file where the function is used, but you don’t end
up with multiple definition errors (however, the definition must be
identical in all places where the inline function is included).

Inlines inside classes
To define an inline function, you must ordinarily precede the
function definition with the inline keyword. However, this is not
necessary inside a class definition. Any function you define inside a
class definition is automatically an inline. For example:

//: C09:Inline.cpp

// Inlines inside classes

#include <iostream>

#include <string>

using namespace std;

class Point {

 int i, j, k;

public:

 Point(): i(0), j(0), k(0) {}

 Point(int ii, int jj, int kk)

 : i(ii), j(jj), k(kk) {}

 void print(const string& msg = "") const {

 if(msg.size() != 0) cout << msg << endl;

 cout << "i = " << i << ", "

 << "j = " << j << ", "

 << "k = " << k << endl;

 }

};

int main() {

 Point p, q(1,2,3);

 p.print("value of p");

 q.print("value of q");

} ///:~

9: Inline Functions 379

Here, the two constructors and the print() function are all inlines
by default. Notice in main() that the fact you are using inline
functions is transparent, as it should be. The logical behavior of a
function must be identical regardless of whether it’s an inline
(otherwise your compiler is broken). The only difference you’ll see
is in performance.

Of course, the temptation is to use inlines everywhere inside class
declarations because they save you the extra step of making the
external member function definition. Keep in mind, however, that
the idea of an inline is to provide improved opportunities for
optimization by the compiler. But inlining a big function will cause
that code to be duplicated everywhere the function is called,
producing code bloat that may mitigate the speed benefit (the only
reliable course of action is to experiment to discover the effects of
inlining on your program with your compiler).

Access functions
One of the most important uses of inlines inside classes is the
access function. This is a small function that allows you to read or
change part of the state of an object – that is, an internal variable or
variables. The reason inlines are so important for access functions
can be seen in the following example:

//: C09:Access.cpp

// Inline access functions

class Access {

 int i;

public:

 int read() const { return i; }

 void set(int ii) { i = ii; }

};

int main() {

 Access A;

 A.set(100);

 int x = A.read();

} ///:~

380 Thinking in C++ www.BruceEckel.com

Here, the class user never has direct contact with the state variables
inside the class, and they can be kept private, under the control of
the class designer. All the access to the private data members can
be controlled through the member function interface. In addition,
access is remarkably efficient. Consider the read(), for example.
Without inlines, the code generated for the call to read() would
typically include pushing this on the stack and making an assembly
language CALL. With most machines, the size of this code would be
larger than the code created by the inline, and the execution time
would certainly be longer.

Without inline functions, an efficiency-conscious class designer will
be tempted to simply make i a public member, eliminating the
overhead by allowing the user to directly access i. From a design
standpoint, this is disastrous because i then becomes part of the
public interface, which means the class designer can never change
it. You’re stuck with an int called i. This is a problem because you
may learn sometime later that it would be much more useful to
represent the state information as a float rather than an int, but
because int i is part of the public interface, you can’t change it. Or
you may want to perform some additional calculation as part of
reading or setting i, which you can’t do if it’s public. If, on the
other hand, you’ve always used member functions to read and
change the state information of an object, you can modify the
underlying representation of the object to your heart’s content.

In addition, the use of member functions to control data members
allows you to add code to the member function to detect when that
data is being changed, which can be very useful during debugging.
If a data member is public, anyone can change it anytime without
you knowing about it.

Accessors and mutators
Some people further divide the concept of access functions into
accessors (to read state information from an object) and mutators
(to change the state of an object). In addition, function overloading
may be used to provide the same function name for both the
accessor and mutator; how you call the function determines
whether you’re reading or modifying state information. Thus,

9: Inline Functions 381

//: C09:Rectangle.cpp

// Accessors & mutators

class Rectangle {

 int wide, high;

public:

 Rectangle(int w = 0, int h = 0)

 : wide(w), high(h) {}

 int width() const { return wide; } // Read

 void width(int w) { wide = w; } // Set

 int height() const { return high; } // Read

 void height(int h) { high = h; } // Set

};

int main() {

 Rectangle r(19, 47);

 // Change width & height:

 r.height(2 * r.width());

 r.width(2 * r.height());

} ///:~

The constructor uses the constructor initializer list (briefly
introduced in Chapter 8 and covered fully in Chapter 14) to
initialize the values of wide and high (using the pseudoconstructor
form for built-in types).

You cannot have member function names using the same identifiers
as data members, so you might be tempted to distinguish the data
members with a leading underscore. However, identifiers with
leading underscores are reserved so you should not use them.

You may choose instead to use “get” and “set” to indicate accessors
and mutators:

//: C09:Rectangle2.cpp

// Accessors & mutators with "get" and "set"

class Rectangle {

 int width, height;

public:

 Rectangle(int w = 0, int h = 0)

 : width(w), height(h) {}

 int getWidth() const { return width; }

382 Thinking in C++ www.BruceEckel.com

 void setWidth(int w) { width = w; }

 int getHeight() const { return height; }

 void setHeight(int h) { height = h; }

};

int main() {

 Rectangle r(19, 47);

 // Change width & height:

 r.setHeight(2 * r.getWidth());

 r.setWidth(2 * r.getHeight());

} ///:~

Of course, accessors and mutators don’t have to be simple pipelines
to an internal variable. Sometimes they can perform more
sophisticated calculations. The following example uses the Standard
C library time functions to produce a simple Time class:

//: C09:Cpptime.h

// A simple time class

#ifndef CPPTIME_H

#define CPPTIME_H

#include <ctime>

#include <cstring>

class Time {

 std::time_t t;

 std::tm local;

 char asciiRep[26];

 unsigned char lflag, aflag;

 void updateLocal() {

 if(!lflag) {

 local = *std::localtime(&t);

 lflag++;

 }

 }

 void updateAscii() {

 if(!aflag) {

 updateLocal();

 std::strcpy(asciiRep,std::asctime(&local));

 aflag++;

 }

 }

public:

 Time() { mark(); }

9: Inline Functions 383

 void mark() {

 lflag = aflag = 0;

 std::time(&t);

 }

 const char* ascii() {

 updateAscii();

 return asciiRep;

 }

 // Difference in seconds:

 int delta(Time* dt) const {

 return int(std::difftime(t, dt->t));

 }

 int daylightSavings() {

 updateLocal();

 return local.tm_isdst;

 }

 int dayOfYear() { // Since January 1

 updateLocal();

 return local.tm_yday;

 }

 int dayOfWeek() { // Since Sunday

 updateLocal();

 return local.tm_wday;

 }

 int since1900() { // Years since 1900

 updateLocal();

 return local.tm_year;

 }

 int month() { // Since January

 updateLocal();

 return local.tm_mon;

 }

 int dayOfMonth() {

 updateLocal();

 return local.tm_mday;

 }

 int hour() { // Since midnight, 24-hour clock

 updateLocal();

 return local.tm_hour;

 }

 int minute() {

 updateLocal();

 return local.tm_min;

 }

 int second() {

384 Thinking in C++ www.BruceEckel.com

 updateLocal();

 return local.tm_sec;

 }

};

#endif // CPPTIME_H ///:~

The Standard C library functions have multiple representations for
time, and these are all part of the Time class. However, it isn’t
necessary to update all of them, so instead the time_t t is used as
the base representation, and the tm local and ASCII character
representation asciiRep each have flags to indicate if they’ve been
updated to the current time_t. The two private functions
updateLocal() and updateAscii() check the flags and
conditionally perform the update.

The constructor calls the mark() function (which the user can also
call to force the object to represent the current time), and this clears
the two flags to indicate that the local time and ASCII
representation are now invalid. The ascii() function calls
updateAscii(), which copies the result of the Standard C library
function asctime() into a local buffer because asctime() uses a
static data area that is overwritten if the function is called
elsewhere. The ascii() function return value is the address of this
local buffer.

All the functions starting with daylightSavings() use the
updateLocal() function, which causes the resulting composite
inlines to be fairly large. This doesn’t seem worthwhile, especially
considering you probably won’t call the functions very much.
However, this doesn’t mean all the functions should be made non-
inline. If you make other functions non-inline, at least keep
updateLocal() inline so that its code will be duplicated in the
non-inline functions, eliminating extra function-call overhead.

Here’s a small test program:

//: C09:Cpptime.cpp

// Testing a simple time class

#include "Cpptime.h"

#include <iostream>

using namespace std;

9: Inline Functions 385

int main() {

 Time start;

 for(int i = 1; i < 1000; i++) {

 cout << i << ' ';

 if(i%10 == 0) cout << endl;

 }

 Time end;

 cout << endl;

 cout << "start = " << start.ascii();

 cout << "end = " << end.ascii();

 cout << "delta = " << end.delta(&start);

} ///:~

A Time object is created, then some time-consuming activity is
performed, then a second Time object is created to mark the
ending time. These are used to show starting, ending, and elapsed
times.

Stash & Stack with inlines
Armed with inlines, we can now convert the Stash and Stack
classes to be more efficient:

//: C09:Stash4.h

// Inline functions

#ifndef STASH4_H

#define STASH4_H

#include "../require.h"

class Stash {

 int size; // Size of each space

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Dynamically allocated array of bytes:

 unsigned char* storage;

 void inflate(int increase);

public:

 Stash(int sz) : size(sz), quantity(0),

 next(0), storage(0) {}

 Stash(int sz, int initQuantity) : size(sz),

 quantity(0), next(0), storage(0) {

 inflate(initQuantity);

386 Thinking in C++ www.BruceEckel.com

 }

 Stash::~Stash() {

 if(storage != 0)

 delete []storage;

 }

 int add(void* element);

 void* fetch(int index) const {

 require(0 <= index, "Stash::fetch (-)index");

 if(index >= next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return &(storage[index * size]);

 }

 int count() const { return next; }

};

#endif // STASH4_H ///:~

The small functions obviously work well as inlines, but notice that
the two largest functions are still left as non-inlines, since inlining
them probably wouldn’t cause any performance gains:

//: C09:Stash4.cpp {O}

#include "Stash4.h"

#include <iostream>

#include <cassert>

using namespace std;

const int increment = 100;

int Stash::add(void* element) {

 if(next >= quantity) // Enough space left?

 inflate(increment);

 // Copy element into storage,

 // starting at next empty space:

 int startBytes = next * size;

 unsigned char* e = (unsigned char*)element;

 for(int i = 0; i < size; i++)

 storage[startBytes + i] = e[i];

 next++;

 return(next - 1); // Index number

}

void Stash::inflate(int increase) {

 assert(increase >= 0);

 if(increase == 0) return;

9: Inline Functions 387

 int newQuantity = quantity + increase;

 int newBytes = newQuantity * size;

 int oldBytes = quantity * size;

 unsigned char* b = new unsigned char[newBytes];

 for(int i = 0; i < oldBytes; i++)

 b[i] = storage[i]; // Copy old to new

 delete [](storage); // Release old storage

 storage = b; // Point to new memory

 quantity = newQuantity; // Adjust the size

} ///:~

Once again, the test program verifies that everything is working
correctly:

//: C09:Stash4Test.cpp

//{L} Stash4

#include "Stash4.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main() {

 Stash intStash(sizeof(int));

 for(int i = 0; i < 100; i++)

 intStash.add(&i);

 for(int j = 0; j < intStash.count(); j++)

 cout << "intStash.fetch(" << j << ") = "

 << *(int*)intStash.fetch(j)

 << endl;

 const int bufsize = 80;

 Stash stringStash(sizeof(char) * bufsize, 100);

 ifstream in("Stash4Test.cpp");

 assure(in, "Stash4Test.cpp");

 string line;

 while(getline(in, line))

 stringStash.add((char*)line.c_str());

 int k = 0;

 char* cp;

 while((cp = (char*)stringStash.fetch(k++))!=0)

 cout << "stringStash.fetch(" << k << ") = "

 << cp << endl;

} ///:~

388 Thinking in C++ www.BruceEckel.com

This is the same test program that was used before, so the output
should be basically the same.

The Stack class makes even better use of inlines:

//: C09:Stack4.h

// With inlines

#ifndef STACK4_H

#define STACK4_H

#include "../require.h"

class Stack {

 struct Link {

 void* data;

 Link* next;

 Link(void* dat, Link* nxt):

 data(dat), next(nxt) {}

 }* head;

public:

 Stack() : head(0) {}

 ~Stack() {

 require(head == 0, "Stack not empty");

 }

 void push(void* dat) {

 head = new Link(dat, head);

 }

 void* peek() const {

 return head ? head->data : 0;

 }

 void* pop() {

 if(head == 0) return 0;

 void* result = head->data;

 Link* oldHead = head;

 head = head->next;

 delete oldHead;

 return result;

 }

};

#endif // STACK4_H ///:~

Notice that the Link destructor that was present but empty in the
previous version of Stack has been removed. In pop(), the
expression delete oldHead simply releases the memory used by

9: Inline Functions 389

that Link (it does not destroy the data object pointed to by the
Link).

Most of the functions inline quite nicely and obviously, especially
for Link. Even pop() seems legitimate, although anytime you have
conditionals or local variables it’s not clear that inlines will be that
beneficial. Here, the function is small enough that it probably won’t
hurt anything.

If all your functions are inlined, using the library becomes quite
simple because there’s no linking necessary, as you can see in the
test example (notice that there’s no Stack4.cpp):

//: C09:Stack4Test.cpp

//{T} Stack4Test.cpp

#include "Stack4.h"

#include "../require.h"

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1); // File name is argument

 ifstream in(argv[1]);

 assure(in, argv[1]);

 Stack textlines;

 string line;

 // Read file and store lines in the stack:

 while(getline(in, line))

 textlines.push(new string(line));

 // Pop the lines from the stack and print them:

 string* s;

 while((s = (string*)textlines.pop()) != 0) {

 cout << *s << endl;

 delete s;

 }

} ///:~

People will sometimes write classes with all inline functions so that
the whole class will be in the header file (you’ll see in this book that
I step over the line myself). During program development this is
probably harmless, although sometimes it can make for longer

390 Thinking in C++ www.BruceEckel.com

compilations. Once the program stabilizes a bit, you’ll probably
want to go back and make functions non-inline where appropriate.

Inlines & the compiler
To understand when inlining is effective, it’s helpful to know what
the compiler does when it encounters an inline. As with any
function, the compiler holds the function type (that is, the function
prototype including the name and argument types, in combination
with the function return value) in its symbol table. In addition,
when the compiler sees that the inline’s function type and the
function body parses without error, the code for the function body
is also brought into the symbol table. Whether the code is stored in
source form, compiled assembly instructions, or some other
representation is up to the compiler.

When you make a call to an inline function, the compiler first
ensures that the call can be correctly made. That is, all the
argument types must either be the exact types in the function’s
argument list, or the compiler must be able to make a type
conversion to the proper types and the return value must be the
correct type (or convertible to the correct type) in the destination
expression. This, of course, is exactly what the compiler does for
any function and is markedly different from what the preprocessor
does because the preprocessor cannot check types or make
conversions.

If all the function type information fits the context of the call, then
the inline code is substituted directly for the function call,
eliminating the call overhead and allowing for further optimizations
by the compiler. Also, if the inline is a member function, the
address of the object (this) is put in the appropriate place(s), which
of course is another action the preprocessor is unable to perform.

Limitations
There are two situations in which the compiler cannot perform
inlining. In these cases, it simply reverts to the ordinary form of a
function by taking the inline definition and creating storage for the

9: Inline Functions 391

function just as it does for a non-inline. If it must do this in multiple
translation units (which would normally cause a multiple definition
error), the linker is told to ignore the multiple definitions.

The compiler cannot perform inlining if the function is too
complicated. This depends upon the particular compiler, but at the
point most compilers give up, the inline probably wouldn’t gain you
any efficiency. In general, any sort of looping is considered too
complicated to expand as an inline, and if you think about it,
looping probably entails much more time inside the function than
what is required for the function call overhead. If the function is
just a collection of simple statements, the compiler probably won’t
have any trouble inlining it, but if there are a lot of statements, the
overhead of the function call will be much less than the cost of
executing the body. And remember, every time you call a big inline
function, the entire function body is inserted in place of each call, so
you can easily get code bloat without any noticeable performance
improvement. (Note that some of the examples in this book may
exceed reasonable inline sizes in favor of conserving screen real
estate.)

The compiler also cannot perform inlining if the address of the
function is taken implicitly or explicitly. If the compiler must
produce an address, then it will allocate storage for the function
code and use the resulting address. However, where an address is
not required, the compiler will probably still inline the code.

It is important to understand that an inline is just a suggestion to
the compiler; the compiler is not forced to inline anything at all. A
good compiler will inline small, simple functions while intelligently
ignoring inlines that are too complicated. This will give you the
results you want – the true semantics of a function call with the
efficiency of a macro.

Forward references
If you’re imagining what the compiler is doing to implement inlines,
you can confuse yourself into thinking there are more limitations
than actually exist. In particular, if an inline makes a forward
reference to a function that hasn’t yet been declared in the class

392 Thinking in C++ www.BruceEckel.com

(whether that function is inline or not), it can seem like the
compiler won’t be able to handle it:

//: C09:EvaluationOrder.cpp

// Inline evaluation order

class Forward {

 int i;

public:

 Forward() : i(0) {}

 // Call to undeclared function:

 int f() const { return g() + 1; }

 int g() const { return i; }

};

int main() {

 Forward frwd;

 frwd.f();

} ///:~

In f(), a call is made to g(), although g() has not yet been
declared. This works because the language definition states that no
inline functions in a class shall be evaluated until the closing brace
of the class declaration.

Of course, if g() in turn called f(), you’d end up with a set of
recursive calls, which are too complicated for the compiler to inline.
(Also, you’d have to perform some test in f() or g() to force one of
them to “bottom out,” or the recursion would be infinite.)

Hidden activities in constructors & destructors
Constructors and destructors are two places where you can be
fooled into thinking that an inline is more efficient than it actually
is. Constructors and destructors may have hidden activities,
because the class can contain subobjects whose constructors and
destructors must be called. These subobjects may be member
objects, or they may exist because of inheritance (covered in
Chapter 14). As an example of a class with member objects:

//: C09:Hidden.cpp

// Hidden activities in inlines

9: Inline Functions 393

#include <iostream>

using namespace std;

class Member {

 int i, j, k;

public:

 Member(int x = 0) : i(x), j(x), k(x) {}

 ~Member() { cout << "~Member" << endl; }

};

class WithMembers {

 Member q, r, s; // Have constructors

 int i;

public:

 WithMembers(int ii) : i(ii) {} // Trivial?

 ~WithMembers() {

 cout << "~WithMembers" << endl;

 }

};

int main() {

 WithMembers wm(1);

} ///:~

The constructor for Member is simple enough to inline, since
there’s nothing special going on – no inheritance or member objects
are causing extra hidden activities. But in class WithMembers
there’s more going on than meets the eye. The constructors and
destructors for the member objects q, r, and s are being called
automatically, and those constructors and destructors are also
inline, so the difference is significant from normal member
functions. This doesn’t necessarily mean that you should always
make constructor and destructor definitions non-inline; there are
cases in which it makes sense. Also, when you’re making an initial
“sketch” of a program by quickly writing code, it’s often more
convenient to use inlines. But if you’re concerned about efficiency,
it’s a place to look.

Reducing clutter
In a book like this, the simplicity and terseness of putting inline
definitions inside classes is very useful because more fits on a page

394 Thinking in C++ www.BruceEckel.com

or screen (in a seminar). However, Dan Saks2 has pointed out that
in a real project this has the effect of needlessly cluttering the class
interface and thereby making the class harder to use. He refers to
member functions defined within classes using the Latin in situ (in
place) and maintains that all definitions should be placed outside
the class to keep the interface clean. Optimization, he argues, is a
separate issue. If you want to optimize, use the inline keyword.
Using this approach, the earlier Rectangle.cpp example becomes:

//: C09:Noinsitu.cpp

// Removing in situ functions

class Rectangle {

 int width, height;

public:

 Rectangle(int w = 0, int h = 0);

 int getWidth() const;

 void setWidth(int w);

 int getHeight() const;

 void setHeight(int h);

};

inline Rectangle::Rectangle(int w, int h)

 : width(w), height(h) {}

inline int Rectangle::getWidth() const {

 return width;

}

inline void Rectangle::setWidth(int w) {

 width = w;

}

inline int Rectangle::getHeight() const {

 return height;

}

inline void Rectangle::setHeight(int h) {

 height = h;

}

2 Co-author with Tom Plum of C++ Programming Guidelines, Plum Hall, 1991.

9: Inline Functions 395

int main() {

 Rectangle r(19, 47);

 // Transpose width & height:

 int iHeight = r.getHeight();

 r.setHeight(r.getWidth());

 r.setWidth(iHeight);

} ///:~

Now if you want to compare the effect of inline functions to non-
inline functions, you can simply remove the inline keyword. (Inline
functions should normally be put in header files, however, while
non-inline functions must reside in their own translation unit.) If
you want to put the functions into documentation, it’s a simple cut-
and-paste operation. In situ functions require more work and have
greater potential for errors. Another argument for this approach is
that you can always produce a consistent formatting style for
function definitions, something that doesn’t always occur with in
situ functions.

More preprocessor features
Earlier, I said that you almost always want to use inline functions
instead of preprocessor macros. The exceptions are when you need
to use three special features in the C preprocessor (which is also the
C++ preprocessor): stringizing, string concatenation, and token
pasting. Stringizing, introduced earlier in the book, is performed
with the # directive and allows you to take an identifier and turn it
into a character array. String concatenation takes place when two
adjacent character arrays have no intervening punctuation, in
which case they are combined. These two features are especially
useful when writing debug code. Thus,

#define DEBUG(x) cout << #x " = " << x << endl

This prints the value of any variable. You can also get a trace that
prints out the statements as they execute:

#define TRACE(s) cerr << #s << endl; s

396 Thinking in C++ www.BruceEckel.com

The #s stringizes the statement for output, and the second s
reiterates the statement so it is executed. Of course, this kind of
thing can cause problems, especially in one-line for loops:

for(int i = 0; i < 100; i++)

 TRACE(f(i));

Because there are actually two statements in the TRACE() macro,
the one-line for loop executes only the first one. The solution is to
replace the semicolon with a comma in the macro.

Token pasting
Token pasting, implemented with the ## directive, is very useful
when you are manufacturing code. It allows you to take two
identifiers and paste them together to automatically create a new
identifier. For example,

#define FIELD(a) char* a##_string; int a##_size

class Record {

 FIELD(one);

 FIELD(two);

 FIELD(three);

 // ...

};

Each call to the FIELD() macro creates an identifier to hold a
character array and another to hold the length of that array. Not
only is it easier to read, it can eliminate coding errors and make
maintenance easier.

Improved error checking
The require.h functions have been used up to this point without
defining them (although assert() has also been used to help detect
programmer errors where it’s appropriate). Now it’s time to define
this header file. Inline functions are convenient here because they
allow everything to be placed in a header file, which simplifies the
process of using the package. You just include the header file and
you don’t need to worry about linking an implementation file.

9: Inline Functions 397

You should note that exceptions (presented in detail in Volume 2 of
this book) provide a much more effective way of handling many
kinds of errors – especially those that you’d like to recover from –
instead of just halting the program. The conditions that require.h
handles, however, are ones which prevent the continuation of the
program, such as if the user doesn’t provide enough command-line
arguments or if a file cannot be opened. Thus, it’s acceptable that
they call the Standard C Library function exit().

The following header file is placed in the book’s root directory so it’s
easily accessed from all chapters.

//: :require.h

// Test for error conditions in programs

// Local "using namespace std" for old compilers

#ifndef REQUIRE_H

#define REQUIRE_H

#include <cstdio>

#include <cstdlib>

#include <fstream>

#include <string>

inline void require(bool requirement,

 const std::string& msg = "Requirement failed"){

 using namespace std;

 if (!requirement) {

 fputs(msg.c_str(), stderr);

 fputs("\n", stderr);

 exit(1);

 }

}

inline void requireArgs(int argc, int args,

 const std::string& msg =

 "Must use %d arguments") {

 using namespace std;

 if (argc != args + 1) {

 fprintf(stderr, msg.c_str(), args);

 fputs("\n", stderr);

 exit(1);

 }

}

398 Thinking in C++ www.BruceEckel.com

inline void requireMinArgs(int argc, int minArgs,

 const std::string& msg =

 "Must use at least %d arguments") {

 using namespace std;

 if(argc < minArgs + 1) {

 fprintf(stderr, msg.c_str(), minArgs);

 fputs("\n", stderr);

 exit(1);

 }

}

inline void assure(std::ifstream& in,

 const std::string& filename = "") {

 using namespace std;

 if(!in) {

 fprintf(stderr, "Could not open file %s\n",

 filename.c_str());

 exit(1);

 }

}

inline void assure(std::ofstream& out,

 const std::string& filename = "") {

 using namespace std;

 if(!out) {

 fprintf(stderr, "Could not open file %s\n",

 filename.c_str());

 exit(1);

 }

}

#endif // REQUIRE_H ///:~

The default values provide reasonable messages that can be
changed if necessary.

You’ll notice that instead of using char* arguments, const
string& arguments are used. This allows both char* and strings
as arguments to these functions, and thus is more generally useful
(you may want to follow this form in your own coding).

In the definitions for requireArgs() and requireMinArgs(),
one is added to the number of arguments you need on the
command line because argc always includes the name of the

9: Inline Functions 399

program being executed as argument zero, and so always has a
value that is one more than the number of actual arguments on the
command line.

Note the use of local “using namespace std” declarations within
each function. This is because some compilers at the time of this
writing incorrectly did not include the C standard library functions
in namespace std, so explicit qualification would cause a compile-
time error. The local declaration allows require.h to work with
both correct and incorrect libraries without opening up the
namespace std for anyone who includes this header file.

Here’s a simple program to test require.h:

//: C09:ErrTest.cpp

//{T} ErrTest.cpp

// Testing require.h

#include "../require.h"

#include <fstream>

using namespace std;

int main(int argc, char* argv[]) {

 int i = 1;

 require(i, "value must be nonzero");

 requireArgs(argc, 1);

 requireMinArgs(argc, 1);

 ifstream in(argv[1]);

 assure(in, argv[1]); // Use the file name

 ifstream nofile("nofile.xxx");

 // Fails:

//! assure(nofile); // The default argument

 ofstream out("tmp.txt");

 assure(out);

} ///:~

You might be tempted to go one step further for opening files and
add a macro to require.h:

#define IFOPEN(VAR, NAME) \

 ifstream VAR(NAME); \

 assure(VAR, NAME);

Which could then be used like this:

400 Thinking in C++ www.BruceEckel.com

IFOPEN(in, argv[1])

At first, this might seem appealing since it means there’s less to
type. It’s not terribly unsafe, but it’s a road best avoided. Note that,
once again, a macro looks like a function but behaves differently;
it’s actually creating an object (in) whose scope persists beyond the
macro. You may understand this, but for new programmers and
code maintainers it’s just one more thing they have to puzzle out.
C++ is complicated enough without adding to the confusion, so try
to talk yourself out of using preprocessor macros whenever you can.

Summary
It’s critical that you be able to hide the underlying implementation
of a class because you may want to change that implementation
sometime later. You’ll make these changes for efficiency, or because
you get a better understanding of the problem, or because some
new class becomes available that you want to use in the
implementation. Anything that jeopardizes the privacy of the
underlying implementation reduces the flexibility of the language.
Thus, the inline function is very important because it virtually
eliminates the need for preprocessor macros and their attendant
problems. With inlines, member functions can be as efficient as
preprocessor macros.

The inline function can be overused in class definitions, of course.
The programmer is tempted to do so because it’s easier, so it will
happen. However, it’s not that big of an issue because later, when
looking for size reductions, you can always change the functions to
non-inlines with no effect on their functionality. The development
guideline should be “First make it work, then optimize it.”

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Write a program that uses the F() macro shown at the
beginning of the chapter and demonstrates that it does

9: Inline Functions 401

not expand properly, as described in the text. Repair the
macro and show that it works correctly.

2. Write a program that uses the FLOOR() macro shown
at the beginning of the chapter. Show the conditions
under which it does not work properly.

3. Modify MacroSideEffects.cpp so that BAND() works
properly.

4. Create two identical functions, f1() and f2(). Inline f1()
and leave f2() as an non-inline function. Use the
Standard C Library function clock() that is found in
<ctime> to mark the starting point and ending points
and compare the two functions to see which one is faster.
You may need to make repeated calls to the functions
inside your timing loop in order to get useful numbers.

5. Experiment with the size and complexity of the code
inside the functions in Exercise 4 to see if you can find a
break-even point where the inline function and the non-
inline function take the same amount of time. If you have
them available, try this with different compilers and note
the differences.

6. Prove that inline functions default to internal linkage.

7. Create a class that contains an array of char. Add an
inline constructor that uses the Standard C library
function memset() to initialize the array to the
constructor argument (default this to ‘ ’), and an inline
member function called print() to print out all the
characters in the array.

8. Take the NestFriend.cpp example from Chapter 5 and
replace all the member functions with inlines. Make them
non-in situ inline functions. Also change the initialize()
functions to constructors.

9. Modify StringStack.cpp from Chapter 8 to use inline
functions.

10. Create an enum called Hue containing red, blue, and
yellow. Now create a class called Color containing a
data member of type Hue and a constructor that sets the
Hue from its argument. Add access functions to “get”
and “set” the Hue. Make all of the functions inlines.

402 Thinking in C++ www.BruceEckel.com

11. Modify Exercise 10 to use the “accessor” and “mutator”
approach.

12. Modify Cpptime.cpp so that it measures the time from
the time that the program begins running to the time
when the user presses the “Enter” or “Return” key.

13. Create a class with two inline member functions, such
that the first function that’s defined in the class calls the
second function, without the need for a forward
declaration. Write a main that creates an object of the
class and calls the first function.

14. Create a class A with an inline default constructor that
announces itself. Now make a new class B and put an
object of A as a member of B, and give B an inline
constructor. Create an array of B objects and see what
happens.

15. Create a large quantity of the objects from the previous
Exercise, and use the Time class to time the difference
between non-inline constructors and inline constructors.
(If you have a profiler, also try using that.)

16. Write a program that takes a string as the command-line
argument. Write a for loop that removes one character
from the string with each pass, and use the DEBUG()
macro from this chapter to print the string each time.

17. Correct the TRACE() macro as specified in this chapter,
and prove that it works correctly.

18. Modify the FIELD() macro so that it also contains an
index number. Create a class whose members are
composed of calls to the FIELD() macro. Add a member
function that allows you to look up a field using its index
number. Write a main() to test the class.

19. Modify the FIELD() macro so that it automatically
generates access functions for each field (the data should
still be private, however). Create a class whose members
are composed of calls to the FIELD() macro. Write a
main() to test the class.

20. Write a program that takes two command-line
arguments: the first is an int and the second is a file
name. Use require.h to ensure that you have the right

9: Inline Functions 403

number of arguments, that the int is between 5 and 10,
and that the file can successfully be opened.

21. Write a program that uses the IFOPEN() macro to open
a file as an input stream. Note the creation of the
ifstream object and its scope.

22. (Challenging) Determine how to get your compiler to
generate assembly code. Create a file containing a very
small function and a main() that calls the function.
Generate assembly code when the function is inlined and
not inlined, and demonstrate that the inlined version
does not have the function call overhead.

 405

10: Name Control
Creating names is a fundamental activity in

programming, and when a project gets large, the

number of names can easily be overwhelming.

406 Thinking in C++ www.BruceEckel.com

C++ allows you a great deal of control over the creation and
visibility of names, where storage for those names is placed, and
linkage for names.

The static keyword was overloaded in C before people knew what
the term “overload” meant, and C++ has added yet another
meaning. The underlying concept with all uses of static seems to be
“something that holds its position” (like static electricity), whether
that means a physical location in memory or visibility within a file.

In this chapter, you’ll learn how static controls storage and
visibility, and an improved way to control access to names via C++’s
namespace feature. You’ll also find out how to use functions that
were written and compiled in C.

Static elements from C
In both C and C++ the keyword static has two basic meanings,
which unfortunately often step on each other’s toes:

1. Allocated once at a fixed address; that is, the object is created
in a special static data area rather than on the stack each
time a function is called. This is the concept of static storage.

2. Local to a particular translation unit (and local to a class
scope in C++, as you will see later). Here, static controls the
visibility of a name, so that name cannot be seen outside the
translation unit or class. This also describes the concept of
linkage, which determines what names the linker will see.

This section will look at the above meanings of static as they were
inherited from C.

static variables inside functions
When you create a local variable inside a function, the compiler
allocates storage for that variable each time the function is called by
moving the stack pointer down an appropriate amount. If there is
an initializer for the variable, the initialization is performed each
time that sequence point is passed.

10: Name Control 407

Sometimes, however, you want to retain a value between function
calls. You could accomplish this by making a global variable, but
then that variable would not be under the sole control of the
function. C and C++ allow you to create a static object inside a
function; the storage for this object is not on the stack but instead in
the program’s static data area. This object is initialized only once,
the first time the function is called, and then retains its value
between function invocations. For example, the following function
returns the next character in the array each time the function is
called:

//: C10:StaticVariablesInfunctions.cpp

#include "../require.h"

#include <iostream>

using namespace std;

char oneChar(const char* charArray = 0) {

 static const char* s;

 if(charArray) {

 s = charArray;

 return *s;

 }

 else

 require(s, "un-initialized s");

 if(*s == '\0')

 return 0;

 return *s++;

}

char* a = "abcdefghijklmnopqrstuvwxyz";

int main() {

 // oneChar(); // require() fails

 oneChar(a); // Initializes s to a

 char c;

 while((c = oneChar()) != 0)

 cout << c << endl;

} ///:~

The static char* s holds its value between calls of oneChar()
because its storage is not part of the stack frame of the function, but
is in the static storage area of the program. When you call
oneChar() with a char* argument, s is assigned to that

408 Thinking in C++ www.BruceEckel.com

argument, and the first character of the array is returned. Each
subsequent call to oneChar() without an argument produces the
default value of zero for charArray, which indicates to the
function that you are still extracting characters from the previously
initialized value of s. The function will continue to produce
characters until it reaches the null terminator of the character
array, at which point it stops incrementing the pointer so it doesn’t
overrun the end of the array.

But what happens if you call oneChar() with no arguments and
without previously initializing the value of s? In the definition for s,
you could have provided an initializer,

static char* s = 0;

but if you do not provide an initializer for a static variable of a built-
in type, the compiler guarantees that variable will be initialized to
zero (converted to the proper type) at program start-up. So in
oneChar(), the first time the function is called, s is zero. In this
case, the if(!s) conditional will catch it.

The initialization above for s is very simple, but initialization for
static objects (like all other objects) can be arbitrary expressions
involving constants and previously declared variables and
functions.

You should be aware that the function above is very vulnerable to
multithreading problems; whenever you design functions
containing static variables you should keep multithreading issues in
mind.

static class objects inside functions
The rules are the same for static objects of user-defined types,
including the fact that some initialization is required for the object.
However, assignment to zero has meaning only for built-in types;
user-defined types must be initialized with constructor calls. Thus,
if you don’t specify constructor arguments when you define the
static object, the class must have a default constructor. For
example,

10: Name Control 409

//: C10:StaticObjectsInFunctions.cpp

#include <iostream>

using namespace std;

class X {

 int i;

public:

 X(int ii = 0) : i(ii) {} // Default

 ~X() { cout << "X::~X()" << endl; }

};

void f() {

 static X x1(47);

 static X x2; // Default constructor required

}

int main() {

 f();

} ///:~

The static objects of type X inside f() can be initialized either with
the constructor argument list or with the default constructor. This
construction occurs the first time control passes through the
definition, and only the first time.

Static object destructors
Destructors for static objects (that is, all objects with static storage,
not just local static objects as in the example above) are called when
main() exits or when the Standard C library function exit() is
explicitly called. In most implementations, main() just calls
exit() when it terminates. This means that it can be dangerous to
call exit() inside a destructor because you can end up with infinite
recursion. Static object destructors are not called if you exit the
program using the Standard C library function abort().

You can specify actions to take place when leaving main() (or
calling exit()) by using the Standard C library function atexit().
In this case, the functions registered by atexit() may be called
before the destructors for any objects constructed before leaving
main() (or calling exit()).

410 Thinking in C++ www.BruceEckel.com

Like ordinary destruction, destruction of static objects occurs in the
reverse order of initialization. However, only objects that have been
constructed are destroyed. Fortunately, the C++ development tools
keep track of initialization order and the objects that have been
constructed. Global objects are always constructed before main()
is entered and destroyed as main() exits, but if a function
containing a local static object is never called, the constructor for
that object is never executed, so the destructor is also not executed.
For example,

//: C10:StaticDestructors.cpp

// Static object destructors

#include <fstream>

using namespace std;

ofstream out("statdest.out"); // Trace file

class Obj {

 char c; // Identifier

public:

 Obj(char cc) : c(cc) {

 out << "Obj::Obj() for " << c << endl;

 }

 ~Obj() {

 out << "Obj::~Obj() for " << c << endl;

 }

};

Obj a('a'); // Global (static storage)

// Constructor & destructor always called

void f() {

 static Obj b('b');

}

void g() {

 static Obj c('c');

}

int main() {

 out << "inside main()" << endl;

 f(); // Calls static constructor for b

 // g() not called

 out << "leaving main()" << endl;

10: Name Control 411

} ///:~

In Obj, the char c acts as an identifier so the constructor and
destructor can print out information about the object they’re
working on. The Obj a is a global object, so the constructor is
always called for it before main() is entered, but the constructors
for the static Obj b inside f() and the static Obj c inside g() are
called only if those functions are called.

To demonstrate which constructors and destructors are called, only
f() is called. The output of the program is

Obj::Obj() for a

inside main()

Obj::Obj() for b

leaving main()

Obj::~Obj() for b

Obj::~Obj() for a

The constructor for a is called before main() is entered, and the
constructor for b is called only because f() is called. When main()
exits, the destructors for the objects that have been constructed are
called in reverse order of their construction. This means that if g()
is called, the order in which the destructors for b and c are called
depends on whether f() or g() is called first.

Notice that the trace file ofstream object out is also a static object
– since it is defined outside of all functions, it lives in the static
storage area. It is important that its definition (as opposed to an
extern declaration) appear at the beginning of the file, before there
is any possible use of out. Otherwise, you’ll be using an object
before it is properly initialized.

In C++, the constructor for a global static object is called before
main() is entered, so you now have a simple and portable way to
execute code before entering main() and to execute code with the
destructor after exiting main(). In C, this was always a trial that
required you to root around in the compiler vendor’s assembly-
language startup code.

412 Thinking in C++ www.BruceEckel.com

Controlling linkage
Ordinarily, any name at file scope (that is, not nested inside a class
or function) is visible throughout all translation units in a program.
This is often called external linkage because at link time the name
is visible to the linker everywhere, external to that translation unit.
Global variables and ordinary functions have external linkage.

There are times when you’d like to limit the visibility of a name. You
might like to have a variable at file scope so all the functions in that
file can use it, but you don’t want functions outside that file to see
or access that variable, or to inadvertently cause name clashes with
identifiers outside the file.

An object or function name at file scope that is explicitly declared
static is local to its translation unit (in the terms of this book, the
cpp file where the declaration occurs). That name has internal
linkage. This means that you can use the same name in other
translation units without a name clash.

One advantage to internal linkage is that the name can be placed in
a header file without worrying that there will be a clash at link time.
Names that are commonly placed in header files, such as const
definitions and inline functions, default to internal linkage.
(However, const defaults to internal linkage only in C++; in C it
defaults to external linkage.) Note that linkage refers only to
elements that have addresses at link/load time; thus, class
declarations and local variables have no linkage.

Confusion
Here’s an example of how the two meanings of static can cross over
each other. All global objects implicitly have static storage class, so
if you say (at file scope),

int a = 0;

then storage for a will be in the program’s static data area, and the
initialization for a will occur once, before main() is entered. In
addition, the visibility of a is global across all translation units. In
terms of visibility, the opposite of static (visible only in this
translation unit) is extern, which explicitly states that the visibility

10: Name Control 413

of the name is across all translation units. So the definition above is
equivalent to saying

extern int a = 0;

But if you say instead,

static int a = 0;

all you’ve done is change the visibility, so a has internal linkage.
The storage class is unchanged – the object resides in the static data
area whether the visibility is static or extern.

Once you get into local variables, static stops altering the visibility
and instead alters the storage class.

If you declare what appears to be a local variable as extern, it
means that the storage exists elsewhere (so the variable is actually
global to the function). For example:

//: C10:LocalExtern.cpp

//{L} LocalExtern2

#include <iostream>

int main() {

 extern int i;

 std::cout << i;

} ///:~

//: C10:LocalExtern2.cpp {O}

int i = 5;

///:~

With function names (for non-member functions), static and
extern can only alter visibility, so if you say

extern void f();

it’s the same as the unadorned declaration

void f();

and if you say,

414 Thinking in C++ www.BruceEckel.com

static void f();

it means f() is visible only within this translation unit – this is
sometimes called file static.

Other storage class specifiers
You will see static and extern used commonly. There are two
other storage class specifiers that occur less often. The auto
specifier is almost never used because it tells the compiler that this
is a local variable. auto is short for “automatic” and it refers to the
way the compiler automatically allocates storage for the variable.
The compiler can always determine this fact from the context in
which the variable is defined, so auto is redundant.

A register variable is a local (auto) variable, along with a hint to
the compiler that this particular variable will be heavily used so the
compiler ought to keep it in a register if it can. Thus, it is an
optimization aid. Various compilers respond differently to this hint;
they have the option to ignore it. If you take the address of the
variable, the register specifier will almost certainly be ignored.
You should avoid using register because the compiler can usually
do a better job of optimization than you.

Namespaces
Although names can be nested inside classes, the names of global
functions, global variables, and classes are still in a single global
name space. The static keyword gives you some control over this
by allowing you to give variables and functions internal linkage
(that is, to make them file static). But in a large project, lack of
control over the global name space can cause problems. To solve
these problems for classes, vendors often create long complicated
names that are unlikely to clash, but then you’re stuck typing those
names. (A typedef is often used to simplify this.) It’s not an
elegant, language-supported solution.

You can subdivide the global name space into more manageable
pieces using the namespace feature of C++. The namespace
keyword, similar to class, struct, enum, and union, puts the

10: Name Control 415

names of its members in a distinct space. While the other keywords
have additional purposes, the creation of a new name space is the
only purpose for namespace.

Creating a namespace
The creation of a namespace is notably similar to the creation of a
class:

//: C10:MyLib.cpp

namespace MyLib {

 // Declarations

}

int main() {} ///:~

This produces a new namespace containing the enclosed
declarations. There are significant differences from class, struct,
union and enum, however:

�� A namespace definition can appear only at global scope, or
nested within another namespace.

�� No terminating semicolon is necessary after the closing brace
of a namespace definition.

�� A namespace definition can be “continued” over multiple
header files using a syntax that, for a class, would appear to
be a redefinition:

//: C10:Header1.h

#ifndef HEADER1_H

#define HEADER1_H

namespace MyLib {

 extern int x;

 void f();

 // ...

}

#endif // HEADER1_H ///:~

//: C10:Header2.h

#ifndef HEADER2_H

#define HEADER2_H

#include "Header1.h"

416 Thinking in C++ www.BruceEckel.com

// Add more names to MyLib

namespace MyLib { // NOT a redefinition!

 extern int y;

 void g();

 // ...

}

#endif // HEADER2_H ///:~

//: C10:Continuation.cpp

#include "Header2.h"

int main() {} ///:~

�� A namespace name can be aliased to another name, so you
don’t have to type an unwieldy name created by a library
vendor:

//: C10:BobsSuperDuperLibrary.cpp

namespace BobsSuperDuperLibrary {

 class Widget { /* ... */ };

 class Poppit { /* ... */ };

 // ...

}

// Too much to type! I’ll alias it:

namespace Bob = BobsSuperDuperLibrary;

int main() {} ///:~

�� You cannot create an instance of a namespace as you can
with a class.

Unnamed namespaces
Each translation unit contains an unnamed namespace that you can
add to by saying “namespace” without an identifier:

//: C10:UnnamedNamespaces.cpp

namespace {

 class Arm { /* ... */ };

 class Leg { /* ... */ };

 class Head { /* ... */ };

 class Robot {

 Arm arm[4];

 Leg leg[16];

 Head head[3];

 // ...

 } xanthan;

10: Name Control 417

 int i, j, k;

}

int main() {} ///:~

The names in this space are automatically available in that
translation unit without qualification. It is guaranteed that an
unnamed space is unique for each translation unit. If you put local
names in an unnamed namespace, you don’t need to give them
internal linkage by making them static.

C++ deprecates the use of file statics in favor of the unnamed
namespace.

Friends
You can inject a friend declaration into a namespace by declaring
it within an enclosed class:

//: C10:FriendInjection.cpp

namespace Me {

 class Us {

 //...

 friend void you();

 };

}

int main() {} ///:~

Now the function you() is a member of the namespace Me.

If you introduce a friend within a class in the global namespace, the
friend is injected globally.

Using a namespace
You can refer to a name within a namespace in three ways: by
specifying the name using the scope resolution operator, with a
using directive to introduce all names in the namespace, or with a
using declaration to introduce names one at a time.

Scope resolution
Any name in a namespace can be explicitly specified using the scope
resolution operator in the same way that you can refer to the names
within a class:

418 Thinking in C++ www.BruceEckel.com

//: C10:ScopeResolution.cpp

namespace X {

 class Y {

 static int i;

 public:

 void f();

 };

 class Z;

 void func();

}

int X::Y::i = 9;

class X::Z {

 int u, v, w;

public:

 Z(int i);

 int g();

};

X::Z::Z(int i) { u = v = w = i; }

int X::Z::g() { return u = v = w = 0; }

void X::func() {

 X::Z a(1);

 a.g();

}

int main(){} ///:~

Notice that the definition X::Y::i could just as easily be referring to
a data member of a class Y nested in a class X instead of a
namespace X.

So far, namespaces look very much like classes.

The using directive
Because it can rapidly get tedious to type the full qualification for an
identifier in a namespace, the using keyword allows you to import
an entire namespace at once. When used in conjunction with the
namespace keyword this is called a using directive. The using
directive makes names appear as if they belong to the nearest
enclosing namespace scope, so you can conveniently use the
unqualified names. Consider a simple namespace:

//: C10:NamespaceInt.h

#ifndef NAMESPACEINT_H

10: Name Control 419

#define NAMESPACEINT_H

namespace Int {

 enum sign { positive, negative };

 class Integer {

 int i;

 sign s;

 public:

 Integer(int ii = 0)

 : i(ii),

 s(i >= 0 ? positive : negative)

 {}

 sign getSign() const { return s; }

 void setSign(sign sgn) { s = sgn; }

 // ...

 };

}

#endif // NAMESPACEINT_H ///:~

One use of the using directive is to bring all of the names in Int
into another namespace, leaving those names nested within the
namespace:

//: C10:NamespaceMath.h

#ifndef NAMESPACEMATH_H

#define NAMESPACEMATH_H

#include "NamespaceInt.h"

namespace Math {

 using namespace Int;

 Integer a, b;

 Integer divide(Integer, Integer);

 // ...

}

#endif // NAMESPACEMATH_H ///:~

You can also declare all of the names in Int inside a function, but
leave those names nested within the function:

//: C10:Arithmetic.cpp

#include "NamespaceInt.h"

void arithmetic() {

 using namespace Int;

 Integer x;

 x.setSign(positive);

}

420 Thinking in C++ www.BruceEckel.com

int main(){} ///:~

Without the using directive, all the names in the namespace would
need to be fully qualified.

One aspect of the using directive may seem slightly
counterintuitive at first. The visibility of the names introduced with
a using directive is the scope in which the directive is made. But
you can override the names from the using directive as if they’ve
been declared globally to that scope!

//: C10:NamespaceOverriding1.cpp

#include "NamespaceMath.h"

int main() {

 using namespace Math;

 Integer a; // Hides Math::a;

 a.setSign(negative);

 // Now scope resolution is necessary

 // to select Math::a :

 Math::a.setSign(positive);

} ///:~

Suppose you have a second namespace that contains some of the
names in namespace Math:

//: C10:NamespaceOverriding2.h

#ifndef NAMESPACEOVERRIDING2_H

#define NAMESPACEOVERRIDING2_H

#include "NamespaceInt.h"

namespace Calculation {

 using namespace Int;

 Integer divide(Integer, Integer);

 // ...

}

#endif // NAMESPACEOVERRIDING2_H ///:~

Since this namespace is also introduced with a using directive, you
have the possibility of a collision. However, the ambiguity appears
at the point of use of the name, not at the using directive:

//: C10:OverridingAmbiguity.cpp

#include "NamespaceMath.h"

#include "NamespaceOverriding2.h"

void s() {

10: Name Control 421

 using namespace Math;

 using namespace Calculation;

 // Everything's ok until:

 //! divide(1, 2); // Ambiguity

}

int main() {} ///:~

Thus, it’s possible to write using directives to introduce a number
of namespaces with conflicting names without ever producing an
ambiguity.

The using declaration
You can inject names one at a time into the current scope with a
using declaration. Unlike the using directive, which treats names
as if they were declared globally to the scope, a using declaration is
a declaration within the current scope. This means it can override
names from a using directive:

//: C10:UsingDeclaration.h

#ifndef USINGDECLARATION_H

#define USINGDECLARATION_H

namespace U {

 inline void f() {}

 inline void g() {}

}

namespace V {

 inline void f() {}

 inline void g() {}

}

#endif // USINGDECLARATION_H ///:~

//: C10:UsingDeclaration1.cpp

#include "UsingDeclaration.h"

void h() {

 using namespace U; // Using directive

 using V::f; // Using declaration

 f(); // Calls V::f();

 U::f(); // Must fully qualify to call

}

int main() {} ///:~

The using declaration just gives the fully specified name of the
identifier, but no type information. This means that if the
namespace contains a set of overloaded functions with the same

422 Thinking in C++ www.BruceEckel.com

name, the using declaration declares all the functions in the
overloaded set.

You can put a using declaration anywhere a normal declaration
can occur. A using declaration works like a normal declaration in
all ways but one: because you don’t give an argument list, it’s
possible for a using declaration to cause the overload of a function
with the same argument types (which isn’t allowed with normal
overloading). This ambiguity, however, doesn’t show up until the
point of use, rather than the point of declaration.

A using declaration can also appear within a namespace, and it has
the same effect as anywhere else – that name is declared within the
space:

//: C10:UsingDeclaration2.cpp

#include "UsingDeclaration.h"

namespace Q {

 using U::f;

 using V::g;

 // ...

}

void m() {

 using namespace Q;

 f(); // Calls U::f();

 g(); // Calls V::g();

}

int main() {} ///:~

A using declaration is an alias, and it allows you to declare the
same function in separate namespaces. If you end up re-declaring
the same function by importing different namespaces, it’s OK –
there won’t be any ambiguities or duplications.

The use of namespaces
Some of the rules above may seem a bit daunting at first, especially
if you get the impression that you’ll be using them all the time. In
general, however, you can get away with very simple usage of
namespaces as long as you understand how they work. The key
thing to remember is that when you introduce a global using
directive (via a “using namespace” outside of any scope) you

10: Name Control 423

have thrown open the namespace for that file. This is usually fine
for an implementation file (a “cpp” file) because the using
directive is only in effect until the end of the compilation of that file.
That is, it doesn’t affect any other files, so you can adjust the control
of the namespaces one implementation file at a time. For example,
if you discover a name clash because of too many using directives
in a particular implementation file, it is a simple matter to change
that file so that it uses explicit qualifications or using declarations
to eliminate the clash, without modifying other implementation
files.

Header files are a different issue. You virtually never want to
introduce a global using directive into a header file, because that
would mean that any other file that included your header would
also have the namespace thrown open (and header files can include
other header files).

So, in header files you should either use explicit qualification or
scoped using directives and using declarations. This is the
practice that you will find in this book, and by following it you will
not “pollute” the global namespace and throw yourself back into the
pre-namespace world of C++.

Static members in C++
There are times when you need a single storage space to be used by
all objects of a class. In C, you would use a global variable, but this
is not very safe. Global data can be modified by anyone, and its
name can clash with other identical names in a large project. It
would be ideal if the data could be stored as if it were global, but be
hidden inside a class, and clearly associated with that class.

This is accomplished with static data members inside a class.
There is a single piece of storage for a static data member,
regardless of how many objects of that class you create. All objects
share the same static storage space for that data member, so it is a
way for them to “communicate” with each other. But the static data
belongs to the class; its name is scoped inside the class and it can be
public, private, or protected.

424 Thinking in C++ www.BruceEckel.com

Defining storage for static data members
Because static data has a single piece of storage regardless of how
many objects are created, that storage must be defined in a single
place. The compiler will not allocate storage for you. The linker will
report an error if a static data member is declared but not defined.

The definition must occur outside the class (no inlining is allowed),
and only one definition is allowed. Thus, it is common to put it in
the implementation file for the class. The syntax sometimes gives
people trouble, but it is actually quite logical. For example, if you
create a static data member inside a class like this:

class A {

 static int i;

public:

 //...

};

Then you must define storage for that static data member in the
definition file like this:

int A::i = 1;

If you were to define an ordinary global variable, you would say

int i = 1;

but here, the scope resolution operator and the class name are used
to specify A::i.

Some people have trouble with the idea that A::i is private, and
yet here’s something that seems to be manipulating it right out in
the open. Doesn’t this break the protection mechanism? It’s a
completely safe practice for two reasons. First, the only place this
initialization is legal is in the definition. Indeed, if the static data
were an object with a constructor, you would call the constructor
instead of using the = operator. Second, once the definition has
been made, the end-user cannot make a second definition – the
linker will report an error. And the class creator is forced to create
the definition or the code won’t link during testing. This ensures

10: Name Control 425

that the definition happens only once and that it’s in the hands of
the class creator.

The entire initialization expression for a static member is in the
scope of the class. For example,

//: C10:Statinit.cpp

// Scope of static initializer

#include <iostream>

using namespace std;

int x = 100;

class WithStatic {

 static int x;

 static int y;

public:

 void print() const {

 cout << "WithStatic::x = " << x << endl;

 cout << "WithStatic::y = " << y << endl;

 }

};

int WithStatic::x = 1;

int WithStatic::y = x + 1;

// WithStatic::x NOT ::x

int main() {

 WithStatic ws;

 ws.print();

} ///:~

Here, the qualification WithStatic:: extends the scope of
WithStatic to the entire definition.

static array initialization
Chapter 8 introduced the static const variable that allows you to
define a constant value inside a class body. It’s also possible to
create arrays of static objects, both const and non-const. The
syntax is reasonably consistent:

//: C10:StaticArray.cpp

// Initializing static arrays in classes

426 Thinking in C++ www.BruceEckel.com

class Values {

 // static consts are initialized in-place:

 static const int scSize = 100;

 static const long scLong = 100;

 // Automatic counting works with static arrays.

 // Arrays, Non-integral and non-const statics

 // must be initialized externally:

 static const int scInts[];

 static const long scLongs[];

 static const float scTable[];

 static const char scLetters[];

 static int size;

 static const float scFloat;

 static float table[];

 static char letters[];

};

int Values::size = 100;

const float Values::scFloat = 1.1;

const int Values::scInts[] = {

 99, 47, 33, 11, 7

};

const long Values::scLongs[] = {

 99, 47, 33, 11, 7

};

const float Values::scTable[] = {

 1.1, 2.2, 3.3, 4.4

};

const char Values::scLetters[] = {

 'a', 'b', 'c', 'd', 'e',

 'f', 'g', 'h', 'i', 'j'

};

float Values::table[4] = {

 1.1, 2.2, 3.3, 4.4

};

char Values::letters[10] = {

 'a', 'b', 'c', 'd', 'e',

 'f', 'g', 'h', 'i', 'j'

};

10: Name Control 427

int main() { Values v; } ///:~

With static consts of integral types you can provide the definitions
inside the class, but for everything else (including arrays of integral
types, even if they are static const) you must provide a single
external definition for the member. These definitions have internal
linkage, so they can be placed in header files. The syntax for
initializing static arrays is the same as for any aggregate, including
automatic counting.

You can also create static const objects of class types and arrays of
such objects. However, you cannot initialize them using the “inline
syntax” allowed for static consts of integral built-in types:

//: C10:StaticObjectArrays.cpp

// Static arrays of class objects

class X {

 int i;

public:

 X(int ii) : i(ii) {}

};

class Stat {

 // This doesn't work, although

 // you might want it to:

//! static const X x(100);

 // Both const and non-const static class

 // objects must be initialized externally:

 static X x2;

 static X xTable2[];

 static const X x3;

 static const X xTable3[];

};

X Stat::x2(100);

X Stat::xTable2[] = {

 X(1), X(2), X(3), X(4)

};

const X Stat::x3(100);

428 Thinking in C++ www.BruceEckel.com

const X Stat::xTable3[] = {

 X(1), X(2), X(3), X(4)

};

int main() { Stat v; } ///:~

The initialization of both const and non-const static arrays of
class objects must be performed the same way, following the typical
static definition syntax.

Nested and local classes
You can easily put static data members in classes that are nested
inside other classes. The definition of such members is an intuitive
and obvious extension – you simply use another level of scope
resolution. However, you cannot have static data members inside
local classes (a local class is a class defined inside a function). Thus,

//: C10:Local.cpp

// Static members & local classes

#include <iostream>

using namespace std;

// Nested class CAN have static data members:

class Outer {

 class Inner {

 static int i; // OK

 };

};

int Outer::Inner::i = 47;

// Local class cannot have static data members:

void f() {

 class Local {

 public:

//! static int i; // Error

 // (How would you define i?)

 } x;

}

int main() { Outer x; f(); } ///:~

10: Name Control 429

You can see the immediate problem with a static member in a local
class: How do you describe the data member at file scope in order to
define it? In practice, local classes are used very rarely.

static member functions
You can also create static member functions that, like static data
members, work for the class as a whole rather than for a particular
object of a class. Instead of making a global function that lives in
and “pollutes” the global or local namespace, you bring the function
inside the class. When you create a static member function, you
are expressing an association with a particular class.

You can call a static member function in the ordinary way, with the
dot or the arrow, in association with an object. However, it’s more
typical to call a static member function by itself, without any
specific object, using the scope-resolution operator, like this:

//: C10:SimpleStaticMemberFunction.cpp

class X {

public:

 static void f(){};

};

int main() {

 X::f();

} ///:~

When you see static member functions in a class, remember that
the designer intended that function to be conceptually associated
with the class as a whole.

A static member function cannot access ordinary data members,
only static data members. It can call only other static member
functions. Normally, the address of the current object (this) is
quietly passed in when any member function is called, but a static
member has no this, which is the reason it cannot access ordinary
members. Thus, you get the tiny increase in speed afforded by a
global function because a static member function doesn’t have the
extra overhead of passing this. At the same time you get the
benefits of having the function inside the class.

430 Thinking in C++ www.BruceEckel.com

For data members, static indicates that only one piece of storage
for member data exists for all objects of a class. This parallels the
use of static to define objects inside a function to mean that only
one copy of a local variable is used for all calls of that function.

Here’s an example showing static data members and static
member functions used together:

//: C10:StaticMemberFunctions.cpp

class X {

 int i;

 static int j;

public:

 X(int ii = 0) : i(ii) {

 // Non-static member function can access

 // static member function or data:

 j = i;

 }

 int val() const { return i; }

 static int incr() {

 //! i++; // Error: static member function

 // cannot access non-static member data

 return ++j;

 }

 static int f() {

 //! val(); // Error: static member function

 // cannot access non-static member function

 return incr(); // OK -- calls static

 }

};

int X::j = 0;

int main() {

 X x;

 X* xp = &x;

 x.f();

 xp->f();

 X::f(); // Only works with static members

} ///:~

Because they have no this pointer, static member functions can
neither access non-static data members nor call non-static
member functions.

10: Name Control 431

Notice in main() that a static member can be selected using the
usual dot or arrow syntax, associating that function with an object,
but also with no object (because a static member is associated with
a class, not a particular object), using the class name and scope
resolution operator.

Here’s an interesting feature: Because of the way initialization
happens for static member objects, you can put a static data
member of the same class inside that class. Here’s an example that
allows only a single object of type Egg to exist by making the
constructor private. You can access that object, but you can’t create
any new Egg objects:

//: C10:Singleton.cpp

// Static member of same type, ensures that

// only one object of this type exists.

// Also referred to as the "singleton" pattern.

#include <iostream>

using namespace std;

class Egg {

 static Egg e;

 int i;

 Egg(int ii) : i(ii) {}

 Egg(const Egg&); // Prevent copy-construction

public:

 static Egg* instance() { return &e; }

 int val() const { return i; }

};

Egg Egg::e(47);

int main() {

//! Egg x(1); // Error -- can't create an Egg

 // You can access the single instance:

 cout << Egg::instance()->val() << endl;

} ///:~

The initialization for E happens after the class declaration is
complete, so the compiler has all the information it needs to
allocate storage and make the constructor call.

432 Thinking in C++ www.BruceEckel.com

To completely prevent the creation of any other objects, something
else has been added: a second private constructor called the copy-
constructor. At this point in the book, you cannot know why this is
necessary since the copy constructor will not be introduced until the
next chapter. However, as a sneak preview, if you were to remove
the copy-constructor defined in the example above, you’d be able to
create an Egg object like this:

Egg e = *Egg::instance();

Egg e2(*Egg::instance());

Both of these use the copy-constructor, so to seal off that possibility
the copy-constructor is declared as private (no definition is
necessary because it never gets called). A large portion of the next
chapter is a discussion of the copy-constructor so it should become
clear to you then.

Static initialization dependency
Within a specific translation unit, the order of initialization of static
objects is guaranteed to be the order in which the object definitions
appear in that translation unit. The order of destruction is
guaranteed to be the reverse of the order of initialization.

However, there is no guarantee concerning the order of
initialization of static objects across translation units, and the
language provides no way to specify this order. This can cause
significant problems. As an example of an instant disaster (which
will halt primitive operating systems and kill the process on
sophisticated ones), if one file contains

// First file

#include <fstream>

std::ofstream out("out.txt");

and another file uses the out object in one of its initializers

// Second file

#include <fstream>

extern std::ofstream out;

class Oof {

10: Name Control 433

public:

 Oof() { std::out << "ouch"; }

} oof;

the program may work, and it may not. If the programming
environment builds the program so that the first file is initialized
before the second file, then there will be no problem. However, if
the second file is initialized before the first, the constructor for Oof
relies upon the existence of out, which hasn’t been constructed yet
and this causes chaos.

This problem only occurs with static object initializers that depend
on each other. The statics in a translation unit are initialized before
the first invocation of a function in that unit – but it could be after
main(). You can’t be sure about the order of initialization of static
objects if they’re in different files.

A subtler example can be found in the ARM.1 In one file you have at
the global scope:

extern int y;

int x = y + 1;

and in a second file you have at the global scope:

extern int x;

int y = x + 1;

For all static objects, the linking-loading mechanism guarantees a
static initialization to zero before the dynamic initialization
specified by the programmer takes place. In the previous example,
zeroing of the storage occupied by the fstream out object has no
special meaning, so it is truly undefined until the constructor is
called. However, with built-in types, initialization to zero does have
meaning, and if the files are initialized in the order they are shown
above, y begins as statically initialized to zero, so x becomes one,
and y is dynamically initialized to two. However, if the files are

1Bjarne Stroustrup and Margaret Ellis, The Annotated C++ Reference Manual,
Addison-Wesley, 1990, pp. 20-21.

434 Thinking in C++ www.BruceEckel.com

initialized in the opposite order, x is statically initialized to zero, y
is dynamically initialized to one, and x then becomes two.

Programmers must be aware of this because they can create a
program with static initialization dependencies and get it working
on one platform, but move it to another compiling environment
where it suddenly, mysteriously, doesn’t work.

What to do
There are three approaches to dealing with this problem:

1. Don’t do it. Avoiding static initialization dependencies is the
best solution.

2. If you must do it, put the critical static object definitions in a
single file, so you can portably control their initialization by
putting them in the correct order.

3. If you’re convinced it’s unavoidable to scatter static objects
across translation units – as in the case of a library, where
you can’t control the programmer who uses it – there are two
programmatic techniques to solve the problem.

Technique one
This technique was pioneered by Jerry Schwarz while creating the
iostream library (because the definitions for cin, cout, and cerr
are static and live in a separate file). It’s actually inferior to the
second technique but it’s been around a long time and so you may
come across code that uses it; thus it’s important that you
understand how it works.

This technique requires an additional class in your library header
file. This class is responsible for the dynamic initialization of your
library’s static objects. Here is a simple example:

//: C10:Initializer.h

// Static initialization technique

#ifndef INITIALIZER_H

#define INITIALIZER_H

#include <iostream>

10: Name Control 435

extern int x; // Declarations, not definitions

extern int y;

class Initializer {

 static int initCount;

public:

 Initializer() {

 std::cout << "Initializer()" << std::endl;

 // Initialize first time only

 if(initCount++ == 0) {

 std::cout << "performing initialization"

 << std::endl;

 x = 100;

 y = 200;

 }

 }

 ~Initializer() {

 std::cout << "~Initializer()" << std::endl;

 // Clean up last time only

 if(--initCount == 0) {

 std::cout << "performing cleanup"

 << std::endl;

 // Any necessary cleanup here

 }

 }

};

// The following creates one object in each

// file where Initializer.h is included, but that

// object is only visible within that file:

static Initializer init;

#endif // INITIALIZER_H ///:~

The declarations for x and y announce only that these objects exist,
but they don’t allocate storage for the objects. However, the
definition for the Initializer init allocates storage for that object
in every file where the header is included. But because the name is
static (controlling visibility this time, not the way storage is
allocated; storage is at file scope by default), it is visible only within
that translation unit, so the linker will not complain about multiple
definition errors.

Here is the file containing the definitions for x, y, and initCount:

436 Thinking in C++ www.BruceEckel.com

//: C10:InitializerDefs.cpp {O}

// Definitions for Initializer.h

#include "Initializer.h"

// Static initialization will force

// all these values to zero:

int x;

int y;

int Initializer::initCount;

///:~

(Of course, a file static instance of init is also placed in this file
when the header is included.) Suppose that two other files are
created by the library user:

//: C10:Initializer.cpp {O}

// Static initialization

#include "Initializer.h"

///:~

and

//: C10:Initializer2.cpp

//{L} InitializerDefs Initializer

// Static initialization

#include "Initializer.h"

using namespace std;

int main() {

 cout << "inside main()" << endl;

 cout << "leaving main()" << endl;

} ///:~

Now it doesn’t matter which translation unit is initialized first. The
first time a translation unit containing Initializer.h is initialized,
initCount will be zero so the initialization will be performed. (This
depends heavily on the fact that the static storage area is set to zero
before any dynamic initialization takes place.) For all the rest of the
translation units, initCount will be nonzero and the initialization
will be skipped. Cleanup happens in the reverse order, and
~Initializer() ensures that it will happen only once.

This example used built-in types as the global static objects. The
technique also works with classes, but those objects must then be

10: Name Control 437

dynamically initialized by the Initializer class. One way to do this
is to create the classes without constructors and destructors, but
instead with initialization and cleanup member functions using
different names. A more common approach, however, is to have
pointers to objects and to create them using new inside
Initializer().

Technique two
Long after technique one was in use, someone (I don’t know who)
came up with the technique explained in this section, which is much
simpler and cleaner than technique one. The fact that it took so long
to discover is a tribute to the complexity of C++.

This technique relies on the fact that static objects inside functions
are initialized the first time (only) that the function is called. Keep
in mind that the problem we’re really trying to solve here is not
when the static objects are initialized (that can be controlled
separately) but rather making sure that the initialization happens in
the proper order.

This technique is very neat and clever. For any initialization
dependency, you place a static object inside a function that returns
a reference to that object. This way, the only way you can access the
static object is by calling the function, and if that object needs to
access other static objects on which it is dependent it must call their
functions. And the first time a function is called, it forces the
initialization to take place. The order of static initialization is
guaranteed to be correct because of the design of the code, not
because of an arbitrary order established by the linker.

To set up an example, here are two classes that depend on each
other. The first one contains a bool that is initialized only by the
constructor, so you can tell if the constructor has been called for a
static instance of the class (the static storage area is initialized to
zero at program startup, which produces a false value for the bool
if the constructor has not been called):

//: C10:Dependency1.h

#ifndef DEPENDENCY1_H

#define DEPENDENCY1_H

438 Thinking in C++ www.BruceEckel.com

#include <iostream>

class Dependency1 {

 bool init;

public:

 Dependency1() : init(true) {

 std::cout << "Dependency1 construction"

 << std::endl;

 }

 void print() const {

 std::cout << "Dependency1 init: "

 << init << std::endl;

 }

};

#endif // DEPENDENCY1_H ///:~

The constructor also announces when it is being called, and you can
print() the state of the object to find out if it has been initialized.

The second class is initialized from an object of the first class, which
is what will cause the dependency:

//: C10:Dependency2.h

#ifndef DEPENDENCY2_H

#define DEPENDENCY2_H

#include "Dependency1.h"

class Dependency2 {

 Dependency1 d1;

public:

 Dependency2(const Dependency1& dep1): d1(dep1){

 std::cout << "Dependency2 construction ";

 print();

 }

 void print() const { d1.print(); }

};

#endif // DEPENDENCY2_H ///:~

The constructor announces itself and prints the state of the d1
object so you can see if it has been initialized by the time the
constructor is called.

To demonstrate what can go wrong, the following file first puts the
static object definitions in the wrong order, as they would occur if

10: Name Control 439

the linker happened to initialize the Dependency2 object before
the Dependency1 object. Then the order is reversed to show how
it works correctly if the order happens to be “right.” Lastly,
technique two is demonstrated.

To provide more readable output, the function separator() is
created. The trick is that you can’t call a function globally unless
that function is being used to perform the initialization of a
variable, so separator() returns a dummy value that is used to
initialize a couple of global variables.

//: C10:Technique2.cpp

#include "Dependency2.h"

using namespace std;

// Returns a value so it can be called as

// a global initializer:

int separator() {

 cout << "---------------------" << endl;

 return 1;

}

// Simulate the dependency problem:

extern Dependency1 dep1;

Dependency2 dep2(dep1);

Dependency1 dep1;

int x1 = separator();

// But if it happens in this order it works OK:

Dependency1 dep1b;

Dependency2 dep2b(dep1b);

int x2 = separator();

// Wrapping static objects in functions succeeds

Dependency1& d1() {

 static Dependency1 dep1;

 return dep1;

}

Dependency2& d2() {

 static Dependency2 dep2(d1());

 return dep2;

}

440 Thinking in C++ www.BruceEckel.com

int main() {

 Dependency2& dep2 = d2();

} ///:~

The functions d1() and d2() wrap static instances of
Dependency1 and Dependency2 objects. Now, the only way you
can get to the static objects is by calling the functions and that
forces static initialization on the first function call. This means that
initialization is guaranteed to be correct, which you’ll see when you
run the program and look at the output.

Here’s how you would actually organize the code to use the
technique. Ordinarily, the static objects would be defined in
separate files (because you’re forced to for some reason; remember
that defining the static objects in separate files is what causes the
problem), so instead you define the wrapping functions in separate
files. But they’ll need to be declared in header files:

//: C10:Dependency1StatFun.h

#ifndef DEPENDENCY1STATFUN_H

#define DEPENDENCY1STATFUN_H

#include "Dependency1.h"

extern Dependency1& d1();

#endif // DEPENDENCY1STATFUN_H ///:~

Actually, the “extern” is redundant for the function declaration.
Here’s the second header file:

//: C10:Dependency2StatFun.h

#ifndef DEPENDENCY2STATFUN_H

#define DEPENDENCY2STATFUN_H

#include "Dependency2.h"

extern Dependency2& d2();

#endif // DEPENDENCY2STATFUN_H ///:~

Now, in the implementation files where you would previously have
placed the static object definitions, you instead place the wrapping
function definitions:

//: C10:Dependency1StatFun.cpp {O}

#include "Dependency1StatFun.h"

Dependency1& d1() {

10: Name Control 441

 static Dependency1 dep1;

 return dep1;

} ///:~

Presumably, other code might also be placed in these files. Here’s
the other file:

//: C10:Dependency2StatFun.cpp {O}

#include "Dependency1StatFun.h"

#include "Dependency2StatFun.h"

Dependency2& d2() {

 static Dependency2 dep2(d1());

 return dep2;

} ///:~

So now there are two files that could be linked in any order and if
they contained ordinary static objects could produce any order of
initialization. But since they contain the wrapping functions, there’s
no threat of incorrect initialization:

//: C10:Technique2b.cpp

//{L} Dependency1StatFun Dependency2StatFun

#include "Dependency2StatFun.h"

int main() { d2(); } ///:~

When you run this program you’ll see that the initialization of the
Dependency1 static object always happens before the
initialization of the Dependency2 static object. You can also see
that this is a much simpler approach than technique one.

You might be tempted to write d1() and d2() as inline functions
inside their respective header files, but this is something you must
definitely not do. An inline function can be duplicated in every file
in which it appears – and this duplication includes the static object
definition. Because inline functions automatically default to
internal linkage, this would result in having multiple static objects
across the various translation units, which would certainly cause
problems. So you must ensure that there is only one definition of
each wrapping function, and this means not making the wrapping
functions inline.

442 Thinking in C++ www.BruceEckel.com

Alternate linkage specifications
What happens if you’re writing a program in C++ and you want to
use a C library? If you make the C function declaration,

float f(int a, char b);

the C++ compiler will decorate this name to something like
_f_int_char to support function overloading (and type-safe
linkage). However, the C compiler that compiled your C library has
most definitely not decorated the name, so its internal name will be
_f. Thus, the linker will not be able to resolve your C++ calls to f().

The escape mechanism provided in C++ is the alternate linkage
specification, which was produced in the language by overloading
the extern keyword. The extern is followed by a string that
specifies the linkage you want for the declaration, followed by the
declaration:

extern "C" float f(int a, char b);

This tells the compiler to give C linkage to f() so that the compiler
doesn’t decorate the name. The only two types of linkage
specifications supported by the standard are “C” and “C++,” but
compiler vendors have the option of supporting other languages in
the same way.

If you have a group of declarations with alternate linkage, put them
inside braces, like this:

extern "C" {

 float f(int a, char b);

 double d(int a, char b);

}

Or, for a header file,

extern "C" {

#include "Myheader.h"

}

10: Name Control 443

Most C++ compiler vendors handle the alternate linkage
specifications inside their header files that work with both C and
C++, so you don’t have to worry about it.

Summary
The static keyword can be confusing because in some situations it
controls the location of storage, and in others it controls visibility
and linkage of a name.

With the introduction of C++ namespaces, you have an improved
and more flexible alternative to control the proliferation of names
in large projects.

The use of static inside classes is one more way to control names in
a program. The names do not clash with global names, and the
visibility and access is kept within the program, giving you greater
control in the maintenance of your code.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create a function with a static variable that is a pointer
(with a default argument of zero). When the caller
provides a value for this argument it is used to point at
the beginning of an array of int. If you call the function
with a zero argument (using the default argument), the
function returns the next value in the array, until it sees a
“-1” value in the array (to act as an end-of-array
indicator). Exercise this function in main().

2. Create a function that returns the next value in a
Fibonacci sequence every time you call it. Add an
argument that is a bool with a default value of false such
that when you give the argument with true it “resets” the
function to the beginning of the Fibonacci sequence.
Exercise this function in main().

444 Thinking in C++ www.BruceEckel.com

3. Create a class that holds an array of ints. Set the size of
the array using static const int inside the class. Add a
const int variable, and initialize it in the constructor
initializer list; make the constructor inline. Add a static
int member variable and initialize it to a specific value.
Add a static member function that prints the static data
member. Add an inline member function called print()
to print out all the values in the array and to call the
static member function. Exercise this class in main().

4. Create a class called Monitor that keeps track of the
number of times that its incident() member function
has been called. Add a print() member function that
displays the number of incidents. Now create a global
function (not a member function) containing a static
Monitor object. Each time you call the function it should
call the print() member function to display the incident
count. Exercise the function in main().

5. Modify the Monitor class from Exercise 4 so that you
can decrement() the incident count. Make a class
Monitor2 that takes as a constructor argument a pointer
to a Monitor1, and which stores that pointer and calls
incident() and print(). In the destructor for
Monitor2, call decrement() and print(). Now make
a static object of Monitor2 inside a function. Inside
main(), experiment with calling the function and not
calling the function to see what happens with the
destructor of Monitor2.

6. Make a global object of Monitor2 and see what happens.

7. Create a class with a destructor that prints a message and
then calls exit(). Create a global object of this class and
see what happens.

8. In StaticDestructors.cpp, experiment with the order
of constructor and destructor calls by calling f() and g()
inside main() in different orders. Does your compiler
get it right?

9. In StaticDestructors.cpp, test the default error
handling of your implementation by turning the original
definition of out into an extern declaration and putting
the actual definition after the definition of a (whose Obj

10: Name Control 445

constructor sends information to out). Make sure there’s
nothing else important running on your machine when
you run the program or that your machine will handle
faults robustly.

10. Prove that file static variables in header files don’t clash
with each other when included in more than one cpp file.

11. Create a simple class containing an int, a constructor that
initializes the int from its argument, a member function
to set the int from its argument, and a print() function
that prints the int. Put your class in a header file, and
include the header file in two cpp files. In one cpp file
make an instance of your class, and in the other declare
that identifier extern and test it inside main().
Remember, you’ll have to link the two object files or else
the linker won’t find the object.

12. Make the instance of the object in Exercise 11 static and
verify that it cannot be found by the linker because of
this.

13. Declare a function in a header file. Define the function in
one cpp file and call it inside main() in a second cpp
file. Compile and verify that it works. Now change the
function definition so that it is static and verify that the
linker cannot find it.

14. Modify Volatile.cpp from Chapter 8 to make
comm::isr() something that could actually work as an
interrupt service routine. Hint: an interrupt service
routine doesn’t take any arguments.

15. Write and compile a simple program that uses the auto
and register keywords.

16. Create a header file containing a namespace. Inside the
namespace create several function declarations. Now
create a second header file that includes the first one and
continues the namespace, adding several more function
declarations. Now create a cpp file that includes the
second header file. Alias your namespace to another
(shorter) name. Inside a function definition, call one of
your functions using scope resolution. Inside a separate
function definition, write a using directive to introduce
your namespace into that function scope, and show that

446 Thinking in C++ www.BruceEckel.com

you don’t need scope resolution to call the functions from
your namespace.

17. Create a header file with an unnamed namespace.
Include the header in two separate cpp files and show
that an unnamed space is unique for each translation
unit.

18. Using the header file from Exercise 17, show that the
names in an unnamed namespace are automatically
available in a translation unit without qualification.

19. Modify FriendInjection.cpp to add a definition for the
friend function and to call the function inside main().

20. In Arithmetic.cpp, demonstrate that the using
directive does not extend outside the function in which
the directive was made.

21. Repair the problem in OverridingAmbiguity.cpp, first
with scope resolution, then instead with a using
declaration that forces the compiler to choose one of the
identical function names.

22. In two header files, create two namespaces, each
containing a class (with all inline definitions) with a name
identical to that in the other namespace. Create a cpp file
that includes both header files. Create a function, and
inside the function use the using directive to introduce
both namespaces. Try creating an object of the class and
see what happens. Make the using directives global
(outside of the function) to see if it makes any difference.
Repair the problem using scope resolution, and create
objects of both classes.

23. Repair the problem in Exercise 22 with a using
declaration that forces the compiler to choose one of the
identical class names.

24. Extract the namespace declarations in
BobsSuperDuperLibrary.cpp and
UnnamedNamespaces.cpp and put them in separate
header files, giving the unnamed namespace a name in
the process. In a third header file create a new namespace
that combines the elements of the other two namespaces
with using declarations. In main(), introduce your new

10: Name Control 447

namespace with a using directive and access all the
elements of your namespace.

25. Create a header file that includes <string> and
<iostream> but does not use any using directives or
using declarations. Add “include guards” as you’ve seen
in the header files in this book. Create a class with all
inline functions that contains a string member, with a
constructor that initializes that string from its argument
and a print() function that displays the string. Create a
cpp file and exercise your class in main().

26. Create a class containing a static double and long.
Write a static member function that prints out the
values.

27. Create a class containing an int, a constructor that
initializes the int from its argument, and a print()
function to display the int. Now create a second class that
contains a static object of the first one. Add a static
member function that calls the static object’s print()
function. Exercise your class in main().

28. Create a class containing both a const and a non-const
static array of int. Write static methods to print out the
arrays. Exercise your class in main().

29. Create a class containing a string, with a constructor
that initializes the string from its argument, and a
print() function to display the string. Create another
class that contains both const and non-const static
arrays of objects of the first class, and static methods to
print out these arrays. Exercise this second class in
main().

30. Create a struct that contains an int and a default
constructor that initializes the int to zero. Make this
struct local to a function. Inside that function, create an
array of objects of your struct and demonstrate that each
int in the array has automatically been initialized to zero.

31. Create a class that represents a printer connection, and
that only allows you to have one printer.

32. In a header file, create a class Mirror that contains two
data members: a pointer to a Mirror object and a bool.
Give it two constructors: the default constructor

448 Thinking in C++ www.BruceEckel.com

initializes the bool to true and the Mirror pointer to
zero. The second constructor takes as an argument a
pointer to a Mirror object, which it assigns to the
object’s internal pointer; it sets the bool to false. Add a
member function test(): if the object’s pointer is
nonzero, it returns the value of test() called through the
pointer. If the pointer is zero, it returns the bool. Now
create five cpp files, each of which includes the Mirror
header. The first cpp file defines a global Mirror object
using the default constructor. The second file declares the
object in the first file as extern, and defines a global
Mirror object using the second constructor, with a
pointer to the first object. Keep doing this until you reach
the last file, which will also contain a global object
definition. In that file, main() should call the test()
function and report the result. If the result is true, find
out how to change the linking order for your linker and
change it until the result is false.

33. Repair the problem in Exercise 32 using technique one
shown in this book.

34. Repair the problem in Exercise 32 using technique two
shown in this book.

35. Without including a header file, declare the function
puts() from the Standard C Library. Call this function
from main().

 449

11: References &

the Copy-Constructor
References are like constant pointers that are

automatically dereferenced by the compiler.

450 Thinking in C++ www.BruceEckel.com

Although references also exist in Pascal, the C++ version was taken
from the Algol language. They are essential in C++ to support the
syntax of operator overloading (see Chapter 12), but they are also a
general convenience to control the way arguments are passed into
and out of functions.

This chapter will first look briefly at the differences between
pointers in C and C++, then introduce references. But the bulk of
the chapter will delve into a rather confusing issue for the new C++
programmer: the copy-constructor, a special constructor (requiring
references) that makes a new object from an existing object of the
same type. The copy-constructor is used by the compiler to pass and
return objects by value into and out of functions.

Finally, the somewhat obscure C++ pointer-to-member feature is
illuminated.

Pointers in C++
The most important difference between pointers in C and those in
C++ is that C++ is a more strongly typed language. This stands out
where void* is concerned. C doesn’t let you casually assign a
pointer of one type to another, but it does allow you to accomplish
this through a void*. Thus,

bird* b;

rock* r;

void* v;

v = r;

b = v;

Because this “feature” of C allows you to quietly treat any type like
any other type, it leaves a big hole in the type system. C++ doesn’t
allow this; the compiler gives you an error message, and if you
really want to treat one type as another, you must make it explicit,
both to the compiler and to the reader, using a cast. (Chapter 3
introduced C++’s improved “explicit” casting syntax.)

11: References & the Copy-Constructor 451

References in C++
A reference (&) is like a constant pointer that is automatically
dereferenced. It is usually used for function argument lists and
function return values. But you can also make a free-standing
reference. For example,

//: C11:FreeStandingReferences.cpp

#include <iostream>

using namespace std;

// Ordinary free-standing reference:

int y;

int& r = y;

// When a reference is created, it must

// be initialized to a live object.

// However, you can also say:

const int& q = 12; // (1)

// References are tied to someone else's storage:

int x = 0; // (2)

int& a = x; // (3)

int main() {

 cout << "x = " << x << ", a = " << a << endl;

 a++;

 cout << "x = " << x << ", a = " << a << endl;

} ///:~

In line (1), the compiler allocates a piece of storage, initializes it
with the value 12, and ties the reference to that piece of storage. The
point is that any reference must be tied to someone else’s piece of
storage. When you access a reference, you’re accessing that storage.
Thus, if you write lines like (2) and (3), then incrementing a is
actually incrementing x, as is shown in main(). Again, the easiest
way to think about a reference is as a fancy pointer. One advantage
of this “pointer” is that you never have to wonder whether it’s been
initialized (the compiler enforces it) and how to dereference it (the
compiler does it).

There are certain rules when using references:

1. A reference must be initialized when it is created. (Pointers
can be initialized at any time.)

452 Thinking in C++ www.BruceEckel.com

2. Once a reference is initialized to an object, it cannot be
changed to refer to another object. (Pointers can be pointed
to another object at any time.)

3. You cannot have NULL references. You must always be able
to assume that a reference is connected to a legitimate piece
of storage.

References in functions
The most common place you’ll see references is as function
arguments and return values. When a reference is used as a
function argument, any modification to the reference inside the
function will cause changes to the argument outside the function.
Of course, you could do the same thing by passing a pointer, but a
reference has much cleaner syntax. (You can think of a reference as
nothing more than a syntax convenience, if you want.)

If you return a reference from a function, you must take the same
care as if you return a pointer from a function. Whatever the
reference is connected to shouldn’t go away when the function
returns, otherwise you’ll be referring to unknown memory.

Here’s an example:

//: C11:Reference.cpp

// Simple C++ references

int* f(int* x) {

 (*x)++;

 return x; // Safe, x is outside this scope

}

int& g(int& x) {

 x++; // Same effect as in f()

 return x; // Safe, outside this scope

}

int& h() {

 int q;

//! return q; // Error

 static int x;

11: References & the Copy-Constructor 453

 return x; // Safe, x lives outside this scope

}

int main() {

 int a = 0;

 f(&a); // Ugly (but explicit)

 g(a); // Clean (but hidden)

} ///:~

The call to f() doesn’t have the convenience and cleanliness of
using references, but it’s clear that an address is being passed. In
the call to g(), an address is being passed (via a reference), but you
don’t see it.

const references
The reference argument in Reference.cpp works only when the
argument is a non-const object. If it is a const object, the function
g() will not accept the argument, which is actually a good thing,
because the function does modify the outside argument. If you
know the function will respect the constness of an object, making
the argument a const reference will allow the function to be used in
all situations. This means that, for built-in types, the function will
not modify the argument, and for user-defined types, the function
will call only const member functions, and won’t modify any
public data members.

The use of const references in function arguments is especially
important because your function may receive a temporary object.
This might have been created as a return value of another function
or explicitly by the user of your function. Temporary objects are
always const, so if you don’t use a const reference, that argument
won’t be accepted by the compiler. As a very simple example,

//: C11:ConstReferenceArguments.cpp

// Passing references as const

void f(int&) {}

void g(const int&) {}

int main() {

//! f(1); // Error

 g(1);

454 Thinking in C++ www.BruceEckel.com

} ///:~

The call to f(1) causes a compile-time error because the compiler
must first create a reference. It does so by allocating storage for an
int, initializing it to one and producing the address to bind to the
reference. The storage must be a const because changing it would
make no sense – you can never get your hands on it again. With all
temporary objects you must make the same assumption: that
they’re inaccessible. It’s valuable for the compiler to tell you when
you’re changing such data because the result would be lost
information.

Pointer references
In C, if you want to modify the contents of the pointer rather than
what it points to, your function declaration looks like:

void f(int**);

and you’d have to take the address of the pointer when passing it in:

int i = 47;

int* ip = &i;

f(&ip);

With references in C++, the syntax is cleaner. The function
argument becomes a reference to a pointer, and you no longer have
to take the address of that pointer. Thus,

//: C11:ReferenceToPointer.cpp

#include <iostream>

using namespace std;

void increment(int*& i) { i++; }

int main() {

 int* i = 0;

 cout << "i = " << i << endl;

 increment(i);

 cout << "i = " << i << endl;

} ///:~

By running this program, you’ll prove to yourself that the pointer is
incremented, not what it points to.

11: References & the Copy-Constructor 455

Argument-passing guidelines
Your normal habit when passing an argument to a function should
be to pass by const reference. Although at first this may seem like
only an efficiency concern (and you normally don’t want to concern
yourself with efficiency tuning while you’re designing and
assembling your program), there’s more at stake: as you’ll see in the
remainder of the chapter, a copy-constructor is required to pass an
object by value, and this isn’t always available.

The efficiency savings can be substantial for such a simple habit: to
pass an argument by value requires a constructor and destructor
call, but if you’re not going to modify the argument then passing by
const reference only needs an address pushed on the stack.

In fact, virtually the only time passing an address isn’t preferable is
when you’re going to do such damage to an object that passing by
value is the only safe approach (rather than modifying the outside
object, something the caller doesn’t usually expect). This is the
subject of the next section.

The copy-constructor
Now that you understand the basics of the reference in C++, you’re
ready to tackle one of the more confusing concepts in the language:
the copy-constructor, often called X(X&) (“X of X ref”). This
constructor is essential to control passing and returning of user-
defined types by value during function calls. It’s so important, in
fact, that the compiler will automatically synthesize a copy-
constructor if you don’t provide one yourself, as you will see.

Passing & returning by value
To understand the need for the copy-constructor, consider the way
C handles passing and returning variables by value during function
calls. If you declare a function and make a function call,

int f(int x, char c);

int g = f(a, b);

456 Thinking in C++ www.BruceEckel.com

how does the compiler know how to pass and return those
variables? It just knows! The range of the types it must deal with is
so small – char, int, float, double, and their variations – that this
information is built into the compiler.

If you figure out how to generate assembly code with your compiler
and determine the statements generated by the function call to f(),
you’ll get the equivalent of:

push b

push a

call f()

add sp,4

mov g, register a

This code has been cleaned up significantly to make it generic; the
expressions for b and a will be different depending on whether the
variables are global (in which case they will be _b and _a) or local
(the compiler will index them off the stack pointer). This is also true
for the expression for g. The appearance of the call to f() will
depend on your name-decoration scheme, and “register a” depends
on how the CPU registers are named within your assembler. The
logic behind the code, however, will remain the same.

In C and C++, arguments are first pushed on the stack from right to
left, then the function call is made. The calling code is responsible
for cleaning the arguments off the stack (which accounts for the
add sp,4). But notice that to pass the arguments by value, the
compiler simply pushes copies on the stack – it knows how big they
are and that pushing those arguments makes accurate copies of
them.

The return value of f() is placed in a register. Again, the compiler
knows everything there is to know about the return value type
because that type is built into the language, so the compiler can
return it by placing it in a register. With the primitive data types in
C, the simple act of copying the bits of the value is equivalent to
copying the object.

11: References & the Copy-Constructor 457

Passing & returning large objects
But now consider user-defined types. If you create a class and you
want to pass an object of that class by value, how is the compiler
supposed to know what to do? This is not a type built into the
compiler; it’s a type you have created.

To investigate this, you can start with a simple structure that is
clearly too large to return in registers:

//: C11:PassingBigStructures.cpp

struct Big {

 char buf[100];

 int i;

 long d;

} B, B2;

Big bigfun(Big b) {

 b.i = 100; // Do something to the argument

 return b;

}

int main() {

 B2 = bigfun(B);

} ///:~

Decoding the assembly output is a little more complicated here
because most compilers use “helper” functions instead of putting all
functionality inline. In main(), the call to bigfun() starts as you
might guess – the entire contents of B is pushed on the stack.
(Here, you might see some compilers load registers with the
address of the Big and its size, then call a helper function to push
the Big onto the stack.)

In the previous code fragment, pushing the arguments onto the
stack was all that was required before making the function call. In
PassingBigStructures.cpp, however, you’ll see an additional
action: the address of B2 is pushed before making the call, even
though it’s obviously not an argument. To comprehend what’s going
on here, you need to understand the constraints on the compiler
when it’s making a function call.

458 Thinking in C++ www.BruceEckel.com

Function-call stack frame
When the compiler generates code for a function call, it first pushes
all the arguments on the stack, then makes the call. Inside the
function, code is generated to move the stack pointer down even
farther to provide storage for the function’s local variables. (“Down”
is relative here; your machine may increment or decrement the
stack pointer during a push.) But during the assembly-language
CALL, the CPU pushes the address in the program code where the
function call came from, so the assembly-language RETURN can
use that address to return to the calling point. This address is of
course sacred, because without it your program will get completely
lost. Here’s what the stack frame looks like after the CALL and the
allocation of local variable storage in the function:

Function arguments

Return address

Local variables

The code generated for the rest of the function expects the memory
to be laid out exactly this way, so that it can carefully pick from the
function arguments and local variables without touching the return
address. I shall call this block of memory, which is everything used
by a function in the process of the function call, the function frame.

You might think it reasonable to try to return values on the stack.
The compiler could simply push it, and the function could return an
offset to indicate how far down in the stack the return value begins.

Re-entrancy
The problem occurs because functions in C and C++ support
interrupts; that is, the languages are re-entrant. They also support
recursive function calls. This means that at any point in the
execution of a program an interrupt can occur without breaking the
program. Of course, the person who writes the interrupt service
routine (ISR) is responsible for saving and restoring all the registers
that are used in the ISR, but if the ISR needs to use any memory

11: References & the Copy-Constructor 459

further down on the stack, this must be a safe thing to do. (You can
think of an ISR as an ordinary function with no arguments and
void return value that saves and restores the CPU state. An ISR
function call is triggered by some hardware event instead of an
explicit call from within a program.)

Now imagine what would happen if an ordinary function tried to
return values on the stack. You can’t touch any part of the stack
that’s above the return address, so the function would have to push
the values below the return address. But when the assembly-
language RETURN is executed, the stack pointer must be pointing
to the return address (or right below it, depending on your
machine), so right before the RETURN, the function must move the
stack pointer up, thus clearing off all its local variables. If you’re
trying to return values on the stack below the return address, you
become vulnerable at that moment because an interrupt could come
along. The ISR would move the stack pointer down to hold its
return address and its local variables and overwrite your return
value.

To solve this problem, the caller could be responsible for allocating
the extra storage on the stack for the return values before calling the
function. However, C was not designed this way, and C++ must be
compatible. As you’ll see shortly, the C++ compiler uses a more
efficient scheme.

Your next idea might be to return the value in some global data
area, but this doesn’t work either. Reentrancy means that any
function can be an interrupt routine for any other function,
including the same function you’re currently inside. Thus, if you
put the return value in a global area, you might return into the same
function, which would overwrite that return value. The same logic
applies to recursion.

The only safe place to return values is in the registers, so you’re
back to the problem of what to do when the registers aren’t large
enough to hold the return value. The answer is to push the address
of the return value’s destination on the stack as one of the function
arguments, and let the function copy the return information
directly into the destination. This not only solves all the problems,

460 Thinking in C++ www.BruceEckel.com

it’s more efficient. It’s also the reason that, in
PassingBigStructures.cpp, the compiler pushes the address of
B2 before the call to bigfun() in main(). If you look at the
assembly output for bigfun(), you can see it expects this hidden
argument and performs the copy to the destination inside the
function.

Bitcopy versus initialization
So far, so good. There’s a workable process for passing and
returning large simple structures. But notice that all you have is a
way to copy the bits from one place to another, which certainly
works fine for the primitive way that C looks at variables. But in
C++ objects can be much more sophisticated than a patch of bits;
they have meaning. This meaning may not respond well to having
its bits copied.

Consider a simple example: a class that knows how many objects of
its type exist at any one time. From Chapter 10, you know the way
to do this is by including a static data member:

//: C11:HowMany.cpp

// A class that counts its objects

#include <fstream>

#include <string>

using namespace std;

ofstream out("HowMany.out");

class HowMany {

 static int objectCount;

public:

 HowMany() { objectCount++; }

 static void print(const string& msg = "") {

 if(msg.size() != 0) out << msg << ": ";

 out << "objectCount = "

 << objectCount << endl;

 }

 ~HowMany() {

 objectCount--;

 print("~HowMany()");

 }

};

11: References & the Copy-Constructor 461

int HowMany::objectCount = 0;

// Pass and return BY VALUE:

HowMany f(HowMany x) {

 x.print("x argument inside f()");

 return x;

}

int main() {

 HowMany h;

 HowMany::print("after construction of h");

 HowMany h2 = f(h);

 HowMany::print("after call to f()");

} ///:~

The class HowMany contains a static int objectCount and a
static member function print() to report the value of that
objectCount, along with an optional message argument. The
constructor increments the count each time an object is created,
and the destructor decrements it.

The output, however, is not what you would expect:

after construction of h: objectCount = 1

x argument inside f(): objectCount = 1

~HowMany(): objectCount = 0

after call to f(): objectCount = 0

~HowMany(): objectCount = -1

~HowMany(): objectCount = -2

After h is created, the object count is one, which is fine. But after
the call to f() you would expect to have an object count of two,
because h2 is now in scope as well. Instead, the count is zero, which
indicates something has gone horribly wrong. This is confirmed by
the fact that the two destructors at the end make the object count go
negative, something that should never happen.

Look at the point inside f(), which occurs after the argument is
passed by value. This means the original object h exists outside the
function frame, and there’s an additional object inside the function
frame, which is the copy that has been passed by value. However,
the argument has been passed using C’s primitive notion of
bitcopying, whereas the C++ HowMany class requires true

462 Thinking in C++ www.BruceEckel.com

initialization to maintain its integrity, so the default bitcopy fails to
produce the desired effect.

When the local object goes out of scope at the end of the call to f(),
the destructor is called, which decrements objectCount, so
outside the function, objectCount is zero. The creation of h2 is
also performed using a bitcopy, so the constructor isn’t called there
either, and when h and h2 go out of scope, their destructors cause
the negative values of objectCount.

Copy-construction
The problem occurs because the compiler makes an assumption
about how to create a new object from an existing object. When you
pass an object by value, you create a new object, the passed object
inside the function frame, from an existing object, the original
object outside the function frame. This is also often true when
returning an object from a function. In the expression

HowMany h2 = f(h);

h2, a previously unconstructed object, is created from the return
value of f(), so again a new object is created from an existing one.

The compiler’s assumption is that you want to perform this creation
using a bitcopy, and in many cases this may work fine, but in
HowMany it doesn’t fly because the meaning of initialization goes
beyond simply copying. Another common example occurs if the
class contains pointers – what do they point to, and should you
copy them or should they be connected to some new piece of
memory?

Fortunately, you can intervene in this process and prevent the
compiler from doing a bitcopy. You do this by defining your own
function to be used whenever the compiler needs to make a new
object from an existing object. Logically enough, you’re making a
new object, so this function is a constructor, and also logically
enough, the single argument to this constructor has to do with the
object you’re constructing from. But that object can’t be passed into
the constructor by value because you’re trying to define the function

11: References & the Copy-Constructor 463

that handles passing by value, and syntactically it doesn’t make
sense to pass a pointer because, after all, you’re creating the new
object from an existing object. Here, references come to the rescue,
so you take the reference of the source object. This function is called
the copy-constructor and is often referred to as X(X&), which is its
appearance for a class called X.

If you create a copy-constructor, the compiler will not perform a
bitcopy when creating a new object from an existing one. It will
always call your copy-constructor. So, if you don’t create a copy-
constructor, the compiler will do something sensible, but you have
the choice of taking over complete control of the process.

Now it’s possible to fix the problem in HowMany.cpp:

//: C11:HowMany2.cpp

// The copy-constructor

#include <fstream>

#include <string>

using namespace std;

ofstream out("HowMany2.out");

class HowMany2 {

 string name; // Object identifier

 static int objectCount;

public:

 HowMany2(const string& id = "") : name(id) {

 ++objectCount;

 print("HowMany2()");

 }

 ~HowMany2() {

 --objectCount;

 print("~HowMany2()");

 }

 // The copy-constructor:

 HowMany2(const HowMany2& h) : name(h.name) {

 name += " copy";

 ++objectCount;

 print("HowMany2(const HowMany2&)");

 }

 void print(const string& msg = "") const {

 if(msg.size() != 0)

 out << msg << endl;

464 Thinking in C++ www.BruceEckel.com

 out << '\t' << name << ": "

 << "objectCount = "

 << objectCount << endl;

 }

};

int HowMany2::objectCount = 0;

// Pass and return BY VALUE:

HowMany2 f(HowMany2 x) {

 x.print("x argument inside f()");

 out << "Returning from f()" << endl;

 return x;

}

int main() {

 HowMany2 h("h");

 out << "Entering f()" << endl;

 HowMany2 h2 = f(h);

 h2.print("h2 after call to f()");

 out << "Call f(), no return value" << endl;

 f(h);

 out << "After call to f()" << endl;

} ///:~

There are a number of new twists thrown in here so you can get a
better idea of what’s happening. First, the string name acts as an
object identifier when information about that object is printed. In
the constructor, you can put an identifier string (usually the name
of the object) that is copied to name using the string constructor.
The default = "" creates an empty string. The constructor
increments the objectCount as before, and the destructor
decrements it.

Next is the copy-constructor, HowMany2(const HowMany2&).
The copy-constructor can create a new object only from an existing
one, so the existing object’s name is copied to name, followed by
the word “copy” so you can see where it came from. If you look
closely, you’ll see that the call name(h.name) in the constructor
initializer list is actually calling the string copy-constructor.

11: References & the Copy-Constructor 465

Inside the copy-constructor, the object count is incremented just as
it is inside the normal constructor. This means you’ll now get an
accurate object count when passing and returning by value.

The print() function has been modified to print out a message, the
object identifier, and the object count. It must now access the
name data of a particular object, so it can no longer be a static
member function.

Inside main(), you can see that a second call to f() has been
added. However, this call uses the common C approach of ignoring
the return value. But now that you know how the value is returned
(that is, code inside the function handles the return process, putting
the result in a destination whose address is passed as a hidden
argument), you might wonder what happens when the return value
is ignored. The output of the program will throw some illumination
on this.

Before showing the output, here’s a little program that uses
iostreams to add line numbers to any file:

//: C11:Linenum.cpp

//{T} Linenum.cpp

// Add line numbers

#include "../require.h"

#include <vector>

#include <string>

#include <fstream>

#include <iostream>

#include <cmath>

using namespace std;

int main(int argc, char* argv[]) {

 requireArgs(argc, 1, "Usage: linenum file\n"

 "Adds line numbers to file");

 ifstream in(argv[1]);

 assure(in, argv[1]);

 string line;

 vector<string> lines;

 while(getline(in, line)) // Read in entire file

 lines.push_back(line);

 if(lines.size() == 0) return 0;

466 Thinking in C++ www.BruceEckel.com

 int num = 0;

 // Number of lines in file determines width:

 const int width = int(log10(lines.size())) + 1;

 for(int i = 0; i < lines.size(); i++) {

 cout.setf(ios::right, ios::adjustfield);

 cout.width(width);

 cout << ++num << ") " << lines[i] << endl;

 }

} ///:~

The entire file is read into a vector<string>, using the same code
that you’ve seen earlier in the book. When printing the line
numbers, we’d like all the lines to be aligned with each other, and
this requires adjusting for the number of lines in the file so that the
width allowed for the line numbers is consistent. We can easily
determine the number of lines using vector::size(), but what we
really need to know is whether there are more than 10 lines, 100
lines, 1,000 lines, etc. If you take the logarithm, base 10, of the
number of lines in the file, truncate it to an int and add one to the
value, you’ll find out the maximum width that your line count will
be.

You’ll notice a couple of strange calls inside the for loop: setf()
and width(). These are ostream calls that allow you to control, in
this case, the justification and width of the output. However, they
must be called each time a line is output and that is why they are
inside the for loop. Volume 2 of this book has an entire chapter
explaining iostreams that will tell you more about these calls as well
as other ways to control iostreams.

When Linenum.cpp is applied to HowMany2.out, the result is

 1) HowMany2()

 2) h: objectCount = 1

 3) Entering f()

 4) HowMany2(const HowMany2&)

 5) h copy: objectCount = 2

 6) x argument inside f()

 7) h copy: objectCount = 2

 8) Returning from f()

 9) HowMany2(const HowMany2&)

10) h copy copy: objectCount = 3

11: References & the Copy-Constructor 467

11) ~HowMany2()

12) h copy: objectCount = 2

13) h2 after call to f()

14) h copy copy: objectCount = 2

15) Call f(), no return value

16) HowMany2(const HowMany2&)

17) h copy: objectCount = 3

18) x argument inside f()

19) h copy: objectCount = 3

20) Returning from f()

21) HowMany2(const HowMany2&)

22) h copy copy: objectCount = 4

23) ~HowMany2()

24) h copy: objectCount = 3

25) ~HowMany2()

26) h copy copy: objectCount = 2

27) After call to f()

28) ~HowMany2()

29) h copy copy: objectCount = 1

30) ~HowMany2()

31) h: objectCount = 0

As you would expect, the first thing that happens is that the normal
constructor is called for h, which increments the object count to
one. But then, as f() is entered, the copy-constructor is quietly
called by the compiler to perform the pass-by-value. A new object is
created, which is the copy of h (thus the name “h copy”) inside the
function frame of f(), so the object count becomes two, courtesy of
the copy-constructor.

Line eight indicates the beginning of the return from f(). But
before the local variable “h copy” can be destroyed (it goes out of
scope at the end of the function), it must be copied into the return
value, which happens to be h2. A previously unconstructed object
(h2) is created from an existing object (the local variable inside
f()), so of course the copy-constructor is used again in line nine.
Now the name becomes “h copy copy” for h2’s identifier because
it’s being copied from the copy that is the local object inside f().
After the object is returned, but before the function ends, the object
count becomes temporarily three, but then the local object “h copy”
is destroyed. After the call to f() completes in line 13, there are only

468 Thinking in C++ www.BruceEckel.com

two objects, h and h2, and you can see that h2 did indeed end up
as “h copy copy.”

Temporary objects
Line 15 begins the call to f(h), this time ignoring the return value.
You can see in line 16 that the copy-constructor is called just as
before to pass the argument in. And also, as before, line 21 shows
the copy-constructor is called for the return value. But the copy-
constructor must have an address to work on as its destination (a
this pointer). Where does this address come from?

It turns out the compiler can create a temporary object whenever it
needs one to properly evaluate an expression. In this case it creates
one you don’t even see to act as the destination for the ignored
return value of f(). The lifetime of this temporary object is as short
as possible so the landscape doesn’t get cluttered up with
temporaries waiting to be destroyed and taking up valuable
resources. In some cases, the temporary might immediately be
passed to another function, but in this case it isn’t needed after the
function call, so as soon as the function call ends by calling the
destructor for the local object (lines 23 and 24), the temporary
object is destroyed (lines 25 and 26).

Finally, in lines 28-31, the h2 object is destroyed, followed by h,
and the object count goes correctly back to zero.

Default copy-constructor
Because the copy-constructor implements pass and return by value,
it’s important that the compiler creates one for you in the case of
simple structures – effectively, the same thing it does in C.
However, all you’ve seen so far is the default primitive behavior: a
bitcopy.

When more complex types are involved, the C++ compiler will still
automatically create a copy-constructor if you don’t make one.
Again, however, a bitcopy doesn’t make sense, because it doesn’t
necessarily implement the proper meaning.

11: References & the Copy-Constructor 469

Here’s an example to show the more intelligent approach the
compiler takes. Suppose you create a new class composed of objects
of several existing classes. This is called, appropriately enough,
composition, and it’s one of the ways you can make new classes
from existing classes. Now take the role of a naive user who’s trying
to solve a problem quickly by creating a new class this way. You
don’t know about copy-constructors, so you don’t create one. The
example demonstrates what the compiler does while creating the
default copy-constructor for your new class:

//: C11:DefaultCopyConstructor.cpp

// Automatic creation of the copy-constructor

#include <iostream>

#include <string>

using namespace std;

class WithCC { // With copy-constructor

public:

 // Explicit default constructor required:

 WithCC() {}

 WithCC(const WithCC&) {

 cout << "WithCC(WithCC&)" << endl;

 }

};

class WoCC { // Without copy-constructor

 string id;

public:

 WoCC(const string& ident = "") : id(ident) {}

 void print(const string& msg = "") const {

 if(msg.size() != 0) cout << msg << ": ";

 cout << id << endl;

 }

};

class Composite {

 WithCC withcc; // Embedded objects

 WoCC wocc;

public:

 Composite() : wocc("Composite()") {}

 void print(const string& msg = "") const {

 wocc.print(msg);

 }

470 Thinking in C++ www.BruceEckel.com

};

int main() {

 Composite c;

 c.print("Contents of c");

 cout << "Calling Composite copy-constructor"

 << endl;

 Composite c2 = c; // Calls copy-constructor

 c2.print("Contents of c2");

} ///:~

The class WithCC contains a copy-constructor, which simply
announces that it has been called, and this brings up an interesting
issue. In the class Composite, an object of WithCC is created
using a default constructor. If there were no constructors at all in
WithCC, the compiler would automatically create a default
constructor, which would do nothing in this case. However, if you
add a copy-constructor, you’ve told the compiler you’re going to
handle constructor creation, so it no longer creates a default
constructor for you and will complain unless you explicitly create a
default constructor as was done for WithCC.

The class WoCC has no copy-constructor, but its constructor will
store a message in an internal string that can be printed out using
print(). This constructor is explicitly called in Composite’s
constructor initializer list (briefly introduced in Chapter 8 and
covered fully in Chapter 14). The reason for this becomes apparent
later.

The class Composite has member objects of both WithCC and
WoCC (note the embedded object wocc is initialized in the
constructor-initializer list, as it must be), and no explicitly defined
copy-constructor. However, in main() an object is created using
the copy-constructor in the definition:

Composite c2 = c;

The copy-constructor for Composite is created automatically by
the compiler, and the output of the program reveals the way that it
is created:

Contents of c: Composite()

11: References & the Copy-Constructor 471

Calling Composite copy-constructor

WithCC(WithCC&)

Contents of c2: Composite()

To create a copy-constructor for a class that uses composition (and
inheritance, which is introduced in Chapter 14), the compiler
recursively calls the copy-constructors for all the member objects
and base classes. That is, if the member object also contains
another object, its copy-constructor is also called. So in this case,
the compiler calls the copy-constructor for WithCC. The output
shows this constructor being called. Because WoCC has no copy-
constructor, the compiler creates one for it that just performs a
bitcopy, and calls that inside the Composite copy-constructor. The
call to Composite::print() in main shows that this happens
because the contents of c2.wocc are identical to the contents of
c.wocc. The process the compiler goes through to synthesize a
copy-constructor is called memberwise initialization.

It’s always best to create your own copy-constructor instead of
letting the compiler do it for you. This guarantees that it will be
under your control.

Alternatives to copy-construction
At this point your head may be swimming, and you might be
wondering how you could have possibly written a working class
without knowing about the copy-constructor. But remember: You
need a copy-constructor only if you’re going to pass an object of
your class by value. If that never happens, you don’t need a copy-
constructor.

Preventing pass-by-value
“But,” you say, “if I don’t make a copy-constructor, the compiler will
create one for me. So how do I know that an object will never be
passed by value?”

There’s a simple technique for preventing pass-by-value: declare a
private copy-constructor. You don’t even need to create a
definition, unless one of your member functions or a friend
function needs to perform a pass-by-value. If the user tries to pass

472 Thinking in C++ www.BruceEckel.com

or return the object by value, the compiler will produce an error
message because the copy-constructor is private. It can no longer
create a default copy-constructor because you’ve explicitly stated
that you’re taking over that job.

Here’s an example:

//: C11:NoCopyConstruction.cpp

// Preventing copy-construction

class NoCC {

 int i;

 NoCC(const NoCC&); // No definition

public:

 NoCC(int ii = 0) : i(ii) {}

};

void f(NoCC);

int main() {

 NoCC n;

//! f(n); // Error: copy-constructor called

//! NoCC n2 = n; // Error: c-c called

//! NoCC n3(n); // Error: c-c called

} ///:~

Notice the use of the more general form

NoCC(const NoCC&);

using the const.

Functions that modify outside objects
Reference syntax is nicer to use than pointer syntax, yet it clouds
the meaning for the reader. For example, in the iostreams library
one overloaded version of the get() function takes a char& as an
argument, and the whole point of the function is to modify its
argument by inserting the result of the get(). However, when you
read code using this function it’s not immediately obvious to you
that the outside object is being modified:

char c;

cin.get(c);

11: References & the Copy-Constructor 473

Instead, the function call looks like a pass-by-value, which suggests
the outside object is not modified.

Because of this, it’s probably safer from a code maintenance
standpoint to use pointers when you’re passing the address of an
argument to modify. If you always pass addresses as const
references except when you intend to modify the outside object via
the address, where you pass by non-const pointer, then your code
is far easier for the reader to follow.

Pointers to members
A pointer is a variable that holds the address of some location. You
can change what a pointer selects at runtime, and the destination of
the pointer can be either data or a function. The C++
pointer-to-member follows this same concept, except that what it
selects is a location inside a class. The dilemma here is that a
pointer needs an address, but there is no “address” inside a class;
selecting a member of a class means offsetting into that class. You
can’t produce an actual address until you combine that offset with
the starting address of a particular object. The syntax of pointers to
members requires that you select an object at the same time you’re
dereferencing the pointer to member.

To understand this syntax, consider a simple structure, with a
pointer sp and an object so for this structure. You can select
members with the syntax shown:

//: C11:SimpleStructure.cpp

struct Simple { int a; };

int main() {

 Simple so, *sp = &so;

 sp->a;

 so.a;

} ///:~

Now suppose you have an ordinary pointer to an integer, ip. To
access what ip is pointing to, you dereference the pointer with a ‘*’:

*ip = 4;

474 Thinking in C++ www.BruceEckel.com

Finally, consider what happens if you have a pointer that happens
to point to something inside a class object, even if it does in fact
represent an offset into the object. To access what it’s pointing at,
you must dereference it with *. But it’s an offset into an object, so
you must also refer to that particular object. Thus, the * is
combined with the object dereference. So the new syntax becomes
–>* for a pointer to an object, and .* for the object or a reference,
like this:

objectPointer->*pointerToMember = 47;

object.*pointerToMember = 47;

Now, what is the syntax for defining pointerToMember? Like
any pointer, you have to say what type it’s pointing at, and you use a
* in the definition. The only difference is that you must say what
class of objects this pointer-to-member is used with. Of course, this
is accomplished with the name of the class and the scope resolution
operator. Thus,

int ObjectClass::*pointerToMember;

defines a pointer-to-member variable called pointerToMember
that points to any int inside ObjectClass. You can also initialize
the pointer-to-member when you define it (or at any other time):

int ObjectClass::*pointerToMember = &ObjectClass::a;

There is actually no “address” of ObjectClass::a because you’re
just referring to the class and not an object of that class. Thus,
&ObjectClass::a can be used only as pointer-to-member syntax.

Here’s an example that shows how to create and use pointers to
data members:

//: C11:PointerToMemberData.cpp

#include <iostream>

using namespace std;

class Data {

public:

 int a, b, c;

 void print() const {

11: References & the Copy-Constructor 475

 cout << "a = " << a << ", b = " << b

 << ", c = " << c << endl;

 }

};

int main() {

 Data d, *dp = &d;

 int Data::*pmInt = &Data::a;

 dp->*pmInt = 47;

 pmInt = &Data::b;

 d.*pmInt = 48;

 pmInt = &Data::c;

 dp->*pmInt = 49;

 dp->print();

} ///:~

Obviously, these are too awkward to use anywhere except for
special cases (which is exactly what they were intended for).

Also, pointers to members are quite limited: they can be assigned
only to a specific location inside a class. You could not, for example,
increment or compare them as you can with ordinary pointers.

Functions
A similar exercise produces the pointer-to-member syntax for
member functions. A pointer to a function (introduced at the end of
Chapter 3) is defined like this:

int (*fp)(float);

The parentheses around (*fp) are necessary to force the compiler
to evaluate the definition properly. Without them this would appear
to be a function that returns an int*.

Parentheses also play an important role when defining and using
pointers to member functions. If you have a function inside a class,
you define a pointer to that member function by inserting the class
name and scope resolution operator into an ordinary function
pointer definition:

//: C11:PmemFunDefinition.cpp

class Simple2 {

476 Thinking in C++ www.BruceEckel.com

public:

 int f(float) const { return 1; }

};

int (Simple2::*fp)(float) const;

int (Simple2::*fp2)(float) const = &Simple2::f;

int main() {

 fp = &Simple2::f;

} ///:~

In the definition for fp2 you can see that a pointer to member
function can also be initialized when it is created, or at any other
time. Unlike non-member functions, the & is not optional when
taking the address of a member function. However, you can give the
function identifier without an argument list, because overload
resolution can be determined by the type of the pointer to member.

An example
The value of a pointer is that you can change what it points to at
runtime, which provides an important flexibility in your
programming because through a pointer you can select or change
behavior at runtime. A pointer-to-member is no different; it allows
you to choose a member at runtime. Typically, your classes will only
have member functions publicly visible (data members are usually
considered part of the underlying implementation), so the following
example selects member functions at runtime.

//: C11:PointerToMemberFunction.cpp

#include <iostream>

using namespace std;

class Widget {

public:

 void f(int) const { cout << "Widget::f()\n"; }

 void g(int) const { cout << "Widget::g()\n"; }

 void h(int) const { cout << "Widget::h()\n"; }

 void i(int) const { cout << "Widget::i()\n"; }

};

int main() {

 Widget w;

 Widget* wp = &w;

 void (Widget::*pmem)(int) const = &Widget::h;

 (w.*pmem)(1);

11: References & the Copy-Constructor 477

 (wp->*pmem)(2);

} ///:~

Of course, it isn’t particularly reasonable to expect the casual user
to create such complicated expressions. If the user must directly
manipulate a pointer-to-member, then a typedef is in order. To
really clean things up, you can use the pointer-to-member as part of
the internal implementation mechanism. Here’s the preceding
example using a pointer-to-member inside the class. All the user
needs to do is pass a number in to select a function.1

//: C11:PointerToMemberFunction2.cpp

#include <iostream>

using namespace std;

class Widget {

 void f(int) const { cout << "Widget::f()\n"; }

 void g(int) const { cout << "Widget::g()\n"; }

 void h(int) const { cout << "Widget::h()\n"; }

 void i(int) const { cout << "Widget::i()\n"; }

 enum { cnt = 4 };

 void (Widget::*fptr[cnt])(int) const;

public:

 Widget() {

 fptr[0] = &Widget::f; // Full spec required

 fptr[1] = &Widget::g;

 fptr[2] = &Widget::h;

 fptr[3] = &Widget::i;

 }

 void select(int i, int j) {

 if(i < 0 || i >= cnt) return;

 (this->*fptr[i])(j);

 }

 int count() { return cnt; }

};

int main() {

 Widget w;

 for(int i = 0; i < w.count(); i++)

 w.select(i, 47);

} ///:~

1 Thanks to Owen Mortensen for this example

478 Thinking in C++ www.BruceEckel.com

In the class interface and in main(), you can see that the entire
implementation, including the functions, has been hidden away.
The code must even ask for the count() of functions. This way, the
class implementer can change the quantity of functions in the
underlying implementation without affecting the code where the
class is used.

The initialization of the pointers-to-members in the constructor
may seem overspecified. Shouldn’t you be able to say

fptr[1] = &g;

because the name g occurs in the member function, which is
automatically in the scope of the class? The problem is this doesn’t
conform to the pointer-to-member syntax, which is required so
everyone, especially the compiler, can figure out what’s going on.
Similarly, when the pointer-to-member is dereferenced, it seems
like

(this->*fptr[i])(j);

is also over-specified; this looks redundant. Again, the syntax
requires that a pointer-to-member always be bound to an object
when it is dereferenced.

Summary
Pointers in C++ are almost identical to pointers in C, which is good.
Otherwise, a lot of C code wouldn’t compile properly under C++.
The only compile-time errors you will produce occur with
dangerous assignments. If these are in fact what are intended, the
compile-time errors can be removed with a simple (and explicit!)
cast.

C++ also adds the reference from Algol and Pascal, which is like a
constant pointer that is automatically dereferenced by the compiler.
A reference holds an address, but you treat it like an object.
References are essential for clean syntax with operator overloading
(the subject of the next chapter), but they also add syntactic

11: References & the Copy-Constructor 479

convenience for passing and returning objects for ordinary
functions.

The copy-constructor takes a reference to an existing object of the
same type as its argument, and it is used to create a new object from
an existing one. The compiler automatically calls the copy-
constructor when you pass or return an object by value. Although
the compiler will automatically create a copy-constructor for you, if
you think one will be needed for your class, you should always
define it yourself to ensure that the proper behavior occurs. If you
don’t want the object passed or returned by value, you should create
a private copy-constructor.

Pointers-to-members have the same functionality as ordinary
pointers: You can choose a particular region of storage (data or
function) at runtime. Pointers-to-members just happen to work
with class members instead of with global data or functions. You get
the programming flexibility that allows you to change behavior at
runtime.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Turn the “bird & rock” code fragment at the beginning of
this chapter into a C program (using structs for the data
types), and show that it compiles. Now try to compile it
with the C++ compiler and see what happens.

2. Take the code fragments in the beginning of the section
titled “References in C++” and put them into a main().
Add statements to print output so that you can prove to
yourself that references are like pointers that are
automatically dereferenced.

3. Write a program in which you try to (1) Create a reference
that is not initialized when it is created. (2) Change a
reference to refer to another object after it is initialized.
(3) Create a NULL reference.

480 Thinking in C++ www.BruceEckel.com

4. Write a function that takes a pointer argument, modifies
what the pointer points to, and then returns the
destination of the pointer as a reference.

5. Create a class with some member functions, and make
that the object that is pointed to by the argument of
Exercise 4. Make the pointer a const and make some of
the member functions const and prove that you can only
call the const member functions inside your function.
Make the argument to your function a reference instead
of a pointer.

6. Take the code fragments at the beginning of the section
titled “Pointer references” and turn them into a program.

7. Create a function that takes an argument of a reference to
a pointer to a pointer and modifies that argument. In
main(), call the function.

8. Create a function that takes a char& argument and
modifies that argument. In main(), print out a char
variable, call your function for that variable, and print it
out again to prove to yourself that it has been changed.
How does this affect program readability?

9. Write a class that has a const member function and a
non-const member function. Write three functions that
take an object of that class as an argument; the first takes
it by value, the second by reference, and the third by
const reference. Inside the functions, try to call both
member functions of your class and explain the results.

10. (Somewhat challenging) Write a simple function that
takes an int as an argument, increments the value, and
returns it. In main(), call your function. Now discover
how your compiler generates assembly code and trace
through the assembly statements so that you understand
how arguments are passed and returned, and how local
variables are indexed off the stack.

11. Write a function that takes as its arguments a char, int,
float, and double. Generate assembly code with your
compiler and find the statements that push the
arguments on the stack before a function call.

12. Write a function that returns a double. Generate
assembly code and determine how the value is returned.

11: References & the Copy-Constructor 481

13. Produce assembly code for
PassingBigStructures.cpp. Trace through and
demystify the way your compiler generates code to pass
and return large structures.

14. Write a simple recursive function that decrements its
argument and returns zero if the argument becomes zero,
otherwise it calls itself. Generate assembly code for this
function and explain how the way that the assembly code
is created by the compiler supports recursion.

15. Write code to prove that the compiler automatically
synthesizes a copy-constructor if you don’t create one
yourself. Prove that the synthesized copy-constructor
performs a bitcopy of primitive types and calls the copy-
constructor of user-defined types.

16. Write a class with a copy-constructor that announces
itself to cout. Now create a function that passes an object
of your new class in by value and another one that creates
a local object of your new class and returns it by value.
Call these functions to prove to yourself that the copy-
constructor is indeed quietly called when passing and
returning objects by value.

17. Create a class that contains a double*. The constructor
initializes the double* by calling new double and
assigning a value to the resulting storage from the
constructor argument. The destructor prints the value
that’s pointed to, assigns that value to -1, calls delete for
the storage, and then sets the pointer to zero. Now create
a function that takes an object of your class by value, and
call this function in main(). What happens? Fix the
problem by writing a copy-constructor.

18. Create a class with a constructor that looks like a copy-
constructor, but that has an extra argument with a
default value. Show that this is still used as the copy-
constructor.

19. Create a class with a copy-constructor that announces
itself. Make a second class containing a member object of
the first class, but do not create a copy-constructor. Show
that the synthesized copy-constructor in the second class
automatically calls the copy-constructor of the first class.

482 Thinking in C++ www.BruceEckel.com

20. Create a very simple class, and a function that returns an
object of that class by value. Create a second function that
takes a reference to an object of your class. Call the first
function as the argument of the second function, and
demonstrate that the second function must use a const
reference as its argument.

21. Create a simple class without a copy-constructor, and a
simple function that takes an object of that class by value.
Now change your class by adding a private declaration
(only) for the copy-constructor. Explain what happens
when your function is compiled.

22. This exercise creates an alternative to using the copy-
constructor. Create a class X and declare (but don’t
define) a private copy-constructor. Make a public
clone() function as a const member function that
returns a copy of the object that is created using new.
Now write a function that takes as an argument a const
X& and clones a local copy that can be modified. The
drawback to this approach is that you are responsible for
explicitly destroying the cloned object (using delete)
when you’re done with it.

23. Explain what’s wrong with both Mem.cpp and
MemTest.cpp from Chapter 7. Fix the problem.

24. Create a class containing a double and a print()
function that prints the double. In main(), create
pointers to members for both the data member and the
function in your class. Create an object of your class and a
pointer to that object, and manipulate both class
elements via your pointers to members, using both the
object and the pointer to the object.

25. Create a class containing an array of int. Can you index
through this array using a pointer to member?

26. Modify PmemFunDefinition.cpp by adding an
overloaded member function f() (you can determine the
argument list that causes the overload). Now make a
second pointer to member, assign it to the overloaded
version of f(), and call the function through that pointer.
How does the overload resolution happen in this case?

11: References & the Copy-Constructor 483

27. Start with FunctionTable.cpp from Chapter 3. Create a
class that contains a vector of pointers to functions, with
add() and remove() member functions to add and
remove pointers to functions. Add a run() function that
moves through the vector and calls all of the functions.

28. Modify the above Exercise 27 so that it works with
pointers to member functions instead.

 485

12: Operator Overloading
Operator overloading is just “syntactic sugar,” which

means it is simply another way for you to make a

function call.

486 Thinking in C++ www.BruceEckel.com

The difference is that the arguments for this function don’t appear
inside parentheses, but instead they surround or are next to
characters you’ve always thought of as immutable operators.

There are two differences between the use of an operator and an
ordinary function call. The syntax is different; an operator is often
“called” by placing it between or sometimes after the arguments.
The second difference is that the compiler determines which
“function” to call. For instance, if you are using the operator + with
floating-point arguments, the compiler “calls” the function to
perform floating-point addition (this “call” is typically the act of
inserting in-line code, or a floating-point-processor instruction). If
you use operator + with a floating-point number and an integer, the
compiler “calls” a special function to turn the int into a float, and
then “calls” the floating-point addition code.

But in C++, it’s possible to define new operators that work with
classes. This definition is just like an ordinary function definition
except that the name of the function consists of the keyword
operator followed by the operator. That’s the only difference, and
it becomes a function like any other function, which the compiler
calls when it sees the appropriate pattern.

Warning & reassurance
It’s tempting to become overenthusiastic with operator overloading.
It’s a fun toy, at first. But remember it’s only syntactic sugar,
another way of calling a function. Looking at it this way, you have
no reason to overload an operator except if it will make the code
involving your class easier to write and especially easier to read.
(Remember, code is read much more than it is written.) If this isn’t
the case, don’t bother.

Another common response to operator overloading is panic;
suddenly, C operators have no familiar meaning anymore.
“Everything’s changed and all my C code will do different things!”
This isn’t true. All the operators used in expressions that contain
only built-in data types cannot be changed. You can never overload
operators such that

12: Operator Overloading 487

1 << 4;

behaves differently, or

1.414 << 2;

has meaning. Only an expression containing a user-defined type
can have an overloaded operator.

Syntax
Defining an overloaded operator is like defining a function, but the
name of that function is operator@, in which @ represents the
operator that’s being overloaded. The number of arguments in the
overloaded operator’s argument list depends on two factors:

1. Whether it’s a unary operator (one argument) or a binary
operator (two arguments).

2. Whether the operator is defined as a global function (one
argument for unary, two for binary) or a member function
(zero arguments for unary, one for binary – the object
becomes the left-hand argument).

Here’s a small class that shows the syntax for operator overloading:

//: C12:OperatorOverloadingSyntax.cpp

#include <iostream>

using namespace std;

class Integer {

 int i;

public:

 Integer(int ii) : i(ii) {}

 const Integer

 operator+(const Integer& rv) const {

 cout << "operator+" << endl;

 return Integer(i + rv.i);

 }

 Integer&

 operator+=(const Integer& rv) {

 cout << "operator+=" << endl;

488 Thinking in C++ www.BruceEckel.com

 i += rv.i;

 return *this;

 }

};

int main() {

 cout << "built-in types:" << endl;

 int i = 1, j = 2, k = 3;

 k += i + j;

 cout << "user-defined types:" << endl;

 Integer ii(1), jj(2), kk(3);

 kk += ii + jj;

} ///:~

The two overloaded operators are defined as inline member
functions that announce when they are called. The single argument
is what appears on the right-hand side of the operator for binary
operators. Unary operators have no arguments when defined as
member functions. The member function is called for the object on
the left-hand side of the operator.

For non-conditional operators (conditionals usually return a
Boolean value), you’ll almost always want to return an object or
reference of the same type you’re operating on if the two arguments
are the same type. (If they’re not the same type, the interpretation
of what it should produce is up to you.) This way, complicated
expressions can be built up:

kk += ii + jj;

The operator+ produces a new Integer (a temporary) that is used
as the rv argument for the operator+=. This temporary is
destroyed as soon as it is no longer needed.

Overloadable operators
Although you can overload almost all the operators available in C,
the use of operator overloading is fairly restrictive. In particular,
you cannot combine operators that currently have no meaning in C
(such as ** to represent exponentiation), you cannot change the
evaluation precedence of operators, and you cannot change the

12: Operator Overloading 489

number of arguments required by an operator. This makes sense –
all of these actions would produce operators that confuse meaning
rather than clarify it.

The next two subsections give examples of all the “regular”
operators, overloaded in the form that you’ll most likely use.

Unary operators
The following example shows the syntax to overload all the unary
operators, in the form of both global functions (non-member
friend functions) and as member functions. These will expand
upon the Integer class shown previously and add a new byte class.
The meaning of your particular operators will depend on the way
you want to use them, but consider the client programmer before
doing something unexpected.

Here is a catalog of all the unary functions:

//: C12:OverloadingUnaryOperators.cpp

#include <iostream>

using namespace std;

// Non-member functions:

class Integer {

 long i;

 Integer* This() { return this; }

public:

 Integer(long ll = 0) : i(ll) {}

 // No side effects takes const& argument:

 friend const Integer&

 operator+(const Integer& a);

 friend const Integer

 operator-(const Integer& a);

 friend const Integer

 operator~(const Integer& a);

 friend Integer*

 operator&(Integer& a);

 friend int

 operator!(const Integer& a);

 // Side effects have non-const& argument:

 // Prefix:

 friend const Integer&

490 Thinking in C++ www.BruceEckel.com

 operator++(Integer& a);

 // Postfix:

 friend const Integer

 operator++(Integer& a, int);

 // Prefix:

 friend const Integer&

 operator--(Integer& a);

 // Postfix:

 friend const Integer

 operator--(Integer& a, int);

};

// Global operators:

const Integer& operator+(const Integer& a) {

 cout << "+Integer\n";

 return a; // Unary + has no effect

}

const Integer operator-(const Integer& a) {

 cout << "-Integer\n";

 return Integer(-a.i);

}

const Integer operator~(const Integer& a) {

 cout << "~Integer\n";

 return Integer(~a.i);

}

Integer* operator&(Integer& a) {

 cout << "&Integer\n";

 return a.This(); // &a is recursive!

}

int operator!(const Integer& a) {

 cout << "!Integer\n";

 return !a.i;

}

// Prefix; return incremented value

const Integer& operator++(Integer& a) {

 cout << "++Integer\n";

 a.i++;

 return a;

}

// Postfix; return the value before increment:

const Integer operator++(Integer& a, int) {

 cout << "Integer++\n";

 Integer before(a.i);

 a.i++;

 return before;

12: Operator Overloading 491

}

// Prefix; return decremented value

const Integer& operator--(Integer& a) {

 cout << "--Integer\n";

 a.i--;

 return a;

}

// Postfix; return the value before decrement:

const Integer operator--(Integer& a, int) {

 cout << "Integer--\n";

 Integer before(a.i);

 a.i--;

 return before;

}

// Show that the overloaded operators work:

void f(Integer a) {

 +a;

 -a;

 ~a;

 Integer* ip = &a;

 !a;

 ++a;

 a++;

 --a;

 a--;

}

// Member functions (implicit "this"):

class Byte {

 unsigned char b;

public:

 Byte(unsigned char bb = 0) : b(bb) {}

 // No side effects: const member function:

 const Byte& operator+() const {

 cout << "+Byte\n";

 return *this;

 }

 const Byte operator-() const {

 cout << "-Byte\n";

 return Byte(-b);

 }

 const Byte operator~() const {

 cout << "~Byte\n";

 return Byte(~b);

492 Thinking in C++ www.BruceEckel.com

 }

 Byte operator!() const {

 cout << "!Byte\n";

 return Byte(!b);

 }

 Byte* operator&() {

 cout << "&Byte\n";

 return this;

 }

 // Side effects: non-const member function:

 const Byte& operator++() { // Prefix

 cout << "++Byte\n";

 b++;

 return *this;

 }

 const Byte operator++(int) { // Postfix

 cout << "Byte++\n";

 Byte before(b);

 b++;

 return before;

 }

 const Byte& operator--() { // Prefix

 cout << "--Byte\n";

 --b;

 return *this;

 }

 const Byte operator--(int) { // Postfix

 cout << "Byte--\n";

 Byte before(b);

 --b;

 return before;

 }

};

void g(Byte b) {

 +b;

 -b;

 ~b;

 Byte* bp = &b;

 !b;

 ++b;

 b++;

 --b;

 b--;

}

12: Operator Overloading 493

int main() {

 Integer a;

 f(a);

 Byte b;

 g(b);

} ///:~

The functions are grouped according to the way their arguments are
passed. Guidelines for how to pass and return arguments are given
later. The forms above (and the ones that follow in the next section)
are typically what you’ll use, so start with them as a pattern when
overloading your own operators.

Increment & decrement
The overloaded ++ and – – operators present a dilemma because
you want to be able to call different functions depending on
whether they appear before (prefix) or after (postfix) the object
they’re acting upon. The solution is simple, but people sometimes
find it a bit confusing at first. When the compiler sees, for example,
++a (a pre-increment), it generates a call to operator++(a); but
when it sees a++, it generates a call to operator++(a, int). That
is, the compiler differentiates between the two forms by making
calls to different overloaded functions. In
OverloadingUnaryOperators.cpp for the member function
versions, if the compiler sees ++b, it generates a call to
B::operator++(); if it sees b++ it calls B::operator++(int).

All the user sees is that a different function gets called for the prefix
and postfix versions. Underneath, however, the two functions calls
have different signatures, so they link to two different function
bodies. The compiler passes a dummy constant value for the int
argument (which is never given an identifier because the value is
never used) to generate the different signature for the postfix
version.

Binary operators
The following listing repeats the example of
OverloadingUnaryOperators.cpp for binary operators so you
have an example of all the operators you might want to overload.

494 Thinking in C++ www.BruceEckel.com

Again, both global versions and member function versions are
shown.

//: C12:Integer.h

// Non-member overloaded operators

#ifndef INTEGER_H

#define INTEGER_H

#include <iostream>

// Non-member functions:

class Integer {

 long i;

public:

 Integer(long ll = 0) : i(ll) {}

 // Operators that create new, modified value:

 friend const Integer

 operator+(const Integer& left,

 const Integer& right);

 friend const Integer

 operator-(const Integer& left,

 const Integer& right);

 friend const Integer

 operator*(const Integer& left,

 const Integer& right);

 friend const Integer

 operator/(const Integer& left,

 const Integer& right);

 friend const Integer

 operator%(const Integer& left,

 const Integer& right);

 friend const Integer

 operator^(const Integer& left,

 const Integer& right);

 friend const Integer

 operator&(const Integer& left,

 const Integer& right);

 friend const Integer

 operator|(const Integer& left,

 const Integer& right);

 friend const Integer

 operator<<(const Integer& left,

 const Integer& right);

 friend const Integer

 operator>>(const Integer& left,

12: Operator Overloading 495

 const Integer& right);

 // Assignments modify & return lvalue:

 friend Integer&

 operator+=(Integer& left,

 const Integer& right);

 friend Integer&

 operator-=(Integer& left,

 const Integer& right);

 friend Integer&

 operator*=(Integer& left,

 const Integer& right);

 friend Integer&

 operator/=(Integer& left,

 const Integer& right);

 friend Integer&

 operator%=(Integer& left,

 const Integer& right);

 friend Integer&

 operator^=(Integer& left,

 const Integer& right);

 friend Integer&

 operator&=(Integer& left,

 const Integer& right);

 friend Integer&

 operator|=(Integer& left,

 const Integer& right);

 friend Integer&

 operator>>=(Integer& left,

 const Integer& right);

 friend Integer&

 operator<<=(Integer& left,

 const Integer& right);

 // Conditional operators return true/false:

 friend int

 operator==(const Integer& left,

 const Integer& right);

 friend int

 operator!=(const Integer& left,

 const Integer& right);

 friend int

 operator<(const Integer& left,

 const Integer& right);

 friend int

 operator>(const Integer& left,

 const Integer& right);

496 Thinking in C++ www.BruceEckel.com

 friend int

 operator<=(const Integer& left,

 const Integer& right);

 friend int

 operator>=(const Integer& left,

 const Integer& right);

 friend int

 operator&&(const Integer& left,

 const Integer& right);

 friend int

 operator||(const Integer& left,

 const Integer& right);

 // Write the contents to an ostream:

 void print(std::ostream& os) const { os << i; }

};

#endif // INTEGER_H ///:~

//: C12:Integer.cpp {O}

// Implementation of overloaded operators

#include "Integer.h"

#include "../require.h"

const Integer

 operator+(const Integer& left,

 const Integer& right) {

 return Integer(left.i + right.i);

}

const Integer

 operator-(const Integer& left,

 const Integer& right) {

 return Integer(left.i - right.i);

}

const Integer

 operator*(const Integer& left,

 const Integer& right) {

 return Integer(left.i * right.i);

}

const Integer

 operator/(const Integer& left,

 const Integer& right) {

 require(right.i != 0, "divide by zero");

 return Integer(left.i / right.i);

}

const Integer

 operator%(const Integer& left,

12: Operator Overloading 497

 const Integer& right) {

 require(right.i != 0, "modulo by zero");

 return Integer(left.i % right.i);

}

const Integer

 operator^(const Integer& left,

 const Integer& right) {

 return Integer(left.i ^ right.i);

}

const Integer

 operator&(const Integer& left,

 const Integer& right) {

 return Integer(left.i & right.i);

}

const Integer

 operator|(const Integer& left,

 const Integer& right) {

 return Integer(left.i | right.i);

}

const Integer

 operator<<(const Integer& left,

 const Integer& right) {

 return Integer(left.i << right.i);

}

const Integer

 operator>>(const Integer& left,

 const Integer& right) {

 return Integer(left.i >> right.i);

}

// Assignments modify & return lvalue:

Integer& operator+=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i += right.i;

 return left;

}

Integer& operator-=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i -= right.i;

 return left;

}

Integer& operator*=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

498 Thinking in C++ www.BruceEckel.com

 left.i *= right.i;

 return left;

}

Integer& operator/=(Integer& left,

 const Integer& right) {

 require(right.i != 0, "divide by zero");

 if(&left == &right) {/* self-assignment */}

 left.i /= right.i;

 return left;

}

Integer& operator%=(Integer& left,

 const Integer& right) {

 require(right.i != 0, "modulo by zero");

 if(&left == &right) {/* self-assignment */}

 left.i %= right.i;

 return left;

}

Integer& operator^=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i ^= right.i;

 return left;

}

Integer& operator&=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i &= right.i;

 return left;

}

Integer& operator|=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i |= right.i;

 return left;

}

Integer& operator>>=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i >>= right.i;

 return left;

}

Integer& operator<<=(Integer& left,

 const Integer& right) {

 if(&left == &right) {/* self-assignment */}

 left.i <<= right.i;

12: Operator Overloading 499

 return left;

}

// Conditional operators return true/false:

int operator==(const Integer& left,

 const Integer& right) {

 return left.i == right.i;

}

int operator!=(const Integer& left,

 const Integer& right) {

 return left.i != right.i;

}

int operator<(const Integer& left,

 const Integer& right) {

 return left.i < right.i;

}

int operator>(const Integer& left,

 const Integer& right) {

 return left.i > right.i;

}

int operator<=(const Integer& left,

 const Integer& right) {

 return left.i <= right.i;

}

int operator>=(const Integer& left,

 const Integer& right) {

 return left.i >= right.i;

}

int operator&&(const Integer& left,

 const Integer& right) {

 return left.i && right.i;

}

int operator||(const Integer& left,

 const Integer& right) {

 return left.i || right.i;

} ///:~

//: C12:IntegerTest.cpp

//{L} Integer

#include "Integer.h"

#include <fstream>

using namespace std;

ofstream out("IntegerTest.out");

void h(Integer& c1, Integer& c2) {

 // A complex expression:

500 Thinking in C++ www.BruceEckel.com

 c1 += c1 * c2 + c2 % c1;

 #define TRY(OP) \

 out << "c1 = "; c1.print(out); \

 out << ", c2 = "; c2.print(out); \

 out << "; c1 " #OP " c2 produces "; \

 (c1 OP c2).print(out); \

 out << endl;

 TRY(+) TRY(-) TRY(*) TRY(/)

 TRY(%) TRY(^) TRY(&) TRY(|)

 TRY(<<) TRY(>>) TRY(+=) TRY(-=)

 TRY(*=) TRY(/=) TRY(%=) TRY(^=)

 TRY(&=) TRY(|=) TRY(>>=) TRY(<<=)

 // Conditionals:

 #define TRYC(OP) \

 out << "c1 = "; c1.print(out); \

 out << ", c2 = "; c2.print(out); \

 out << "; c1 " #OP " c2 produces "; \

 out << (c1 OP c2); \

 out << endl;

 TRYC(<) TRYC(>) TRYC(==) TRYC(!=) TRYC(<=)

 TRYC(>=) TRYC(&&) TRYC(||)

}

int main() {

 cout << "friend functions" << endl;

 Integer c1(47), c2(9);

 h(c1, c2);

} ///:~

//: C12:Byte.h

// Member overloaded operators

#ifndef BYTE_H

#define BYTE_H

#include "../require.h"

#include <iostream>

// Member functions (implicit "this"):

class Byte {

 unsigned char b;

public:

 Byte(unsigned char bb = 0) : b(bb) {}

 // No side effects: const member function:

 const Byte

 operator+(const Byte& right) const {

 return Byte(b + right.b);

 }

12: Operator Overloading 501

 const Byte

 operator-(const Byte& right) const {

 return Byte(b - right.b);

 }

 const Byte

 operator*(const Byte& right) const {

 return Byte(b * right.b);

 }

 const Byte

 operator/(const Byte& right) const {

 require(right.b != 0, "divide by zero");

 return Byte(b / right.b);

 }

 const Byte

 operator%(const Byte& right) const {

 require(right.b != 0, "modulo by zero");

 return Byte(b % right.b);

 }

 const Byte

 operator^(const Byte& right) const {

 return Byte(b ^ right.b);

 }

 const Byte

 operator&(const Byte& right) const {

 return Byte(b & right.b);

 }

 const Byte

 operator|(const Byte& right) const {

 return Byte(b | right.b);

 }

 const Byte

 operator<<(const Byte& right) const {

 return Byte(b << right.b);

 }

 const Byte

 operator>>(const Byte& right) const {

 return Byte(b >> right.b);

 }

 // Assignments modify & return lvalue.

 // operator= can only be a member function:

 Byte& operator=(const Byte& right) {

 // Handle self-assignment:

 if(this == &right) return *this;

 b = right.b;

 return *this;

502 Thinking in C++ www.BruceEckel.com

 }

 Byte& operator+=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b += right.b;

 return *this;

 }

 Byte& operator-=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b -= right.b;

 return *this;

 }

 Byte& operator*=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b *= right.b;

 return *this;

 }

 Byte& operator/=(const Byte& right) {

 require(right.b != 0, "divide by zero");

 if(this == &right) {/* self-assignment */}

 b /= right.b;

 return *this;

 }

 Byte& operator%=(const Byte& right) {

 require(right.b != 0, "modulo by zero");

 if(this == &right) {/* self-assignment */}

 b %= right.b;

 return *this;

 }

 Byte& operator^=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b ^= right.b;

 return *this;

 }

 Byte& operator&=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b &= right.b;

 return *this;

 }

 Byte& operator|=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b |= right.b;

 return *this;

 }

 Byte& operator>>=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

12: Operator Overloading 503

 b >>= right.b;

 return *this;

 }

 Byte& operator<<=(const Byte& right) {

 if(this == &right) {/* self-assignment */}

 b <<= right.b;

 return *this;

 }

 // Conditional operators return true/false:

 int operator==(const Byte& right) const {

 return b == right.b;

 }

 int operator!=(const Byte& right) const {

 return b != right.b;

 }

 int operator<(const Byte& right) const {

 return b < right.b;

 }

 int operator>(const Byte& right) const {

 return b > right.b;

 }

 int operator<=(const Byte& right) const {

 return b <= right.b;

 }

 int operator>=(const Byte& right) const {

 return b >= right.b;

 }

 int operator&&(const Byte& right) const {

 return b && right.b;

 }

 int operator||(const Byte& right) const {

 return b || right.b;

 }

 // Write the contents to an ostream:

 void print(std::ostream& os) const {

 os << "0x" << std::hex << int(b) << std::dec;

 }

};

#endif // BYTE_H ///:~

//: C12:ByteTest.cpp

#include "Byte.h"

#include <fstream>

using namespace std;

ofstream out("ByteTest.out");

504 Thinking in C++ www.BruceEckel.com

void k(Byte& b1, Byte& b2) {

 b1 = b1 * b2 + b2 % b1;

 #define TRY2(OP) \

 out << "b1 = "; b1.print(out); \

 out << ", b2 = "; b2.print(out); \

 out << "; b1 " #OP " b2 produces "; \

 (b1 OP b2).print(out); \

 out << endl;

 b1 = 9; b2 = 47;

 TRY2(+) TRY2(-) TRY2(*) TRY2(/)

 TRY2(%) TRY2(^) TRY2(&) TRY2(|)

 TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=)

 TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=)

 TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=)

 TRY2(=) // Assignment operator

 // Conditionals:

 #define TRYC2(OP) \

 out << "b1 = "; b1.print(out); \

 out << ", b2 = "; b2.print(out); \

 out << "; b1 " #OP " b2 produces "; \

 out << (b1 OP b2); \

 out << endl;

 b1 = 9; b2 = 47;

 TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=)

 TRYC2(>=) TRYC2(&&) TRYC2(||)

 // Chained assignment:

 Byte b3 = 92;

 b1 = b2 = b3;

}

int main() {

 out << "member functions:" << endl;

 Byte b1(47), b2(9);

 k(b1, b2);

} ///:~

You can see that operator= is only allowed to be a member
function. This is explained later.

12: Operator Overloading 505

Notice that all of the assignment operators have code to check for
self-assignment; this is a general guideline. In some cases this is not
necessary; for example, with operator+= you often want to say
A+=A and have it add A to itself. The most important place to
check for self-assignment is operator= because with complicated
objects disastrous results may occur. (In some cases it’s OK, but you
should always keep it in mind when writing operator=.)

All of the operators shown in the previous two examples are
overloaded to handle a single type. It’s also possible to overload
operators to handle mixed types, so you can add apples to oranges,
for example. Before you start on an exhaustive overloading of
operators, however, you should look at the section on automatic
type conversion later in this chapter. Often, a type conversion in the
right place can save you a lot of overloaded operators.

Arguments & return values
It may seem a little confusing at first when you look at
OverloadingUnaryOperators.cpp, Integer.h and Byte.h and
see all the different ways that arguments are passed and returned.
Although you can pass and return arguments any way you want to,
the choices in these examples were not selected at random. They
follow a logical pattern, the same one you’ll want to use in most of
your choices.

1. As with any function argument, if you only need to read from
the argument and not change it, default to passing it as a
const reference. Ordinary arithmetic operations (like + and
–, etc.) and Booleans will not change their arguments, so pass
by const reference is predominantly what you’ll use. When
the function is a class member, this translates to making it a
const member function. Only with the operator-assignments
(like +=) and the operator=, which change the left-hand
argument, is the left argument not a constant, but it’s still
passed in as an address because it will be changed.

2. The type of return value you should select depends on the
expected meaning of the operator. (Again, you can do
anything you want with the arguments and return values.) If

506 Thinking in C++ www.BruceEckel.com

the effect of the operator is to produce a new value, you will
need to generate a new object as the return value. For
example, Integer::operator+ must produce an Integer
object that is the sum of the operands. This object is returned
by value as a const, so the result cannot be modified as an
lvalue.

3. All the assignment operators modify the lvalue. To allow the
result of the assignment to be used in chained expressions,
like a=b=c, it’s expected that you will return a reference to
that same lvalue that was just modified. But should this
reference be a const or nonconst? Although you read
a=b=c from left to right, the compiler parses it from right to
left, so you’re not forced to return a nonconst to support
assignment chaining. However, people do sometimes expect
to be able to perform an operation on the thing that was just
assigned to, such as (a=b).func(); to call func() on a after
assigning b to it. Thus, the return value for all of the
assignment operators should be a nonconst reference to the
lvalue.

4. For the logical operators, everyone expects to get at worst an
int back, and at best a bool. (Libraries developed before
most compilers supported C++’s built-in bool will use int or
an equivalent typedef.)

The increment and decrement operators present a dilemma because
of the pre- and postfix versions. Both versions change the object
and so cannot treat the object as a const. The prefix version returns
the value of the object after it was changed, so you expect to get
back the object that was changed. Thus, with prefix you can just
return *this as a reference. The postfix version is supposed to
return the value before the value is changed, so you’re forced to
create a separate object to represent that value and return it. So
with postfix you must return by value if you want to preserve the
expected meaning. (Note that you’ll sometimes find the increment
and decrement operators returning an int or bool to indicate, for
example, whether an object designed to move through a list is at the
end of that list.) Now the question is: Should these be returned as
const or nonconst? If you allow the object to be modified and

12: Operator Overloading 507

someone writes (++a).func(), func() will be operating on a
itself, but with (a++).func(), func() operates on the temporary
object returned by the postfix operator++. Temporary objects are
automatically const, so this would be flagged by the compiler, but
for consistency’s sake it may make more sense to make them both
const, as was done here. Or you may choose to make the prefix
version non-const and the postfix const. Because of the variety of
meanings you may want to give the increment and decrement
operators, they will need to be considered on a case-by-case basis.

Return by value as const
Returning by value as a const can seem a bit subtle at first, so it
deserves a bit more explanation. Consider the binary operator+. If
you use it in an expression such as f(a+b), the result of a+b
becomes a temporary object that is used in the call to f(). Because
it’s a temporary, it’s automatically const, so whether you explicitly
make the return value const or not has no effect.

However, it’s also possible for you to send a message to the return
value of a+b, rather than just passing it to a function. For example,
you can say (a+b).g(), in which g() is some member function of
Integer, in this case. By making the return value const, you state
that only a const member function can be called for that return
value. This is const-correct, because it prevents you from storing
potentially valuable information in an object that will most likely be
lost.

The return optimization
When new objects are created to return by value, notice the form
used. In operator+, for example:

return Integer(left.i + right.i);

This may look at first like a “function call to a constructor,” but it’s
not. The syntax is that of a temporary object; the statement says
“make a temporary Integer object and return it.” Because of this,
you might think that the result is the same as creating a named local
object and returning that. However, it’s quite different. If you were
to say instead:

508 Thinking in C++ www.BruceEckel.com

Integer tmp(left.i + right.i);

return tmp;

three things will happen. First, the tmp object is created including
its constructor call. Second, the copy-constructor copies the tmp to
the location of the outside return value. Third, the destructor is
called for tmp at the end of the scope.

In contrast, the “returning a temporary” approach works quite
differently. When the compiler sees you do this, it knows that you
have no other need for the object it’s creating than to return it. The
compiler takes advantage of this by building the object directly into
the location of the outside return value. This requires only a single
ordinary constructor call (no copy-constructor is necessary) and
there’s no destructor call because you never actually create a local
object. Thus, while it doesn’t cost anything but programmer
awareness, it’s significantly more efficient. This is often called the
return value optimization.

Unusual operators
Several additional operators have a slightly different syntax for
overloading.

The subscript, operator[], must be a member function and it
requires a single argument. Because operator[] implies that the
object it’s being called for acts like an array, you will often return a
reference from this operator, so it can be conveniently used on the
left-hand side of an equal sign. This operator is commonly
overloaded; you’ll see examples in the rest of the book.

The operators new and delete control dynamic storage allocation
and can be overloaded in a number of different ways. This topic is
covered in the Chapter 13.

Operator comma
The comma operator is called when it appears next to an object of
the type the comma is defined for. However, “operator,” is not
called for function argument lists, only for objects that are out in
the open, separated by commas. There doesn’t seem to be a lot of

12: Operator Overloading 509

practical uses for this operator; it’s in the language for consistency.
Here’s an example showing how the comma function can be called
when the comma appears before an object, as well as after:

//: C12:OverloadingOperatorComma.cpp

#include <iostream>

using namespace std;

class After {

public:

 const After& operator,(const After&) const {

 cout << "After::operator,()" << endl;

 return *this;

 }

};

class Before {};

Before& operator,(int, Before& b) {

 cout << "Before::operator,()" << endl;

 return b;

}

int main() {

 After a, b;

 a, b; // Operator comma called

 Before c;

 1, c; // Operator comma called

} ///:~

The global function allows the comma to be placed before the object
in question. The usage shown is fairly obscure and questionable.
Although you would probably use a comma-separated list as part of
a more complex expression, it’s too subtle to use in most situations.

Operator->
The operator–> is generally used when you want to make an
object appear to be a pointer. Since such an object has more
“smarts” built into it than exist for a typical pointer, an object like
this is often called a smart pointer. These are especially useful if
you want to “wrap” a class around a pointer to make that pointer
safe, or in the common usage of an iterator, which is an object that

510 Thinking in C++ www.BruceEckel.com

moves through a collection /container of other objects and selects
them one at a time, without providing direct access to the
implementation of the container. (You’ll often find containers and
iterators in class libraries, such as in the Standard C++ Library,
described in Volume 2 of this book.)

A pointer dereference operator must be a member function. It has
additional, atypical constraints: It must return an object (or
reference to an object) that also has a pointer dereference operator,
or it must return a pointer that can be used to select what the
pointer dereference operator arrow is pointing at. Here’s a simple
example:

//: C12:SmartPointer.cpp

#include <iostream>

#include <vector>

#include "../require.h"

using namespace std;

class Obj {

 static int i, j;

public:

 void f() const { cout << i++ << endl; }

 void g() const { cout << j++ << endl; }

};

// Static member definitions:

int Obj::i = 47;

int Obj::j = 11;

// Container:

class ObjContainer {

 vector<Obj*> a;

public:

 void add(Obj* obj) { a.push_back(obj); }

 friend class SmartPointer;

};

class SmartPointer {

 ObjContainer& oc;

 int index;

public:

 SmartPointer(ObjContainer& objc) : oc(objc) {

12: Operator Overloading 511

 index = 0;

 }

 // Return value indicates end of list:

 bool operator++() { // Prefix

 if(index >= oc.a.size()) return false;

 if(oc.a[++index] == 0) return false;

 return true;

 }

 bool operator++(int) { // Postfix

 return operator++(); // Use prefix version

 }

 Obj* operator->() const {

 require(oc.a[index] != 0, "Zero value "

 "returned by SmartPointer::operator->()");

 return oc.a[index];

 }

};

int main() {

 const int sz = 10;

 Obj o[sz];

 ObjContainer oc;

 for(int i = 0; i < sz; i++)

 oc.add(&o[i]); // Fill it up

 SmartPointer sp(oc); // Create an iterator

 do {

 sp->f(); // Pointer dereference operator call

 sp->g();

 } while(sp++);

} ///:~

The class Obj defines the objects that are manipulated in this
program. The functions f() and g() simply print out interesting
values using static data members. Pointers to these objects are
stored inside containers of type ObjContainer using its add()
function. ObjContainer looks like an array of pointers, but you’ll
notice there’s no way to get the pointers back out again. However,
SmartPointer is declared as a friend class, so it has permission
to look inside the container. The SmartPointer class looks very
much like an intelligent pointer – you can move it forward using
operator++ (you can also define an operator– –), it won’t go
past the end of the container it’s pointing to, and it produces (via
the pointer dereference operator) the value it’s pointing to. Notice

512 Thinking in C++ www.BruceEckel.com

that the SmartPointer is a custom fit for the container it’s created
for; unlike an ordinary pointer, there isn’t a “general purpose”
smart pointer. You will learn more about the smart pointers called
“iterators” in the last chapter of this book and in Volume 2
(downloadable from www.BruceEckel.com).

In main(), once the container oc is filled with Obj objects, a
SmartPointer sp is created. The smart pointer calls happen in the
expressions:

sp->f(); // Smart pointer calls

sp->g();

Here, even though sp doesn’t actually have f() and g() member
functions, the pointer dereference operator automatically calls
those functions for the Obj* that is returned by
SmartPointer::operator–>. The compiler performs all the
checking to make sure the function call works properly.

Although the underlying mechanics of the pointer dereference
operator are more complex than the other operators, the goal is
exactly the same: to provide a more convenient syntax for the users
of your classes.

A nested iterator
It’s more common to see a “smart pointer” or “iterator” class nested
within the class that it services. The previous example can be
rewritten to nest SmartPointer inside ObjContainer like this:

//: C12:NestedSmartPointer.cpp

#include <iostream>

#include <vector>

#include "../require.h"

using namespace std;

class Obj {

 static int i, j;

public:

 void f() { cout << i++ << endl; }

 void g() { cout << j++ << endl; }

};

12: Operator Overloading 513

// Static member definitions:

int Obj::i = 47;

int Obj::j = 11;

// Container:

class ObjContainer {

 vector<Obj*> a;

public:

 void add(Obj* obj) { a.push_back(obj); }

 class SmartPointer;

 friend SmartPointer;

 class SmartPointer {

 ObjContainer& oc;

 unsigned int index;

 public:

 SmartPointer(ObjContainer& objc) : oc(objc) {

 index = 0;

 }

 // Return value indicates end of list:

 bool operator++() { // Prefix

 if(index >= oc.a.size()) return false;

 if(oc.a[++index] == 0) return false;

 return true;

 }

 bool operator++(int) { // Postfix

 return operator++(); // Use prefix version

 }

 Obj* operator->() const {

 require(oc.a[index] != 0, "Zero value "

 "returned by SmartPointer::operator->()");

 return oc.a[index];

 }

 };

 // Function to produce a smart pointer that

 // points to the beginning of the ObjContainer:

 SmartPointer begin() {

 return SmartPointer(*this);

 }

};

int main() {

 const int sz = 10;

 Obj o[sz];

 ObjContainer oc;

 for(int i = 0; i < sz; i++)

514 Thinking in C++ www.BruceEckel.com

 oc.add(&o[i]); // Fill it up

 ObjContainer::SmartPointer sp = oc.begin();

 do {

 sp->f(); // Pointer dereference operator call

 sp->g();

 } while(++sp);

} ///:~

Besides the actual nesting of the class, there are only two
differences here. The first is in the declaration of the class so that it
can be a friend:

class SmartPointer;

friend SmartPointer;

The compiler must first know that the class exists before it can be
told that it’s a friend.

The second difference is in the ObjContainer member function
begin(), which produces a SmartPointer that points to the
beginning of the ObjContainer sequence. Although it’s really only
a convenience, it’s valuable because it follows part of the form used
in the Standard C++ Library.

Operator->*
The operator–>* is a binary operator that behaves like all the
other binary operators. It is provided for those situations when you
want to mimic the behavior provided by the built-in pointer-to-
member syntax, described in the previous chapter.

Just like operator->, the pointer-to-member dereference operator
is generally used with some kind of object that represents a “smart
pointer,” although the example shown here will be simpler so it’s
understandable. The trick when defining operator->* is that it
must return an object for which the operator() can be called with
the arguments for the member function you’re calling.

The function call operator() must be a member function, and it
is unique in that it allows any number of arguments. It makes your
object look like it’s actually a function. Although you could define
several overloaded operator() functions with different

12: Operator Overloading 515

arguments, it’s often used for types that only have a single
operation, or at least an especially prominent one. You’ll see in
Volume 2 that the Standard C++ Library uses the function call
operator in order to create “function objects.”

To create an operator->* you must first create a class with an
operator() that is the type of object that operator->* will return.
This class must somehow capture the necessary information so that
when the operator() is called (which happens automatically), the
pointer-to-member will be dereferenced for the object. In the
following example, the FunctionObject constructor captures and
stores both the pointer to the object and the pointer to the member
function, and then the operator() uses those to make the actual
pointer-to-member call:

//: C12:PointerToMemberOperator.cpp

#include <iostream>

using namespace std;

class Dog {

public:

 int run(int i) const {

 cout << "run\n";

 return i;

 }

 int eat(int i) const {

 cout << "eat\n";

 return i;

 }

 int sleep(int i) const {

 cout << "ZZZ\n";

 return i;

 }

 typedef int (Dog::*PMF)(int) const;

 // operator->* must return an object

 // that has an operator():

 class FunctionObject {

 Dog* ptr;

 PMF pmem;

 public:

 // Save the object pointer and member pointer

 FunctionObject(Dog* wp, PMF pmf)

 : ptr(wp), pmem(pmf) {

516 Thinking in C++ www.BruceEckel.com

 cout << "FunctionObject constructor\n";

 }

 // Make the call using the object pointer

 // and member pointer

 int operator()(int i) const {

 cout << "FunctionObject::operator()\n";

 return (ptr->*pmem)(i); // Make the call

 }

 };

 FunctionObject operator->*(PMF pmf) {

 cout << "operator->*" << endl;

 return FunctionObject(this, pmf);

 }

};

int main() {

 Dog w;

 Dog::PMF pmf = &Dog::run;

 cout << (w->*pmf)(1) << endl;

 pmf = &Dog::sleep;

 cout << (w->*pmf)(2) << endl;

 pmf = &Dog::eat;

 cout << (w->*pmf)(3) << endl;

} ///:~

Dog has three member functions, all of which take an int argument
and return an int. PMF is a typedef to simplify defining a pointer-
to-member to Dog’s member functions.

A FunctionObject is created and returned by operator->*.
Notice that operator->* knows both the object that the pointer-to-
member is being called for (this) and the pointer-to-member, and
it passes those to the FunctionObject constructor that stores the
values. When operator->* is called, the compiler immediately
turns around and calls operator() for the return value of
operator->*, passing in the arguments that were given to
operator->*. The FunctionObject::operator() takes the
arguments and then dereferences the “real” pointer-to-member
using its stored object pointer and pointer-to-member.

Notice that what you are doing here, just as with operator->, is
inserting yourself in the middle of the call to operator->*. This
allows you to perform some extra operations if you need to.

12: Operator Overloading 517

The operator->* mechanism implemented here only works for
member functions that take an int argument and return an int.
This is limiting, but if you try to create overloaded mechanisms for
each different possibility, it seems like a prohibitive task.
Fortunately, C++’s template mechanism (described in the last
chapter of this book, and in Volume 2) is designed to handle just
such a problem.

Operators you can’t overload
There are certain operators in the available set that cannot be
overloaded. The general reason for the restriction is safety. If these
operators were overloadable, it would somehow jeopardize or break
safety mechanisms, make things harder, or confuse existing
practice.

�� The member selection operator.. Currently, the dot has a
meaning for any member in a class, but if you allow it to be
overloaded, then you couldn’t access members in the normal
way; instead you’d have to use a pointer and the arrow
operator->.

�� The pointer to member dereference operator.*, for the same
reason as operator..

�� There’s no exponentiation operator. The most popular choice for
this was operator** from Fortran, but this raised difficult
parsing questions. Also, C has no exponentiation operator, so
C++ didn’t seem to need one either because you can always
perform a function call. An exponentiation operator would add a
convenient notation, but no new language functionality to
account for the added complexity of the compiler.

�� There are no user-defined operators. That is, you can’t make up
new operators that aren’t currently in the set. Part of the
problem is how to determine precedence, and part of the
problem is an insufficient need to account for the necessary
trouble.

518 Thinking in C++ www.BruceEckel.com

�� You can’t change the precedence rules. They’re hard enough to
remember as it is without letting people play with them.

Non-member operators
In some of the previous examples, the operators may be members
or non-members, and it doesn’t seem to make much difference.
This usually raises the question, “Which should I choose?” In
general, if it doesn’t make any difference, they should be members,
to emphasize the association between the operator and its class.
When the left-hand operand is always an object of the current class,
this works fine.

However, sometimes you want the left-hand operand to be an
object of some other class. A common place you’ll see this is when
the operators << and >> are overloaded for iostreams. Since
iostreams is a fundamental C++ library, you’ll probably want to
overload these operators for most of your classes, so the process is
worth memorizing:

//: C12:IostreamOperatorOverloading.cpp

// Example of non-member overloaded operators

#include "../require.h"

#include <iostream>

#include <sstream> // "String streams"

#include <cstring>

using namespace std;

class IntArray {

 enum { sz = 5 };

 int i[sz];

public:

 IntArray() { memset(i, 0, sz* sizeof(*i)); }

 int& operator[](int x) {

 require(x >= 0 && x < sz,

 "IntArray::operator[] out of range");

 return i[x];

 }

 friend ostream&

 operator<<(ostream& os, const IntArray& ia);

 friend istream&

12: Operator Overloading 519

 operator>>(istream& is, IntArray& ia);

};

ostream&

operator<<(ostream& os, const IntArray& ia) {

 for(int j = 0; j < ia.sz; j++) {

 os << ia.i[j];

 if(j != ia.sz -1)

 os << ", ";

 }

 os << endl;

 return os;

}

istream& operator>>(istream& is, IntArray& ia){

 for(int j = 0; j < ia.sz; j++)

 is >> ia.i[j];

 return is;

}

int main() {

 stringstream input("47 34 56 92 103");

 IntArray I;

 input >> I;

 I[4] = -1; // Use overloaded operator[]

 cout << I;

} ///:~

This class also contains an overloaded operator [], which returns
a reference to a legitimate value in the array. Because a reference is
returned, the expression

I[4] = -1;

not only looks much more civilized than if pointers were used, it
also accomplishes the desired effect.

It’s important that the overloaded shift operators pass and return
by reference, so the actions will affect the external objects. In the
function definitions, expressions like

os << ia.i[j];

520 Thinking in C++ www.BruceEckel.com

cause the existing overloaded operator functions to be called (that
is, those defined in <iostream>). In this case, the function called
is ostream& operator<<(ostream&, int) because ia.i[j]
resolves to an int.

Once all the actions are performed on the istream or ostream, it
is returned so it can be used in a more complicated expression.

In main(), a new type of iostream is used: the stringstream
(declared in <sstream>). This is a class that takes a string (which
it can create from a char array, as shown here) and turns it into an
iostream. In the example above, this means that the shift
operators can be tested without opening a file or typing data in on
the command line.

The form shown in this example for the inserter and extractor is
standard. If you want to create these operators for your own class,
copy the function signatures and return types above and follow the
form of the body.

Basic guidelines
Murray1 suggests these guidelines for choosing between members
and non-members:

Operator Recommended use

All unary operators member

= () [] –> –>*
must be member

+= –= /= *= ^=
&= |= %= >>=
<<=

member

All other binary
operators

non-member

1 Rob Murray, C++ Strategies & Tactics, Addison-Wesley, 1993, page 47.

12: Operator Overloading 521

Overloading assignment
A common source of confusion with new C++ programmers is
assignment. This is no doubt because the = sign is such a
fundamental operation in programming, right down to copying a
register at the machine level. In addition, the copy-constructor
(described in Chapter 11) is also sometimes invoked when the =
sign is used:

MyType b;

MyType a = b;

a = b;

In the second line, the object a is being defined. A new object is
being created where one didn’t exist before. Because you know by
now how defensive the C++ compiler is about object initialization,
you know that a constructor must always be called at the point
where an object is defined. But which constructor? a is being
created from an existing MyType object (b, on the right side of the
equal sign), so there’s only one choice: the copy-constructor. Even
though an equal sign is involved, the copy-constructor is called.

In the third line, things are different. On the left side of the equal
sign, there’s a previously initialized object. Clearly, you don’t call a
constructor for an object that’s already been created. In this case
MyType::operator= is called for a, taking as an argument
whatever appears on the right-hand side. (You can have multiple
operator= functions to take different types of right-hand
arguments.)

This behavior is not restricted to the copy-constructor. Any time
you’re initializing an object using an = instead of the ordinary
function-call form of the constructor, the compiler will look for a
constructor that accepts whatever is on the right-hand side:

//: C12:CopyingVsInitialization.cpp

class Fi {

public:

 Fi() {}

};

522 Thinking in C++ www.BruceEckel.com

class Fee {

public:

 Fee(int) {}

 Fee(const Fi&) {}

};

int main() {

 Fee fee = 1; // Fee(int)

 Fi fi;

 Fee fum = fi; // Fee(Fi)

} ///:~

When dealing with the = sign, it’s important to keep this distinction
in mind: If the object hasn’t been created yet, initialization is
required; otherwise the assignment operator= is used.

It’s even better to avoid writing code that uses the = for
initialization; instead, always use the explicit constructor form. The
two constructions with the equal sign then become:

Fee fee(1);

Fee fum(fi);

This way, you’ll avoid confusing your readers.

Behavior of operator=
In Integer.h and Byte.h, you saw that operator= can be only a
member function. It is intimately connected to the object on the left
side of the ‘=’. If it was possible to define operator= globally, then
you might attempt to redefine the built-in ‘=’ sign:

int operator=(int, MyType); // Global = not allowed!

The compiler skirts this whole issue by forcing you to make
operator= a member function.

When you create an operator=, you must copy all of the necessary
information from the right-hand object into the current object (that
is, the object that operator= is being called for) to perform
whatever you consider “assignment” for your class. For simple
objects, this is obvious:

12: Operator Overloading 523

//: C12:SimpleAssignment.cpp

// Simple operator=()

#include <iostream>

using namespace std;

class Value {

 int a, b;

 float c;

public:

 Value(int aa = 0, int bb = 0, float cc = 0.0)

 : a(aa), b(bb), c(cc) {}

 Value& operator=(const Value& rv) {

 a = rv.a;

 b = rv.b;

 c = rv.c;

 return *this;

 }

 friend ostream&

 operator<<(ostream& os, const Value& rv) {

 return os << "a = " << rv.a << ", b = "

 << rv.b << ", c = " << rv.c;

 }

};

int main() {

 Value a, b(1, 2, 3.3);

 cout << "a: " << a << endl;

 cout << "b: " << b << endl;

 a = b;

 cout << "a after assignment: " << a << endl;

} ///:~

Here, the object on the left side of the = copies all the elements of
the object on the right, then returns a reference to itself, which
allows a more complex expression to be created.

This example includes a common mistake. When you’re assigning
two objects of the same type, you should always check first for self-
assignment: is the object being assigned to itself? In some cases,
such as this one, it’s harmless if you perform the assignment
operations anyway, but if changes are made to the implementation
of the class, it can make a difference, and if you don’t do it as a
matter of habit, you may forget and cause hard-to-find bugs.

524 Thinking in C++ www.BruceEckel.com

Pointers in classes
What happens if the object is not so simple? For example, what if
the object contains pointers to other objects? Simply copying a
pointer means that you’ll end up with two objects pointing to the
same storage location. In situations like these, you need to do
bookkeeping of your own.

There are two common approaches to this problem. The simplest
technique is to copy whatever the pointer refers to when you do an
assignment or a copy-construction. This is straightforward:

//: C12:CopyingWithPointers.cpp

// Solving the pointer aliasing problem by

// duplicating what is pointed to during

// assignment and copy-construction.

#include "../require.h"

#include <string>

#include <iostream>

using namespace std;

class Dog {

 string nm;

public:

 Dog(const string& name) : nm(name) {

 cout << "Creating Dog: " << *this << endl;

 }

 // Synthesized copy-constructor & operator=

 // are correct.

 // Create a Dog from a Dog pointer:

 Dog(const Dog* dp, const string& msg)

 : nm(dp->nm + msg) {

 cout << "Copied dog " << *this << " from "

 << *dp << endl;

 }

 ~Dog() {

 cout << "Deleting Dog: " << *this << endl;

 }

 void rename(const string& newName) {

 nm = newName;

 cout << "Dog renamed to: " << *this << endl;

 }

 friend ostream&

 operator<<(ostream& os, const Dog& d) {

12: Operator Overloading 525

 return os << "[" << d.nm << "]";

 }

};

class DogHouse {

 Dog* p;

 string houseName;

public:

 DogHouse(Dog* dog, const string& house)

 : p(dog), houseName(house) {}

 DogHouse(const DogHouse& dh)

 : p(new Dog(dh.p, " copy-constructed")),

 houseName(dh.houseName

 + " copy-constructed") {}

 DogHouse& operator=(const DogHouse& dh) {

 // Check for self-assignment:

 if(&dh != this) {

 p = new Dog(dh.p, " assigned");

 houseName = dh.houseName + " assigned";

 }

 return *this;

 }

 void renameHouse(const string& newName) {

 houseName = newName;

 }

 Dog* getDog() const { return p; }

 ~DogHouse() { delete p; }

 friend ostream&

 operator<<(ostream& os, const DogHouse& dh) {

 return os << "[" << dh.houseName

 << "] contains " << *dh.p;

 }

};

int main() {

 DogHouse fidos(new Dog("Fido"), "FidoHouse");

 cout << fidos << endl;

 DogHouse fidos2 = fidos; // Copy construction

 cout << fidos2 << endl;

 fidos2.getDog()->rename("Spot");

 fidos2.renameHouse("SpotHouse");

 cout << fidos2 << endl;

 fidos = fidos2; // Assignment

 cout << fidos << endl;

 fidos.getDog()->rename("Max");

526 Thinking in C++ www.BruceEckel.com

 fidos2.renameHouse("MaxHouse");

} ///:~

Dog is a simple class that contains only a string that holds the
name of the dog. However, you’ll generally know when something
happens to a Dog because the constructors and destructors print
information when they are called. Notice that the second
constructor is a bit like a copy-constructor except that it takes a
pointer to a Dog instead of a reference, and it has a second
argument that is a message that’s concatenated to the argument
Dog’s name. This is used to help trace the behavior of the program.

You can see that whenever a member function prints information, it
doesn’t access that information directly but instead sends *this to
cout. This in turn calls the ostream operator<<. It’s valuable to
do it this way because if you want to reformat the way that Dog
information is displayed (as I did by adding the ‘[’ and ‘]’) you only
need to do it in one place.

A DogHouse contains a Dog* and demonstrates the four
functions you will always need to define when your class contains
pointers: all necessary ordinary constructors, the copy-constructor,
operator= (either define it or disallow it), and a destructor. The
operator= checks for self-assignment as a matter of course, even
though it’s not strictly necessary here. This virtually eliminates the
possibility that you’ll forget to check for self-assignment if you do
change the code so that it matters.

Reference Counting
In the example above, the copy-constructor and operator= make a
new copy of what the pointer points to, and the destructor deletes
it. However, if your object requires a lot of memory or a high
initialization overhead, you may want to avoid this copying. A
common approach to this problem is called reference counting. You
give intelligence to the object that’s being pointed to so it knows
how many objects are pointing to it. Then copy-construction or
assignment means attaching another pointer to an existing object
and incrementing the reference count. Destruction means reducing
the reference count and destroying the object if the reference count
goes to zero.

12: Operator Overloading 527

But what if you want to write to the object (the Dog in the example
above)? More than one object may be using this Dog, so you’d be
modifying someone else’s Dog as well as yours, which doesn’t seem
very neighborly. To solve this “aliasing” problem, an additional
technique called copy-on-write is used. Before writing to a block of
memory, you make sure no one else is using it. If the reference
count is greater than one, you must make yourself a personal copy
of that block before writing it, so you don’t disturb someone else’s
turf. Here’s a simple example of reference counting and copy-on-
write:

//: C12:ReferenceCounting.cpp

// Reference count, copy-on-write

#include "../require.h"

#include <string>

#include <iostream>

using namespace std;

class Dog {

 string nm;

 int refcount;

 Dog(const string& name)

 : nm(name), refcount(1) {

 cout << "Creating Dog: " << *this << endl;

 }

 // Prevent assignment:

 Dog& operator=(const Dog& rv);

public:

 // Dogs can only be created on the heap:

 static Dog* make(const string& name) {

 return new Dog(name);

 }

 Dog(const Dog& d)

 : nm(d.nm + " copy"), refcount(1) {

 cout << "Dog copy-constructor: "

 << *this << endl;

 }

 ~Dog() {

 cout << "Deleting Dog: " << *this << endl;

 }

 void attach() {

 ++refcount;

 cout << "Attached Dog: " << *this << endl;

528 Thinking in C++ www.BruceEckel.com

 }

 void detach() {

 require(refcount != 0);

 cout << "Detaching Dog: " << *this << endl;

 // Destroy object if no one is using it:

 if(--refcount == 0) delete this;

 }

 // Conditionally copy this Dog.

 // Call before modifying the Dog, assign

 // resulting pointer to your Dog*.

 Dog* unalias() {

 cout << "Unaliasing Dog: " << *this << endl;

 // Don't duplicate if not aliased:

 if(refcount == 1) return this;

 --refcount;

 // Use copy-constructor to duplicate:

 return new Dog(*this);

 }

 void rename(const string& newName) {

 nm = newName;

 cout << "Dog renamed to: " << *this << endl;

 }

 friend ostream&

 operator<<(ostream& os, const Dog& d) {

 return os << "[" << d.nm << "], rc = "

 << d.refcount;

 }

};

class DogHouse {

 Dog* p;

 string houseName;

public:

 DogHouse(Dog* dog, const string& house)

 : p(dog), houseName(house) {

 cout << "Created DogHouse: "<< *this << endl;

 }

 DogHouse(const DogHouse& dh)

 : p(dh.p),

 houseName("copy-constructed " +

 dh.houseName) {

 p->attach();

 cout << "DogHouse copy-constructor: "

 << *this << endl;

 }

12: Operator Overloading 529

 DogHouse& operator=(const DogHouse& dh) {

 // Check for self-assignment:

 if(&dh != this) {

 houseName = dh.houseName + " assigned";

 // Clean up what you're using first:

 p->detach();

 p = dh.p; // Like copy-constructor

 p->attach();

 }

 cout << "DogHouse operator= : "

 << *this << endl;

 return *this;

 }

 // Decrement refcount, conditionally destroy

 ~DogHouse() {

 cout << "DogHouse destructor: "

 << *this << endl;

 p->detach();

 }

 void renameHouse(const string& newName) {

 houseName = newName;

 }

 void unalias() { p = p->unalias(); }

 // Copy-on-write. Anytime you modify the

 // contents of the pointer you must

 // first unalias it:

 void renameDog(const string& newName) {

 unalias();

 p->rename(newName);

 }

 // ... or when you allow someone else access:

 Dog* getDog() {

 unalias();

 return p;

 }

 friend ostream&

 operator<<(ostream& os, const DogHouse& dh) {

 return os << "[" << dh.houseName

 << "] contains " << *dh.p;

 }

};

int main() {

 DogHouse

 fidos(Dog::make("Fido"), "FidoHouse"),

530 Thinking in C++ www.BruceEckel.com

 spots(Dog::make("Spot"), "SpotHouse");

 cout << "Entering copy-construction" << endl;

 DogHouse bobs(fidos);

 cout << "After copy-constructing bobs" << endl;

 cout << "fidos:" << fidos << endl;

 cout << "spots:" << spots << endl;

 cout << "bobs:" << bobs << endl;

 cout << "Entering spots = fidos" << endl;

 spots = fidos;

 cout << "After spots = fidos" << endl;

 cout << "spots:" << spots << endl;

 cout << "Entering self-assignment" << endl;

 bobs = bobs;

 cout << "After self-assignment" << endl;

 cout << "bobs:" << bobs << endl;

 // Comment out the following lines:

 cout << "Entering rename(\"Bob\")" << endl;

 bobs.getDog()->rename("Bob");

 cout << "After rename(\"Bob\")" << endl;

} ///:~

The class Dog is the object pointed to by a DogHouse. It contains
a reference count and functions to control and read the reference
count. There’s a copy-constructor so you can make a new Dog from
an existing one.

The attach() function increments the reference count of a Dog to
indicate there’s another object using it. detach() decrements the
reference count. If the reference count goes to zero, then no one is
using it anymore, so the member function destroys its own object
by saying delete this.

Before you make any modifications (such as renaming a Dog), you
should ensure that you aren’t changing a Dog that some other
object is using. You do this by calling DogHouse::unalias(),
which in turn calls Dog::unalias(). The latter function will return
the existing Dog pointer if the reference count is one (meaning no
one else is pointing to that Dog), but will duplicate the Dog if the
reference count is more than one.

The copy-constructor, instead of creating its own memory, assigns
Dog to the Dog of the source object. Then, because there’s now an

12: Operator Overloading 531

additional object using that block of memory, it increments the
reference count by calling Dog::attach().

The operator= deals with an object that has already been created
on the left side of the =, so it must first clean that up by calling
detach() for that Dog, which will destroy the old Dog if no one
else is using it. Then operator= repeats the behavior of the copy-
constructor. Notice that it first checks to detect whether you’re
assigning the same object to itself.

The destructor calls detach() to conditionally destroy the Dog.

To implement copy-on-write, you must control all the actions that
write to your block of memory. For example, the renameDog()
member function allows you to change the values in the block of
memory. But first, it uses unalias() to prevent the modification of
an aliased Dog (a Dog with more than one DogHouse object
pointing to it). And if you need to produce a pointer to a Dog from
within a DogHouse, you unalias() that pointer first.

main() tests the various functions that must work correctly to
implement reference counting: the constructor, copy-constructor,
operator=, and destructor. It also tests the copy-on-write by
calling renameDog().

Here’s the output (after a little reformatting):

Creating Dog: [Fido], rc = 1

Created DogHouse: [FidoHouse]

 contains [Fido], rc = 1

Creating Dog: [Spot], rc = 1

Created DogHouse: [SpotHouse]

 contains [Spot], rc = 1

Entering copy-construction

Attached Dog: [Fido], rc = 2

DogHouse copy-constructor:

 [copy-constructed FidoHouse]

 contains [Fido], rc = 2

After copy-constructing bobs

fidos:[FidoHouse] contains [Fido], rc = 2

spots:[SpotHouse] contains [Spot], rc = 1

bobs:[copy-constructed FidoHouse]

532 Thinking in C++ www.BruceEckel.com

 contains [Fido], rc = 2

Entering spots = fidos

Detaching Dog: [Spot], rc = 1

Deleting Dog: [Spot], rc = 0

Attached Dog: [Fido], rc = 3

DogHouse operator= : [FidoHouse assigned]

 contains [Fido], rc = 3

After spots = fidos

spots:[FidoHouse assigned] contains [Fido],rc = 3

Entering self-assignment

DogHouse operator= : [copy-constructed FidoHouse]

 contains [Fido], rc = 3

After self-assignment

bobs:[copy-constructed FidoHouse]

 contains [Fido], rc = 3

Entering rename("Bob")

After rename("Bob")

DogHouse destructor: [copy-constructed FidoHouse]

 contains [Fido], rc = 3

Detaching Dog: [Fido], rc = 3

DogHouse destructor: [FidoHouse assigned]

 contains [Fido], rc = 2

Detaching Dog: [Fido], rc = 2

DogHouse destructor: [FidoHouse]

 contains [Fido], rc = 1

Detaching Dog: [Fido], rc = 1

Deleting Dog: [Fido], rc = 0

By studying the output, tracing through the source code, and
experimenting with the program, you’ll deepen your understanding
of these techniques.

Automatic operator= creation
Because assigning an object to another object of the same type is an
activity most people expect to be possible, the compiler will
automatically create a type::operator=(type) if you don’t make
one. The behavior of this operator mimics that of the automatically
created copy-constructor; if the class contains objects (or is
inherited from another class), the operator= for those objects is
called recursively. This is called memberwise assignment. For
example,

//: C12:AutomaticOperatorEquals.cpp

12: Operator Overloading 533

#include <iostream>

using namespace std;

class Cargo {

public:

 Cargo& operator=(const Cargo&) {

 cout << "inside Cargo::operator=()" << endl;

 return *this;

 }

};

class Truck {

 Cargo b;

};

int main() {

 Truck a, b;

 a = b; // Prints: "inside Cargo::operator=()"

} ///:~

The automatically generated operator= for Truck calls
Cargo::operator=.

In general, you don’t want to let the compiler do this for you. With
classes of any sophistication (especially if they contain pointers!)
you want to explicitly create an operator=. If you really don’t want
people to perform assignment, declare operator= as a private
function. (You don’t need to define it unless you’re using it inside
the class.)

Automatic type conversion
In C and C++, if the compiler sees an expression or function call
using a type that isn’t quite the one it needs, it can often perform an
automatic type conversion from the type it has to the type it wants.
In C++, you can achieve this same effect for user-defined types by
defining automatic type conversion functions. These functions
come in two flavors: a particular type of constructor and an
overloaded operator.

534 Thinking in C++ www.BruceEckel.com

Constructor conversion
If you define a constructor that takes as its single argument an
object (or reference) of another type, that constructor allows the
compiler to perform an automatic type conversion. For example,

//: C12:AutomaticTypeConversion.cpp

// Type conversion constructor

class One {

public:

 One() {}

};

class Two {

public:

 Two(const One&) {}

};

void f(Two) {}

int main() {

 One one;

 f(one); // Wants a Two, has a One

} ///:~

When the compiler sees f() called with a One object, it looks at the
declaration for f() and notices it wants a Two. Then it looks to see
if there’s any way to get a Two from a One, and it finds the
constructor Two::Two(One), which it quietly calls. The resulting
Two object is handed to f().

In this case, automatic type conversion has saved you from the
trouble of defining two overloaded versions of f(). However, the
cost is the hidden constructor call to Two, which may matter if
you’re concerned about the efficiency of calls to f().

Preventing constructor conversion
There are times when automatic type conversion via the constructor
can cause problems. To turn it off, you modify the constructor by
prefacing with the keyword explicit (which only works with
constructors). Used to modify the constructor of class Two in the
example above:

12: Operator Overloading 535

//: C12:ExplicitKeyword.cpp

// Using the "explicit" keyword

class One {

public:

 One() {}

};

class Two {

public:

 explicit Two(const One&) {}

};

void f(Two) {}

int main() {

 One one;

//! f(one); // No auto conversion allowed

 f(Two(one)); // OK -- user performs conversion

} ///:~

By making Two’s constructor explicit, the compiler is told not to
perform any automatic conversion using that particular constructor
(other non-explicit constructors in that class can still perform
automatic conversions). If the user wants to make the conversion
happen, the code must be written out. In the code above,
f(Two(one)) creates a temporary object of type Two from one,
just like the compiler did in the previous version.

Operator conversion
The second way to produce automatic type conversion is through
operator overloading. You can create a member function that takes
the current type and converts it to the desired type using the
operator keyword followed by the type you want to convert to.
This form of operator overloading is unique because you don’t
appear to specify a return type – the return type is the name of the
operator you’re overloading. Here’s an example:

//: C12:OperatorOverloadingConversion.cpp

class Three {

 int i;

public:

 Three(int ii = 0, int = 0) : i(ii) {}

536 Thinking in C++ www.BruceEckel.com

};

class Four {

 int x;

public:

 Four(int xx) : x(xx) {}

 operator Three() const { return Three(x); }

};

void g(Three) {}

int main() {

 Four four(1);

 g(four);

 g(1); // Calls Three(1,0)

} ///:~

With the constructor technique, the destination class is performing
the conversion, but with operators, the source class performs the
conversion. The value of the constructor technique is that you can
add a new conversion path to an existing system as you’re creating a
new class. However, creating a single-argument constructor always
defines an automatic type conversion (even if it’s got more than one
argument, if the rest of the arguments are defaulted), which may
not be what you want (in which case you can turn it off using
explicit). In addition, there’s no way to use a constructor
conversion from a user-defined type to a built-in type; this is
possible only with operator overloading.

Reflexivity
One of the most convenient reasons to use global overloaded
operators instead of member operators is that in the global
versions, automatic type conversion may be applied to either
operand, whereas with member objects, the left-hand operand must
already be the proper type. If you want both operands to be
converted, the global versions can save a lot of coding. Here’s a
small example:

//: C12:ReflexivityInOverloading.cpp

class Number {

 int i;

public:

12: Operator Overloading 537

 Number(int ii = 0) : i(ii) {}

 const Number

 operator+(const Number& n) const {

 return Number(i + n.i);

 }

 friend const Number

 operator-(const Number&, const Number&);

};

const Number

 operator-(const Number& n1,

 const Number& n2) {

 return Number(n1.i - n2.i);

}

int main() {

 Number a(47), b(11);

 a + b; // OK

 a + 1; // 2nd arg converted to Number

//! 1 + a; // Wrong! 1st arg not of type Number

 a - b; // OK

 a - 1; // 2nd arg converted to Number

 1 - a; // 1st arg converted to Number

} ///:~

Class Number has both a member operator+ and a friend
operator–. Because there’s a constructor that takes a single int
argument, an int can be automatically converted to a Number, but
only under the right conditions. In main(), you can see that
adding a Number to another Number works fine because it’s an
exact match to the overloaded operator. Also, when the compiler
sees a Number followed by a + and an int, it can match to the
member function Number::operator+ and convert the int
argument to a Number using the constructor. But when it sees an
int, a +, and a Number, it doesn’t know what to do because all it
has is Number::operator+, which requires that the left operand
already be a Number object. Thus, the compiler issues an error.

With the friend operator–, things are different. The compiler
needs to fill in both its arguments however it can; it isn’t restricted
to having a Number as the left-hand argument. Thus, if it sees

1 – a

538 Thinking in C++ www.BruceEckel.com

it can convert the first argument to a Number using the
constructor.

Sometimes you want to be able to restrict the use of your operators
by making them members. For example, when multiplying a matrix
by a vector, the vector must go on the right. But if you want your
operators to be able to convert either argument, make the operator
a friend function.

Fortunately, the compiler will not take 1 – 1 and convert both
arguments to Number objects and then call operator–. That
would mean that existing C code might suddenly start to work
differently. The compiler matches the “simplest” possibility first,
which is the built-in operator for the expression 1 – 1.

Type conversion example
An example in which automatic type conversion is extremely
helpful occurs with any class that encapsulates character strings (in
this case, we will just implement the class using the Standard C++
string class because it’s simple). Without automatic type
conversion, if you want to use all the existing string functions from
the Standard C library, you have to create a member function for
each one, like this:

//: C12:Strings1.cpp

// No auto type conversion

#include "../require.h"

#include <cstring>

#include <cstdlib>

#include <string>

using namespace std;

class Stringc {

 string s;

public:

 Stringc(const string& str = "") : s(str) {}

 int strcmp(const Stringc& S) const {

 return ::strcmp(s.c_str(), S.s.c_str());

 }

 // ... etc., for every function in string.h

12: Operator Overloading 539

};

int main() {

 Stringc s1("hello"), s2("there");

 s1.strcmp(s2);

} ///:~

Here, only the strcmp() function is created, but you’d have to
create a corresponding function for every one in <cstring> that
might be needed. Fortunately, you can provide an automatic type
conversion allowing access to all the functions in <cstring>:

//: C12:Strings2.cpp

// With auto type conversion

#include "../require.h"

#include <cstring>

#include <cstdlib>

#include <string>

using namespace std;

class Stringc {

 string s;

public:

 Stringc(const string& str = "") : s(str) {}

 operator const char*() const {

 return s.c_str();

 }

};

int main() {

 Stringc s1("hello"), s2("there");

 strcmp(s1, s2); // Standard C function

 strspn(s1, s2); // Any string function!

} ///:~

Now any function that takes a char* argument can also take a
Stringc argument because the compiler knows how to make a
char* from a Stringc.

Pitfalls in automatic type conversion
Because the compiler must choose how to quietly perform a type
conversion, it can get into trouble if you don’t design your
conversions correctly. A simple and obvious situation occurs with a

540 Thinking in C++ www.BruceEckel.com

class X that can convert itself to an object of class Y with an
operator Y(). If class Y has a constructor that takes a single
argument of type X, this represents the identical type conversion.
The compiler now has two ways to go from X to Y, so it will
generate an ambiguity error when that conversion occurs:

//: C12:TypeConversionAmbiguity.cpp

class Orange; // Class declaration

class Apple {

public:

 operator Orange() const; // Convert Apple to Orange

};

class Orange {

public:

 Orange(Apple); // Convert Apple to Orange

};

void f(Orange) {}

int main() {

 Apple a;

//! f(a); // Error: ambiguous conversion

} ///:~

The obvious solution to this problem is not to do it. Just provide a
single path for automatic conversion from one type to another.

A more difficult problem to spot occurs when you provide
automatic conversion to more than one type. This is sometimes
called fan-out:

//: C12:TypeConversionFanout.cpp

class Orange {};

class Pear {};

class Apple {

public:

 operator Orange() const;

 operator Pear() const;

};

12: Operator Overloading 541

// Overloaded eat():

void eat(Orange);

void eat(Pear);

int main() {

 Apple c;

//! eat(c);

 // Error: Apple -> Orange or Apple -> Pear ???

} ///:~

Class Apple has automatic conversions to both Orange and Pear.
The insidious thing about this is that there’s no problem until
someone innocently comes along and creates two overloaded
versions of eat(). (With only one version, the code in main()
works fine.)

Again, the solution – and the general watchword with automatic
type conversion – is to provide only a single automatic conversion
from one type to another. You can have conversions to other types;
they just shouldn’t be automatic. You can create explicit function
calls with names like makeA() and makeB().

Hidden activities
Automatic type conversion can introduce more underlying activities
than you may expect. As a little brain teaser, look at this
modification of CopyingVsInitialization.cpp:

//: C12:CopyingVsInitialization2.cpp

class Fi {};

class Fee {

public:

 Fee(int) {}

 Fee(const Fi&) {}

};

class Fo {

 int i;

public:

 Fo(int x = 0) : i(x) {}

 operator Fee() const { return Fee(i); }

};

542 Thinking in C++ www.BruceEckel.com

int main() {

 Fo fo;

 Fee fee = fo;

} ///:~

There is no constructor to create the Fee fee from a Fo object.
However, Fo has an automatic type conversion to a Fee. There’s no
copy-constructor to create a Fee from a Fee, but this is one of the
special functions the compiler can create for you. (The default
constructor, copy-constructor, operator=, and destructor can be
synthesized automatically by the compiler.) So for the relatively
innocuous statement

Fee fee = fo;

the automatic type conversion operator is called, and a copy-
constructor is created.

Use automatic type conversion carefully. As with all operator
overloading, it’s excellent when it significantly reduces a coding
task, but it’s usually not worth using gratuitously.

Summary
The whole reason for the existence of operator overloading is for
those situations when it makes life easier. There’s nothing
particularly magical about it; the overloaded operators are just
functions with funny names, and the function calls happen to be
made for you by the compiler when it spots the right pattern. But if
operator overloading doesn’t provide a significant benefit to you
(the creator of the class) or the user of the class, don’t confuse the
issue by adding it.

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in C++
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

12: Operator Overloading 543

1. Create a simple class with an overloaded operator++.
Try calling this operator in both pre- and postfix form
and see what kind of compiler warning you get.

2. Create a simple class containing an int and overload the
operator+ as a member function. Also provide a
print() member function that takes an ostream& as an
argument and prints to that ostream&. Test your class
to show that it works correctly.

3. Add a binary operator- to Exercise 2 as a member
function. Demonstrate that you can use your objects in
complex expressions like
a + b – c.

4. Add an operator++ and operator-- to Exercise 2, both
the prefix and the postfix versions, such that they return
the incremented or decremented object. Make sure that
the postfix versions return the correct value.

5. Modify the increment and decrement operators in
Exercise 4 so that the prefix versions are non-const and
the postfix versions are const. Show that they work
correctly and explain why this would be done in practice.

6. Change the print() function in Exercise 2 so that it is
the overloaded operator<< as in
IostreamOperatorOverloading.cpp.

7. Modify Exercise 3 so that the operator+ and operator-
are non-member functions. Demonstrate that they still
work correctly.

8. Add the unary operator- to Exercise 2 and demonstrate
that it works correctly.

9. Create a class that contains a single private char.
Overload the iostream operators << and >> (as in
IostreamOperatorOverloading.cpp) and test them.
You can test them with fstreams, stringstreams, and
cin and cout.

10. Determine the dummy constant value that your compiler
passes for postfix operator++ and operator--.

11. Write a Number class that holds a double, and add
overloaded operators for +, –, *, /, and assignment.
Choose the return values for these functions so that

544 Thinking in C++ www.BruceEckel.com

expressions can be chained together, and for efficiency.
Write an automatic type conversion operator int().

12. Modify Exercise 11 so that the return value optimization
is used, if you have not already done so.

13. Create a class that contains a pointer, and demonstrate
that if you allow the compiler to synthesize the
operator= the result of using that operator will be
pointers that are aliased to the same storage. Now fix the
problem by defining your own operator= and
demonstrate that it corrects the aliasing. Make sure you
check for self-assignment and handle that case properly.

14. Write a class called Bird that contains a string member
and a static int. In the default constructor, use the int to
automatically generate an identifier that you build in the
string, along with the name of the class (Bird #1, Bird
#2, etc.). Add an operator<< for ostreams to print out
the Bird objects. Write an assignment operator= and a
copy-constructor. In main(), verify that everything
works correctly.

15. Write a class called BirdHouse that contains an object,
a pointer and a reference for class Bird from Exercise 14.
The constructor should take the three Birds as
arguments. Add an operator<< for ostreams for
BirdHouse. Write an assignment operator= and a
copy-constructor. In main(), verify that everything
works correctly. Make sure that you can chain
assignments for BirdHouse objects and build
expressions involving multiple operators.

16. Add an int data member to both Bird and BirdHouse
in Exercise 15. Add member operators +, -, *, and / that
use the int members to perform the operations on the
respective members. Verify that these work.

17. Repeat Exercise 16 using non-member operators.

18. Add an operator-- to SmartPointer.cpp and
NestedSmartPointer.cpp.

19. Modify CopyingVsInitialization.cpp so that all of the
constructors print a message that tells you what’s going
on. Now verify that the two forms of calls to the copy-

12: Operator Overloading 545

constructor (the assignment form and the parenthesized
form) are equivalent.

20. Attempt to create a non-member operator= for a class
and see what kind of compiler message you get.

21. Create a class with a copy-constructor that has a second
argument, a string that has a default value that says “CC
call.” Create a function that takes an object of your class
by value and show that your copy-constructor is called
correctly.

22. In CopyingWithPointers.cpp, remove the operator=
in DogHouse and show that the compiler-synthesized
operator= correctly copies the string but simply aliases
the Dog pointer.

23. In ReferenceCounting.cpp, add a static int and an
ordinary int as data members to both Dog and
DogHouse. In all constructors for both classes,
increment the static int and assign the result to the
ordinary int to keep track of the number of objects that
have been created. Make the necessary modifications so
that all the printing statements will say the int identifiers
of the objects involved.

24. Create a class containing a string as a data member.
Initialize the string in the constructor, but do not create
a copy-constructor or operator=. Make a second class
that has a member object of your first class; do not create
a copy-constructor or operator= for this class either.
Demonstrate that the copy-constructor and operator=
are properly synthesized by the compiler.

25. Combine the classes in
OverloadingUnaryOperators.cpp and Integer.cpp.

26. Modify PointerToMemberOperator.cpp by adding
two new member functions to Dog that take no
arguments and return void. Create and test an
overloaded operator->* that works with your two new
functions.

27. Add an operator->* to NestedSmartPointer.cpp.

28. Create two classes, Apple and Orange. In Apple, create
a constructor that takes an Orange as an argument.
Create a function that takes an Apple and call that

546 Thinking in C++ www.BruceEckel.com

function with an Orange to show that it works. Now
make the Apple constructor explicit to demonstrate
that the automatic type conversion is thus prevented.
Modify the call to your function so that the conversion is
made explicitly and thus succeeds.

29. Add a global operator* to
ReflexivityInOverloading.cpp and demonstrate that
it is reflexive.

30. Create two classes and create an operator+ and the
conversion functions such that addition is reflexive for
the two classes.

31. Fix TypeConversionFanout.cpp by creating an
explicit function to call to perform the type conversion,
instead of one of the automatic conversion operators.

32. Write simple code that uses the +, -, *, and / operators
for doubles. Figure out how your compiler generates
assembly code and look at the assembly language that’s
generated to discover and explain what’s going on under
the hood.

 547

13: Dynamic Object

Creation
Sometimes you know the exact quantity, type, and

lifetime of the objects in your program. But not always.

548 Thinking in C++ www.BruceEckel.com

How many planes will an air-traffic system need to handle? How
many shapes will a CAD system use? How many nodes will there be
in a network?

To solve the general programming problem, it’s essential that you
be able to create and destroy objects at runtime. Of course, C has
always provided the dynamic memory allocation functions
malloc() and free() (along with variants of malloc()) that
allocate storage from the heap (also called the free store) at
runtime.

However, this simply won’t work in C++. The constructor doesn’t
allow you to hand it the address of the memory to initialize, and for
good reason. If you could do that, you might:

1. Forget. Then guaranteed initialization of objects in C++
wouldn’t be guaranteed.

2. Accidentally do something to the object before you initialize
it, expecting the right thing to happen.

3. Hand it the wrong-sized object.

And of course, even if you did everything correctly, anyone who
modifies your program is prone to the same errors. Improper
initialization is responsible for a large portion of programming
problems, so it’s especially important to guarantee constructor calls
for objects created on the heap.

So how does C++ guarantee proper initialization and cleanup, but
allow you to create objects dynamically on the heap?

The answer is by bringing dynamic object creation into the core of
the language. malloc() and free() are library functions, and thus
outside the control of the compiler. However, if you have an
operator to perform the combined act of dynamic storage allocation
and initialization and another operator to perform the combined act
of cleanup and releasing storage, the compiler can still guarantee
that constructors and destructors will be called for all objects.

13: Dynamic Object Creation 549

In this chapter, you’ll learn how C++’s new and delete elegantly
solve this problem by safely creating objects on the heap.

Object creation
When a C++ object is created, two events occur:

1. Storage is allocated for the object.

2. The constructor is called to initialize that storage.

By now you should believe that step two always happens. C++
enforces it because uninitialized objects are a major source of
program bugs. It doesn’t matter where or how the object is created
– the constructor is always called.

Step one, however, can occur in several ways, or at alternate times:

1. Storage can be allocated before the program begins, in the
static storage area. This storage exists for the life of the
program.

2. Storage can be created on the stack whenever a particular
execution point is reached (an opening brace). That storage is
released automatically at the complementary execution point
(the closing brace). These stack-allocation operations are
built into the instruction set of the processor and are very
efficient. However, you have to know exactly how many
variables you need when you’re writing the program so the
compiler can generate the right code.

3. Storage can be allocated from a pool of memory called the
heap (also known as the free store). This is called dynamic
memory allocation. To allocate this memory, a function is
called at runtime; this means you can decide at any time that
you want some memory and how much you need. You are
also responsible for determining when to release the memory,
which means the lifetime of that memory can be as long as
you choose – it isn’t determined by scope.

550 Thinking in C++ www.BruceEckel.com

Often these three regions are placed in a single contiguous piece of
physical memory: the static area, the stack, and the heap (in an
order determined by the compiler writer). However, there are no
rules. The stack may be in a special place, and the heap may be
implemented by making calls for chunks of memory from the
operating system. As a programmer, these things are normally
shielded from you, so all you need to think about is that the
memory is there when you call for it.

C’s approach to the heap
To allocate memory dynamically at runtime, C provides functions in
its standard library: malloc() and its variants calloc() and
realloc() to produce memory from the heap, and free() to
release the memory back to the heap. These functions are pragmatic
but primitive and require understanding and care on the part of the
programmer. To create an instance of a class on the heap using C’s
dynamic memory functions, you’d have to do something like this:

//: C13:MallocClass.cpp

// Malloc with class objects

// What you'd have to do if not for "new"

#include "../require.h"

#include <cstdlib> // malloc() & free()

#include <cstring> // memset()

#include <iostream>

using namespace std;

class Obj {

 int i, j, k;

 enum { sz = 100 };

 char buf[sz];

public:

 void initialize() { // Can't use constructor

 cout << "initializing Obj" << endl;

 i = j = k = 0;

 memset(buf, 0, sz);

 }

 void destroy() const { // Can't use destructor

 cout << "destroying Obj" << endl;

 }

};

13: Dynamic Object Creation 551

int main() {

 Obj* obj = (Obj*)malloc(sizeof(Obj));

 require(obj != 0);

 obj->initialize();

 // ... sometime later:

 obj->destroy();

 free(obj);

} ///:~

You can see the use of malloc() to create storage for the object in
the line:

Obj* obj = (Obj*)malloc(sizeof(Obj));

Here, the user must determine the size of the object (one place for
an error). malloc() returns a void* because it just produces a
patch of memory, not an object. C++ doesn’t allow a void* to be
assigned to any other pointer, so it must be cast.

Because malloc() may fail to find any memory (in which case it
returns zero), you must check the returned pointer to make sure it
was successful.

But the worst problem is this line:

Obj->initialize();

If users make it this far correctly, they must remember to initialize
the object before it is used. Notice that a constructor was not used
because the constructor cannot be called explicitly1 – it’s called for
you by the compiler when an object is created. The problem here is
that the user now has the option to forget to perform the
initialization before the object is used, thus reintroducing a major
source of bugs.

It also turns out that many programmers seem to find C’s dynamic
memory functions too confusing and complicated; it’s not

1 There is a special syntax called placement new that allows you to call a constructor
for a pre-allocated piece of memory. This is introduced later in the chapter.

552 Thinking in C++ www.BruceEckel.com

uncommon to find C programmers who use virtual memory
machines allocating huge arrays of variables in the static storage
area to avoid thinking about dynamic memory allocation. Because
C++ is attempting to make library use safe and effortless for the
casual programmer, C’s approach to dynamic memory is
unacceptable.

operator new
The solution in C++ is to combine all the actions necessary to create
an object into a single operator called new. When you create an
object with new (using a new-expression), it allocates enough
storage on the heap to hold the object and calls the constructor for
that storage. Thus, if you say

MyType *fp = new MyType(1,2);

at runtime, the equivalent of malloc(sizeof(MyType)) is called
(often, it is literally a call to malloc()), and the constructor for
MyType is called with the resulting address as the this pointer,
using (1,2) as the argument list. By the time the pointer is assigned
to fp, it’s a live, initialized object – you can’t even get your hands on
it before then. It’s also automatically the proper MyType type so no
cast is necessary.

The default new checks to make sure the memory allocation was
successful before passing the address to the constructor, so you
don’t have to explicitly determine if the call was successful. Later in
the chapter you’ll find out what happens if there’s no memory left.

You can create a new-expression using any constructor available for
the class. If the constructor has no arguments, you write the new-
expression without the constructor argument list:

MyType *fp = new MyType;

Notice how simple the process of creating objects on the heap
becomes – a single expression, with all the sizing, conversions, and
safety checks built in. It’s as easy to create an object on the heap as
it is on the stack.

13: Dynamic Object Creation 553

operator delete
The complement to the new-expression is the delete-expression,
which first calls the destructor and then releases the memory (often
with a call to free()). Just as a new-expression returns a pointer to
the object, a delete-expression requires the address of an object.

delete fp;

This destructs and then releases the storage for the dynamically
allocated MyType object created earlier.

delete can be called only for an object created by new. If you
malloc() (or calloc() or realloc()) an object and then delete it,
the behavior is undefined. Because most default implementations of
new and delete use malloc() and free(), you’d probably end up
releasing the memory without calling the destructor.

If the pointer you’re deleting is zero, nothing will happen. For this
reason, people often recommend setting a pointer to zero
immediately after you delete it, to prevent deleting it twice. Deleting
an object more than once is definitely a bad thing to do, and will
cause problems.

A simple example
This example shows that initialization takes place:

//: C13:Tree.h

#ifndef TREE_H

#define TREE_H

#include <iostream>

class Tree {

 int height;

public:

 Tree(int treeHeight) : height(treeHeight) {}

 ~Tree() { std::cout << "*"; }

 friend std::ostream&

 operator<<(std::ostream& os, const Tree* t) {

 return os << "Tree height is: "

 << t->height << std::endl;

 }

554 Thinking in C++ www.BruceEckel.com

};

#endif // TREE_H ///:~

//: C13:NewAndDelete.cpp

// Simple demo of new & delete

#include "Tree.h"

using namespace std;

int main() {

 Tree* t = new Tree(40);

 cout << t;

 delete t;

} ///:~

We can prove that the constructor is called by printing out the value
of the Tree. Here, it’s done by overloading the operator<< to use
with an ostream and a Tree*. Note, however, that even though
the function is declared as a friend, it is defined as an inline! This
is a mere convenience – defining a friend function as an inline to a
class doesn’t change the friend status or the fact that it’s a global
function and not a class member function. Also notice that the
return value is the result of the entire output expression, which is
an ostream& (which it must be, to satisfy the return value type of
the function).

Memory manager overhead
When you create automatic objects on the stack, the size of the
objects and their lifetime is built right into the generated code,
because the compiler knows the exact type, quantity, and scope.
Creating objects on the heap involves additional overhead, both in
time and in space. Here’s a typical scenario. (You can replace
malloc() with calloc() or realloc().)

You call malloc(), which requests a block of memory from the
pool. (This code may actually be part of malloc().)

The pool is searched for a block of memory large enough to satisfy
the request. This is done by checking a map or directory of some
sort that shows which blocks are currently in use and which are
available. It’s a quick process, but it may take several tries so it

13: Dynamic Object Creation 555

might not be deterministic – that is, you can’t necessarily count on
malloc() always taking exactly the same amount of time.

Before a pointer to that block is returned, the size and location of
the block must be recorded so further calls to malloc() won’t use
it, and so that when you call free(), the system knows how much
memory to release.

The way all this is implemented can vary widely. For example,
there’s nothing to prevent primitives for memory allocation being
implemented in the processor. If you’re curious, you can write test
programs to try to guess the way your malloc() is implemented.
You can also read the library source code, if you have it (the GNU C
sources are always available).

Early examples redesigned
Using new and delete, the Stash example introduced previously
in this book can be rewritten using all the features discussed in the
book so far. Examining the new code will also give you a useful
review of the topics.

At this point in the book, neither the Stash nor Stack classes will
“own” the objects they point to; that is, when the Stash or Stack
object goes out of scope, it will not call delete for all the objects it
points to. The reason this is not possible is because, in an attempt to
be generic, they hold void pointers. If you delete a void pointer,
the only thing that happens is the memory gets released, because
there’s no type information and no way for the compiler to know
what destructor to call.

delete void* is probably a bug
It’s worth making a point that if you call delete for a void*, it’s
almost certainly going to be a bug in your program unless the
destination of that pointer is very simple; in particular, it should not
have a destructor. Here’s an example to show you what happens:

//: C13:BadVoidPointerDeletion.cpp

// Deleting void pointers can cause memory leaks

556 Thinking in C++ www.BruceEckel.com

#include <iostream>

using namespace std;

class Object {

 void* data; // Some storage

 const int size;

 const char id;

public:

 Object(int sz, char c) : size(sz), id(c) {

 data = new char[size];

 cout << "Constructing object " << id

 << ", size = " << size << endl;

 }

 ~Object() {

 cout << "Destructing object " << id << endl;

 delete []data; // OK, just releases storage,

 // no destructor calls are necessary

 }

};

int main() {

 Object* a = new Object(40, 'a');

 delete a;

 void* b = new Object(40, 'b');

 delete b;

} ///:~

The class Object contains a void* that is initialized to “raw” data
(it doesn’t point to objects that have destructors). In the Object
destructor, delete is called for this void* with no ill effects, since
the only thing we need to happen is for the storage to be released.

However, in main() you can see that it’s very necessary that
delete know what type of object it’s working with. Here’s the
output:

Constructing object a, size = 40

Destructing object a

Constructing object b, size = 40

Because delete a knows that a points to an Object, the destructor
is called and thus the storage allocated for data is released.
However, if you manipulate an object through a void* as in the
case of delete b, the only thing that happens is that the storage for

13: Dynamic Object Creation 557

the Object is released – but the destructor is not called so there is
no release of the memory that data points to. When this program
compiles, you probably won’t see any warning messages; the
compiler assumes you know what you’re doing. So you get a very
quiet memory leak.

If you have a memory leak in your program, search through all the
delete statements and check the type of pointer being deleted. If
it’s a void* then you’ve probably found one source of your memory
leak (C++ provides ample other opportunities for memory leaks,
however).

Cleanup responsibility with pointers
To make the Stash and Stack containers flexible (able to hold any
type of object), they will hold void pointers. This means that when
a pointer is returned from the Stash or Stack object, you must cast
it to the proper type before using it; as seen above, you must also
cast it to the proper type before deleting it or you’ll get a memory
leak.

The other memory leak issue has to do with making sure that
delete is actually called for each object pointer held in the
container. The container cannot “own” the pointer because it holds
it as a void* and thus cannot perform the proper cleanup. The user
must be responsible for cleaning up the objects. This produces a
serious problem if you add pointers to objects created on the stack
and objects created on the heap to the same container because a
delete-expression is unsafe for a pointer that hasn’t been allocated
on the heap. (And when you fetch a pointer back from the
container, how will you know where its object has been allocated?)
Thus, you must be sure that objects stored in the following versions
of Stash and Stack are made only on the heap, either through
careful programming or by creating classes that can only be built on
the heap.

It’s also important to make sure that the client programmer takes
responsibility for cleaning up all the pointers in the container.
You’ve seen in previous examples how the Stack class checks in its

558 Thinking in C++ www.BruceEckel.com

destructor that all the Link objects have been popped. For a Stash
of pointers, however, another approach is needed.

Stash for pointers
This new version of the Stash class, called PStash, holds pointers
to objects that exist by themselves on the heap, whereas the old
Stash in earlier chapters copied the objects by value into the Stash
container. Using new and delete, it’s easy and safe to hold
pointers to objects that have been created on the heap.

Here’s the header file for the “pointer Stash”:

//: C13:PStash.h

// Holds pointers instead of objects

#ifndef PSTASH_H

#define PSTASH_H

class PStash {

 int quantity; // Number of storage spaces

 int next; // Next empty space

 // Pointer storage:

 void** storage;

 void inflate(int increase);

public:

 PStash() : quantity(0), storage(0), next(0) {}

 ~PStash();

 int add(void* element);

 void* operator[](int index) const; // Fetch

 // Remove the reference from this PStash:

 void* remove(int index);

 // Number of elements in Stash:

 int count() const { return next; }

};

#endif // PSTASH_H ///:~

The underlying data elements are fairly similar, but now storage is
an array of void pointers, and the allocation of storage for that
array is performed with new instead of malloc(). In the
expression

void** st = new void*[quantity + increase];

13: Dynamic Object Creation 559

the type of object allocated is a void*, so the expression allocates an
array of void pointers.

The destructor deletes the storage where the void pointers are held
rather than attempting to delete what they point at (which, as
previously noted, will release their storage and not call the
destructors because a void pointer has no type information).

The other change is the replacement of the fetch() function with
operator[], which makes more sense syntactically. Again,
however, a void* is returned, so the user must remember what
types are stored in the container and cast the pointers when
fetching them out (a problem that will be repaired in future
chapters).

Here are the member function definitions:

//: C13:PStash.cpp {O}

// Pointer Stash definitions

#include "PStash.h"

#include "../require.h"

#include <iostream>

#include <cstring> // 'mem' functions

using namespace std;

int PStash::add(void* element) {

 const int inflateSize = 10;

 if(next >= quantity)

 inflate(inflateSize);

 storage[next++] = element;

 return(next - 1); // Index number

}

// No ownership:

PStash::~PStash() {

 for(int i = 0; i < next; i++)

 require(storage[i] == 0,

 "PStash not cleaned up");

 delete []storage;

}

// Operator overloading replacement for fetch

void* PStash::operator[](int index) const {

560 Thinking in C++ www.BruceEckel.com

 require(index >= 0,

 "PStash::operator[] index negative");

 if(index >= next)

 return 0; // To indicate the end

 // Produce pointer to desired element:

 return storage[index];

}

void* PStash::remove(int index) {

 void* v = operator[](index);

 // "Remove" the pointer:

 if(v != 0) storage[index] = 0;

 return v;

}

void PStash::inflate(int increase) {

 const int psz = sizeof(void*);

 void** st = new void*[quantity + increase];

 memset(st, 0, (quantity + increase) * psz);

 memcpy(st, storage, quantity * psz);

 quantity += increase;

 delete []storage; // Old storage

 storage = st; // Point to new memory

} ///:~

The add() function is effectively the same as before, except that a
pointer is stored instead of a copy of the whole object.

The inflate() code is modified to handle the allocation of an array
of void* instead of the previous design, which was only working
with raw bytes. Here, instead of using the prior approach of copying
by array indexing, the Standard C library function memset() is
first used to set all the new memory to zero (this is not strictly
necessary, since the PStash is presumably managing all the
memory correctly – but it usually doesn’t hurt to throw in a bit of
extra care). Then memcpy() moves the existing data from the old
location to the new. Often, functions like memset() and
memcpy() have been optimized over time, so they may be faster
than the loops shown previously. But with a function like inflate()
that will probably not be used that often you may not see a
performance difference. However, the fact that the function calls
are more concise than the loops may help prevent coding errors.

13: Dynamic Object Creation 561

To put the responsibility of object cleanup squarely on the
shoulders of the client programmer, there are two ways to access
the pointers in the PStash: the operator[], which simply returns
the pointer but leaves it as a member of the container, and a second
member function remove(), which returns the pointer but also
removes it from the container by assigning that position to zero.
When the destructor for PStash is called, it checks to make sure
that all object pointers have been removed; if not, you’re notified so
you can prevent a memory leak (more elegant solutions will be
forthcoming in later chapters).

A test
Here’s the old test program for Stash rewritten for the PStash:

//: C13:PStashTest.cpp

//{L} PStash

// Test of pointer Stash

#include "PStash.h"

#include "../require.h"

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main() {

 PStash intStash;

 // 'new' works with built-in types, too. Note

 // the "pseudo-constructor" syntax:

 for(int i = 0; i < 25; i++)

 intStash.add(new int(i));

 for(int j = 0; j < intStash.count(); j++)

 cout << "intStash[" << j << "] = "

 << *(int*)intStash[j] << endl;

 // Clean up:

 for(int k = 0; k < intStash.count(); k++)

 delete intStash.remove(k);

 ifstream in ("PStashTest.cpp");

 assure(in, "PStashTest.cpp");

 PStash stringStash;

 string line;

 while(getline(in, line))

 stringStash.add(new string(line));

 // Print out the strings:

562 Thinking in C++ www.BruceEckel.com

 for(int u = 0; stringStash[u]; u++)

 cout << "stringStash[" << u << "] = "

 << *(string*)stringStash[u] << endl;

 // Clean up:

 for(int v = 0; v < stringStash.count(); v++)

 delete (string*)stringStash.remove(v);

} ///:~

As before, Stashes are created and filled with information, but this
time the information is the pointers resulting from new-
expressions. In the first case, note the line:

intStash.add(new int(i));

The expression new int(i) uses the pseudo-constructor form, so
storage for a new int object is created on the heap, and the int is
initialized to the value i.

During printing, the value returned by PStash::operator[] must
be cast to the proper type; this is repeated for the rest of the
PStash objects in the program. It’s an undesirable effect of using
void pointers as the underlying representation and will be fixed in
later chapters.

The second test opens the source code file and reads it one line at a
time into another PStash. Each line is read into a string using
getline(), then a new string is created from line to make an
independent copy of that line. If we just passed in the address of
line each time, we’d get a whole bunch of pointers pointing to line,
which would only contain the last line that was read from the file.

When fetching the pointers, you see the expression:

(string)stringStash[v]

The pointer returned from operator[] must be cast to a string*
to give it the proper type. Then the string* is dereferenced so the
expression evaluates to an object, at which point the compiler sees a
string object to send to cout.

The objects created on the heap must be destroyed through the use
of the remove() statement or else you’ll get a message at runtime

13: Dynamic Object Creation 563

telling you that you haven’t completely cleaned up the objects in the
PStash. Notice that in the case of the int pointers, no cast is
necessary because there’s no destructor for an int and all we need is
memory release:

delete intStash.remove(k);

However, for the string pointers, if you forget to do the cast you’ll
have another (quiet) memory leak, so the cast is essential:

delete (string*)stringStash.remove(k);

Some of these issues (but not all) can be removed using templates
(which you’ll learn about in Chapter 16).

new & delete for arrays
In C++, you can create arrays of objects on the stack or on the heap
with equal ease, and (of course) the constructor is called for each
object in the array. There’s one constraint, however: There must be
a default constructor, except for aggregate initialization on the stack
(see Chapter 6), because a constructor with no arguments must be
called for every object.

When creating arrays of objects on the heap using new, there’s
something else you must do. An example of such an array is

MyType* fp = new MyType[100];

This allocates enough storage on the heap for 100 MyType objects
and calls the constructor for each one. Now, however, you simply
have a MyType*, which is exactly the same as you’d get if you said

MyType* fp2 = new MyType;

to create a single object. Because you wrote the code, you know that
fp is actually the starting address of an array, so it makes sense to
select array elements using an expression like fp[3]. But what
happens when you destroy the array? The statements

delete fp2; // OK

564 Thinking in C++ www.BruceEckel.com

delete fp; // Not the desired effect

look exactly the same, and their effect will be the same. The
destructor will be called for the MyType object pointed to by the
given address, and then the storage will be released. For fp2 this is
fine, but for fp this means that the other 99 destructor calls won’t
be made. The proper amount of storage will still be released,
however, because it is allocated in one big chunk, and the size of the
whole chunk is stashed somewhere by the allocation routine.

The solution requires you to give the compiler the information that
this is actually the starting address of an array. This is accomplished
with the following syntax:

delete []fp;

The empty brackets tell the compiler to generate code that fetches
the number of objects in the array, stored somewhere when the
array is created, and calls the destructor for that many array
objects. This is actually an improved syntax from the earlier form,
which you may still occasionally see in old code:

delete [100]fp;

which forced the programmer to include the number of objects in
the array and introduced the possibility that the programmer would
get it wrong. The additional overhead of letting the compiler handle
it was very low, and it was considered better to specify the number
of objects in one place instead of two.

Making a pointer more like an array
As an aside, the fp defined above can be changed to point to
anything, which doesn’t make sense for the starting address of an
array. It makes more sense to define it as a constant, so any attempt
to modify the pointer will be flagged as an error. To get this effect,
you might try

int const* q = new int[10];

or

13: Dynamic Object Creation 565

const int* q = new int[10];

but in both cases the const will bind to the int, that is, what is
being pointed to, rather than the quality of the pointer itself.
Instead, you must say

int* const q = new int[10];

Now the array elements in q can be modified, but any change to q
(like q++) is illegal, as it is with an ordinary array identifier.

Running out of storage
What happens when the operator new cannot find a contiguous
block of storage large enough to hold the desired object? A special
function called the new-handler is called. Or rather, a pointer to a
function is checked, and if the pointer is nonzero, then the function
it points to is called.

The default behavior for the new-handler is to throw an exception,
a subject covered in Volume 2. However, if you’re using heap
allocation in your program, it’s wise to at least replace the new-
handler with a message that says you’ve run out of memory and
then aborts the program. That way, during debugging, you’ll have a
clue about what happened. For the final program you’ll want to use
more robust recovery.

You replace the new-handler by including new.h and then calling
set_new_handler() with the address of the function you want
installed:

//: C13:NewHandler.cpp

// Changing the new-handler

#include <iostream>

#include <cstdlib>

#include <new>

using namespace std;

int count = 0;

void out_of_memory() {

566 Thinking in C++ www.BruceEckel.com

 cerr << "memory exhausted after " << count

 << " allocations!" << endl;

 exit(1);

}

int main() {

 set_new_handler(out_of_memory);

 while(1) {

 count++;

 new int[1000]; // Exhausts memory

 }

} ///:~

The new-handler function must take no arguments and have a void
return value. The while loop will keep allocating int objects (and
throwing away their return addresses) until the free store is
exhausted. At the very next call to new, no storage can be allocated,
so the new-handler will be called.

The behavior of the new-handler is tied to operator new, so if you
overload operator new (covered in the next section) the new-
handler will not be called by default. If you still want the new-
handler to be called you’ll have to write the code to do so inside
your overloaded operator new.

Of course, you can write more sophisticated new-handlers, even one
to try to reclaim memory (commonly known as a garbage
collector). This is not a job for the novice programmer.

Overloading new & delete
When you create a new-expression, two things occur. First, storage
is allocated using the operator new, then the constructor is called.
In a delete-expression, the destructor is called, then storage is
deallocated using the operator delete. The constructor and
destructor calls are never under your control (otherwise you might
accidentally subvert them), but you can change the storage
allocation functions operator new and operator delete.

The memory allocation system used by new and delete is designed
for general-purpose use. In special situations, however, it doesn’t

13: Dynamic Object Creation 567

serve your needs. The most common reason to change the allocator
is efficiency: You might be creating and destroying so many objects
of a particular class that it has become a speed bottleneck. C++
allows you to overload new and delete to implement your own
storage allocation scheme, so you can handle problems like this.

Another issue is heap fragmentation. By allocating objects of
different sizes it’s possible to break up the heap so that you
effectively run out of storage. That is, the storage might be
available, but because of fragmentation no piece is big enough to
satisfy your needs. By creating your own allocator for a particular
class, you can ensure this never happens.

In embedded and real-time systems, a program may have to run for
a very long time with restricted resources. Such a system may also
require that memory allocation always take the same amount of
time, and there’s no allowance for heap exhaustion or
fragmentation. A custom memory allocator is the solution;
otherwise, programmers will avoid using new and delete
altogether in such cases and miss out on a valuable C++ asset.

When you overload operator new and operator delete, it’s
important to remember that you’re changing only the way raw
storage is allocated. The compiler will simply call your new instead
of the default version to allocate storage, then call the constructor
for that storage. So, although the compiler allocates storage and
calls the constructor when it sees new, all you can change when you
overload new is the storage allocation portion. (delete has a
similar limitation.)

When you overload operator new, you also replace the behavior
when it runs out of memory, so you must decide what to do in your
operator new: return zero, write a loop to call the new-handler
and retry allocation, or (typically) throw a bad_alloc exception
(discussed in Volume 2, available at www.BruceEckel.com).

Overloading new and delete is like overloading any other
operator. However, you have a choice of overloading the global
allocator or using a different allocator for a particular class.

568 Thinking in C++ www.BruceEckel.com

Overloading global new & delete
This is the drastic approach, when the global versions of new and
delete are unsatisfactory for the whole system. If you overload the
global versions, you make the defaults completely inaccessible –
you can’t even call them from inside your redefinitions.

The overloaded new must take an argument of size_t (the
Standard C standard type for sizes). This argument is generated and
passed to you by the compiler and is the size of the object you’re
responsible for allocating. You must return a pointer either to an
object of that size (or bigger, if you have some reason to do so), or to
zero if you can’t find the memory (in which case the constructor is
not called!). However, if you can’t find the memory, you should
probably do something more informative than just returning zero,
like calling the new-handler or throwing an exception, to signal that
there’s a problem.

The return value of operator new is a void*, not a pointer to any
particular type. All you’ve done is produce memory, not a finished
object – that doesn’t happen until the constructor is called, an act
the compiler guarantees and which is out of your control.

The operator delete takes a void* to memory that was allocated
by operator new. It’s a void* because operator delete only gets
the pointer after the destructor is called, which removes the object-
ness from the piece of storage. The return type is void.

Here’s a simple example showing how to overload the global new
and delete:

//: C13:GlobalOperatorNew.cpp

// Overload global new/delete

#include <cstdio>

#include <cstdlib>

using namespace std;

void* operator new(size_t sz) {

 printf("operator new: %d Bytes\n", sz);

 void* m = malloc(sz);

 if(!m) puts("out of memory");

 return m;

13: Dynamic Object Creation 569

}

void operator delete(void* m) {

 puts("operator delete");

 free(m);

}

class S {

 int i[100];

public:

 S() { puts("S::S()"); }

 ~S() { puts("S::~S()"); }

};

int main() {

 puts("creating & destroying an int");

 int* p = new int(47);

 delete p;

 puts("creating & destroying an s");

 S* s = new S;

 delete s;

 puts("creating & destroying S[3]");

 S* sa = new S[3];

 delete []sa;

} ///:~

Here you can see the general form for overloading new and delete.
These use the Standard C library functions malloc() and free()
for the allocators (which is probably what the default new and
delete use as well!). However, they also print messages about what
they are doing. Notice that printf() and puts() are used rather
than iostreams. This is because when an iostream object is
created (like the global cin, cout, and cerr), it calls new to
allocate memory. With printf(), you don’t get into a deadlock
because it doesn’t call new to initialize itself.

In main(), objects of built-in types are created to prove that the
overloaded new and delete are also called in that case. Then a
single object of type S is created, followed by an array of S. For the
array, you’ll see from the number of bytes requested that extra
memory is allocated to store information (inside the array) about
the number of objects it holds. In all cases, the global overloaded
versions of new and delete are used.

570 Thinking in C++ www.BruceEckel.com

Overloading new & delete for a class
Although you don’t have to explicitly say static, when you overload
new and delete for a class, you’re creating static member
functions. As before, the syntax is the same as overloading any
other operator. When the compiler sees you use new to create an
object of your class, it chooses the member operator new over the
global version. However, the global versions of new and delete are
used for all other types of objects (unless they have their own new
and delete).

In the following example, a primitive storage allocation system is
created for the class Framis. A chunk of memory is set aside in the
static data area at program start-up, and that memory is used to
allocate space for objects of type Framis. To determine which
blocks have been allocated, a simple array of bytes is used, one byte
for each block:

//: C13:Framis.cpp

// Local overloaded new & delete

#include <cstddef> // Size_t

#include <fstream>

#include <iostream>

#include <new>

using namespace std;

ofstream out("Framis.out");

class Framis {

 enum { sz = 10 };

 char c[sz]; // To take up space, not used

 static unsigned char pool[];

 static bool alloc_map[];

public:

 enum { psize = 100 }; // frami allowed

 Framis() { out << "Framis()\n"; }

 ~Framis() { out << "~Framis() ... "; }

 void* operator new(size_t) throw(bad_alloc);

 void operator delete(void*);

};

unsigned char Framis::pool[psize * sizeof(Framis)];

bool Framis::alloc_map[psize] = {false};

// Size is ignored -- assume a Framis object

13: Dynamic Object Creation 571

void*

Framis::operator new(size_t) throw(bad_alloc) {

 for(int i = 0; i < psize; i++)

 if(!alloc_map[i]) {

 out << "using block " << i << " ... ";

 alloc_map[i] = true; // Mark it used

 return pool + (i * sizeof(Framis));

 }

 out << "out of memory" << endl;

 throw bad_alloc();

}

void Framis::operator delete(void* m) {

 if(!m) return; // Check for null pointer

 // Assume it was created in the pool

 // Calculate which block number it is:

 unsigned long block = (unsigned long)m

 - (unsigned long)pool;

 block /= sizeof(Framis);

 out << "freeing block " << block << endl;

 // Mark it free:

 alloc_map[block] = false;

}

int main() {

 Framis* f[Framis::psize];

 try {

 for(int i = 0; i < Framis::psize; i++)

 f[i] = new Framis;

 new Framis; // Out of memory

 } catch(bad_alloc) {

 cerr << "Out of memory!" << endl;

 }

 delete f[10];

 f[10] = 0;

 // Use released memory:

 Framis* x = new Framis;

 delete x;

 for(int j = 0; j < Framis::psize; j++)

 delete f[j]; // Delete f[10] OK

} ///:~

The pool of memory for the Framis heap is created by allocating an
array of bytes large enough to hold psize Framis objects. The

572 Thinking in C++ www.BruceEckel.com

allocation map is psize elements long, so there’s one bool for every
block. All the values in the allocation map are initialized to false
using the aggregate initialization trick of setting the first element so
the compiler automatically initializes all the rest to their normal
default value (which is false, in the case of bool).

The local operator new has the same syntax as the global one. All
it does is search through the allocation map looking for a false
value, then sets that location to true to indicate it’s been allocated
and returns the address of the corresponding memory block. If it
can’t find any memory, it issues a message to the trace file and
throws a bad_alloc exception.

This is the first example of exceptions that you’ve seen in this book.
Since detailed discussion of exceptions is delayed until Volume 2,
this is a very simple use of them. In operator new there are two
artifacts of exception handling. First, the function argument list is
followed by throw(bad_alloc), which tells the compiler and the
reader that this function may throw an exception of type
bad_alloc. Second, if there’s no more memory the function
actually does throw the exception in the statement throw
bad_alloc. When an exception is thrown, the function stops
executing and control is passed to an exception handler, which is
expressed as a catch clause.

In main(), you see the other part of the picture, which is the try-
catch clause. The try block is surrounded by braces and contains all
the code that may throw exceptions – in this case, any call to new
that involves Framis objects. Immediately following the try block
is one or more catch clauses, each one specifying the type of
exception that they catch. In this case, catch(bad_alloc) says that
that bad_alloc exceptions will be caught here. This particular
catch clause is only executed when a bad_alloc exception is
thrown, and execution continues after the end of the last catch
clause in the group (there’s only one here, but there could be more).

In this example, it’s OK to use iostreams because the global
operator new and delete are untouched.

13: Dynamic Object Creation 573

The operator delete assumes the Framis address was created in
the pool. This is a fair assumption, because the local operator
new will be called whenever you create a single Framis object on
the heap – but not an array of them: global new is used for arrays.
So the user might accidentally have called operator delete
without using the empty bracket syntax to indicate array
destruction. This would cause a problem. Also, the user might be
deleting a pointer to an object created on the stack. If you think
these things could occur, you might want to add a line to make sure
the address is within the pool and on a correct boundary (you may
also begin to see the potential of overloaded new and delete for
finding memory leaks).

operator delete calculates the block in the pool that this pointer
represents, and then sets the allocation map’s flag for that block to
false to indicate the block has been released.

In main(), enough Framis objects are dynamically allocated to
run out of memory; this checks the out-of-memory behavior. Then
one of the objects is freed, and another one is created to show that
the released memory is reused.

Because this allocation scheme is specific to Framis objects, it’s
probably much faster than the general-purpose memory allocation
scheme used for the default new and delete. However, you should
note that it doesn’t automatically work if inheritance is used
(inheritance is covered in Chapter 14).

Overloading new & delete for arrays
If you overload operator new and delete for a class, those
operators are called whenever you create an object of that class.
However, if you create an array of those class objects, the global
operator new is called to allocate enough storage for the array all
at once, and the global operator delete is called to release that
storage. You can control the allocation of arrays of objects by
overloading the special array versions of operator new[] and
operator delete[] for the class. Here’s an example that shows
when the two different versions are called:

574 Thinking in C++ www.BruceEckel.com

//: C13:ArrayOperatorNew.cpp

// Operator new for arrays

#include <new> // Size_t definition

#include <fstream>

using namespace std;

ofstream trace("ArrayOperatorNew.out");

class Widget {

 enum { sz = 10 };

 int i[sz];

public:

 Widget() { trace << "*"; }

 ~Widget() { trace << "~"; }

 void* operator new(size_t sz) {

 trace << "Widget::new: "

 << sz << " bytes" << endl;

 return ::new char[sz];

 }

 void operator delete(void* p) {

 trace << "Widget::delete" << endl;

 ::delete []p;

 }

 void* operator new[](size_t sz) {

 trace << "Widget::new[]: "

 << sz << " bytes" << endl;

 return ::new char[sz];

 }

 void operator delete[](void* p) {

 trace << "Widget::delete[]" << endl;

 ::delete []p;

 }

};

int main() {

 trace << "new Widget" << endl;

 Widget* w = new Widget;

 trace << "\ndelete Widget" << endl;

 delete w;

 trace << "\nnew Widget[25]" << endl;

 Widget* wa = new Widget[25];

 trace << "\ndelete []Widget" << endl;

 delete []wa;

} ///:~

13: Dynamic Object Creation 575

Here, the global versions of new and delete are called so the effect
is the same as having no overloaded versions of new and delete
except that trace information is added. Of course, you can use any
memory allocation scheme you want in the overloaded new and
delete.

You can see that the syntax of array new and delete is the same as
for the individual object versions except for the addition of the
brackets. In both cases you’re handed the size of the memory you
must allocate. The size handed to the array version will be the size
of the entire array. It’s worth keeping in mind that the only thing
the overloaded operator new is required to do is hand back a
pointer to a large enough memory block. Although you may
perform initialization on that memory, normally that’s the job of
the constructor that will automatically be called for your memory by
the compiler.

The constructor and destructor simply print out characters so you
can see when they’ve been called. Here’s what the trace file looks
like for one compiler:

new Widget

Widget::new: 40 bytes

*

delete Widget

~Widget::delete

new Widget[25]

Widget::new[]: 1004 bytes

delete []Widget

~~~~~~~~~~~~~~~~~~~~~~~~~Widget::delete[] 
 

Creating an individual object requires 40 bytes, as you might 
expect. (This machine uses four bytes for an int.) The operator 
new is called, then the constructor (indicated by the *). In a 
complementary fashion, calling delete causes the destructor to be 
called, then the operator delete. 

When an array of Widget objects is created, the array version of 
operator new is used, as promised. But notice that the size 



576 Thinking in C++ www.BruceEckel.com 

requested is four more bytes than expected. This extra four bytes is 
where the system keeps information about the array, in particular, 
the number of objects in the array. That way, when you say 

delete []Widget; 
 

the brackets tell the compiler it’s an array of objects, so the 
compiler generates code to look for the number of objects in the 
array and to call the destructor that many times. You can see that, 
even though the array operator new and operator delete are 
only called once for the entire array chunk, the default constructor 
and destructor are called for each object in the array. 

Constructor calls 
Considering that 

MyType* f = new MyType; 
 

calls new to allocate a MyType-sized piece of storage, then invokes 
the MyType constructor on that storage, what happens if the 
storage allocation in new fails? The constructor is not called in that 
case, so although you still have an unsuccessfully created object, at 
least you haven’t invoked the constructor and handed it a zero this 
pointer. Here’s an example to prove it: 

//: C13:NoMemory.cpp 

// Constructor isn't called if new fails 

#include <iostream> 

#include <new> // bad_alloc definition 

using namespace std; 

 

class NoMemory { 

public: 

  NoMemory() { 

    cout << "NoMemory::NoMemory()" << endl; 

  } 

  void* operator new(size_t sz) throw(bad_alloc){ 

    cout << "NoMemory::operator new" << endl; 

    throw bad_alloc(); // "Out of memory" 

  } 

}; 

 

13: Dynamic Object Creation 577 

int main() { 

  NoMemory* nm = 0; 

  try { 

    nm = new NoMemory; 

  } catch(bad_alloc) { 

    cerr << "Out of memory exception" << endl; 

  } 

  cout << "nm = " << nm << endl; 

} ///:~ 
 

When the program runs, it does not print the constructor message, 
only the message from operator new and the message in the 
exception handler. Because new never returns, the constructor is 
never called so its message is not printed. 

It’s important that nm be initialized to zero because the new 
expression never completes, and the pointer should be zero to make 
sure you don’t misuse it. However, you should actually do more in 
the exception handler than just print out a message and continue on 
as if the object had been successfully created. Ideally, you will do 
something that will cause the program to recover from the problem, 
or at the least exit after logging an error. 

In earlier versions of C++ it was standard practice to return zero 
from new if storage allocation failed. That would prevent 
construction from occurring. However, if you try to return zero 
from new with a Standard-conforming compiler, it should tell you 
that you ought to throw bad_alloc instead. 

placement new & delete 
There are two other, less common, uses for overloading operator 
new. 

1. You may want to place an object in a specific location in 
memory. This is especially important with hardware-oriented 
embedded systems where an object may be synonymous with 
a particular piece of hardware. 

2. You may want to be able to choose from different allocators 
when calling new. 



578 Thinking in C++ www.BruceEckel.com 

Both of these situations are solved with the same mechanism: The 
overloaded operator new can take more than one argument. As 
you’ve seen before, the first argument is always the size of the 
object, which is secretly calculated and passed by the compiler. But 
the other arguments can be anything you want – the address you 
want the object placed at, a reference to a memory allocation 
function or object, or anything else that is convenient for you. 

The way that you pass the extra arguments to operator new 
during a call may seem slightly curious at first. You put the 
argument list (without the size_t argument, which is handled by 
the compiler) after the keyword new and before the class name of 
the object you’re creating. For example, 

X* xp = new(a) X; 
 

will pass a as the second argument to operator new. Of course, 
this can work only if such an operator new has been declared. 

Here’s an example showing how you can place an object at a 
particular location: 

//: C13:PlacementOperatorNew.cpp 

// Placement with operator new 

#include <cstddef> // Size_t 

#include <iostream> 

using namespace std; 

 

class X { 

  int i; 

public: 

  X(int ii = 0) : i(ii) { 

    cout << "this = " << this << endl; 

  } 

  ~X() { 

    cout << "X::~X(): " << this << endl; 

  } 

  void* operator new(size_t, void* loc) { 

    return loc; 

  } 

}; 

 

int main() { 

13: Dynamic Object Creation 579 

  int l[10]; 

  cout << "l = " << l << endl; 

  X* xp = new(l) X(47); // X at location l 

  xp->X::~X(); // Explicit destructor call 

  // ONLY use with placement! 

} ///:~ 
 

Notice that operator new only returns the pointer that’s passed to 
it. Thus, the caller decides where the object is going to sit, and the 
constructor is called for that memory as part of the new-expression. 

Although this example shows only one additional argument, there’s 
nothing to prevent you from adding more if you need them for 
other purposes. 

A dilemma occurs when you want to destroy the object. There’s only 
one version of operator delete, so there’s no way to say, “Use my 
special deallocator for this object.” You want to call the destructor, 
but you don’t want the memory to be released by the dynamic 
memory mechanism because it wasn’t allocated on the heap. 

The answer is a very special syntax. You can explicitly call the 
destructor, as in 

xp->X::~X(); // Explicit destructor call 
 

A stern warning is in order here. Some people see this as a way to 
destroy objects at some time before the end of the scope, rather 
than either adjusting the scope or (more correctly) using dynamic 
object creation if they want the object’s lifetime to be determined at 
runtime. You will have serious problems if you call the destructor 
this way for an ordinary object created on the stack because the 
destructor will be called again at the end of the scope. If you call the 
destructor this way for an object that was created on the heap, the 
destructor will execute, but the memory won’t be released, which 
probably isn’t what you want. The only reason that the destructor 
can be called explicitly this way is to support the placement syntax 
for operator new. 

There’s also a placement operator delete that is only called if a 
constructor for a placement new expression throws an exception 



580 Thinking in C++ www.BruceEckel.com 

(so that the memory is automatically cleaned up during the 
exception). The placement operator delete has an argument list 
that corresponds to the placement operator new that is called 
before the constructor throws the exception. This topic will be 
explored in the exception handling chapter in Volume 2. 

Summary 
It’s convenient and optimally efficient to create automatic objects 
on the stack, but to solve the general programming problem you 
must be able to create and destroy objects at any time during a 
program’s execution, particularly to respond to information from 
outside the program. Although C’s dynamic memory allocation will 
get storage from the heap, it doesn’t provide the ease of use and 
guaranteed construction necessary in C++. By bringing dynamic 
object creation into the core of the language with new and delete, 
you can create objects on the heap as easily as making them on the 
stack. In addition, you get a great deal of flexibility. You can change 
the behavior of new and delete if they don’t suit your needs, 
particularly if they aren’t efficient enough. Also, you can modify 
what happens when the heap runs out of storage. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Create a class Counted that contains an int id and a 
static int count. The default constructor should begin: 
Counted( ) : id(count++) {. It should also print its id 
and that it’s being created. The destructor should print 
that it’s being destroyed and its id. Test your class. 

2.  Prove to yourself that new and delete always call the 
constructors and destructors by creating an object of 
class Counted (from Exercise 1) with new and 
destroying it with delete. Also create and destroy an 
array of these objects on the heap. 

13: Dynamic Object Creation 581 

3.  Create a PStash object and fill it with new objects from 
Exercise 1. Observe what happens when this PStash 
object goes out of scope and its destructor is called. 

4.  Create a vector< Counted*> and fill it with pointers to 
new Counted objects (from Exercise 1). Move through 
the vector and print the Counted objects, then move 
through again and delete each one. 

5.  Repeat Exercise 4, but add a member function f( ) to 
Counted that prints a message. Move through the 
vector and call f( ) for each object. 

6.  Repeat Exercise 5 using a PStash. 

7.  Repeat Exercise 5 using Stack4.h from Chapter 9. 

8.  Dynamically create an array of objects of class Counted 
(from Exercise 1). Call delete for the resulting pointer, 
without the square brackets. Explain the results. 

9.  Create an object of class Counted (from Exercise 1) 
using new, cast the resulting pointer to a void*, and 
delete that. Explain the results. 

10.  Execute NewHandler.cpp on your machine to see the 
resulting count. Calculate the amount of free store 
available for your program. 

11.  Create a class with an overloaded operator new and 
delete, both the single-object versions and the array 
versions. Demonstrate that both versions work. 

12.  Devise a test for Framis.cpp to show yourself 
approximately how much faster the custom new and 
delete run than the global new and delete. 

13.  Modify NoMemory.cpp so that it contains an array of 
int and so that it actually allocates memory instead of 
throwing bad_alloc. In main( ), set up a while loop 
like the one in NewHandler.cpp to run out of memory 
and see what happens if your operator new does not 
test to see if the memory is successfully allocated. Then 
add the check to your operator new and throw 
bad_alloc. 

14.  Create a class with a placement new with a second 
argument of type string. The class should contain a 
static vector<string> where the second new 



582 Thinking in C++ www.BruceEckel.com 

argument is stored. The placement new should allocate 
storage as normal. In main( ), make calls to your 
placement new with string arguments that describe the 
calls (you may want to use the preprocessor’s __FILE__ 
and __LINE__ macros). 

15.  Modify ArrayOperatorNew.cpp by adding a static 
vector<Widget*> that adds each Widget address that 
is allocated in operator new and removes it when it is 
released via operator delete. (You may need to look up 
information about vector in your Standard C++ Library 
documentation or in the 2nd volume of this book, 
available at the Web site.) Create a second class called 
MemoryChecker that has a destructor that prints out 
the number of Widget pointers in your vector. Create a 
program with a single global instance of 
MemoryChecker and in main( ), dynamically allocate 
and destroy several objects and arrays of Widget. Show 
that MemoryChecker reveals memory leaks. 

  583 

 

 

 

 

 

 

 

 

14: Inheritance & 

Composition 
One of the most compelling features about C++ is  

code reuse. But to be revolutionary, you need to be  

able to do a lot more than copy code and change it. 



584 Thinking in C++ www.BruceEckel.com 

That’s the C approach, and it hasn’t worked very well. As with most 
everything in C++, the solution revolves around the class. You reuse 
code by creating new classes, but instead of creating them from 
scratch, you use existing classes that someone else has built and 
debugged. 

The trick is to use the classes without soiling the existing code. In 
this chapter you’ll see two ways to accomplish this. The first is quite 
straightforward: You simply create objects of your existing class 
inside the new class. This is called composition because the new 
class is composed of objects of existing classes. 

The second approach is subtler. You create a new class as a type of 
an existing class. You literally take the form of the existing class and 
add code to it, without modifying the existing class. This magical act 
is called inheritance, and most of the work is done by the compiler. 
Inheritance is one of the cornerstones of object-oriented 
programming and has additional implications that will be explored 
in Chapter 15. 

It turns out that much of the syntax and behavior are similar for 
both composition and inheritance (which makes sense; they are 
both ways of making new types from existing types). In this chapter, 
you’ll learn about these code reuse mechanisms. 

Composition syntax 
Actually, you’ve been using composition all along to create classes. 
You’ve just been composing classes primarily with built-in types 
(and sometimes strings). It turns out to be almost as easy to use 
composition with user-defined types. 

Consider a class that is valuable for some reason: 

//: C14:Useful.h 

// A class to reuse 

#ifndef USEFUL_H 

#define USEFUL_H 

 

class X { 

14: Inheritance & Composition 585 

  int i; 

public: 

  X() { i = 0; } 

  void set(int ii) { i = ii; } 

  int read() const { return i; } 

  int permute() { return i = i * 47; } 

}; 

#endif // USEFUL_H ///:~ 
 

The data members are private in this class, so it’s completely safe 
to embed an object of type X as a public object in a new class, 
which makes the interface straightforward: 

//: C14:Composition.cpp 

// Reuse code with composition 

#include "Useful.h" 

 

class Y { 

  int i; 

public: 

  X x; // Embedded object 

  Y() { i = 0; } 

  void f(int ii) { i = ii; } 

  int g() const { return i; } 

}; 

 

int main() { 

  Y y; 

  y.f(47); 

  y.x.set(37); // Access the embedded object 

} ///:~ 
 

Accessing the member functions of the embedded object (referred 
to as a subobject) simply requires another member selection. 

It’s more common to make the embedded objects private, so they 
become part of the underlying implementation (which means you 
can change the implementation if you want). The public interface 
functions for your new class then involve the use of the embedded 
object, but they don’t necessarily mimic the object’s interface: 

//: C14:Composition2.cpp 

// Private embedded objects 

#include "Useful.h" 



586 Thinking in C++ www.BruceEckel.com 

 

class Y { 

  int i; 

  X x; // Embedded object 

public: 

  Y() { i = 0; } 

  void f(int ii) { i = ii; x.set(ii); } 

  int g() const { return i * x.read(); } 

  void permute() { x.permute(); } 

}; 

 

int main() { 

  Y y; 

  y.f(47); 

  y.permute(); 

} ///:~ 
 

Here, the permute( ) function is carried through to the new class 
interface, but the other member functions of X are used within the 
members of Y. 

Inheritance syntax 
The syntax for composition is obvious, but to perform inheritance 
there’s a new and different form. 

When you inherit, you are saying, “This new class is like that old 
class.” You state this in code by giving the name of the class as 
usual, but before the opening brace of the class body, you put a 
colon and the name of the base class (or base classes, separated by 
commas, for multiple inheritance). When you do this, you 
automatically get all the data members and member functions in 
the base class. Here’s an example: 

//: C14:Inheritance.cpp 

// Simple inheritance 

#include "Useful.h" 

#include <iostream> 

using namespace std; 

 

class Y : public X { 

  int i; // Different from X's i 

14: Inheritance & Composition 587 

public: 

  Y() { i = 0; } 

  int change() { 

    i = permute(); // Different name call 

    return i; 

  } 

  void set(int ii) { 

    i = ii; 

    X::set(ii); // Same-name function call 

  } 

}; 

 

int main() { 

  cout << "sizeof(X) = " << sizeof(X) << endl; 

  cout << "sizeof(Y) = " 

       << sizeof(Y) << endl; 

  Y D; 

  D.change(); 

  // X function interface comes through: 

  D.read(); 

  D.permute(); 

  // Redefined functions hide base versions: 

  D.set(12); 

} ///:~ 
 

You can see Y being inherited from X, which means that Y will 
contain all the data elements in X and all the member functions in 
X. In fact, Y contains a subobject of X just as if you had created a 
member object of X inside Y instead of inheriting from X. Both 
member objects and base class storage are referred to as subobjects. 

All the private elements of X are still private in Y; that is, just 
because Y inherits from X doesn’t mean Y can break the protection 
mechanism. The private elements of X are still there, they take up 
space – you just can’t access them directly. 

In main( ) you can see that Y’s data elements are combined with 
X’s because the sizeof(Y) is twice as big as sizeof(X). 

You’ll notice that the base class is preceded by public. During 
inheritance, everything defaults to private. If the base class were 
not preceded by public, it would mean that all of the public 
members of the base class would be private in the derived class. 



588 Thinking in C++ www.BruceEckel.com 

This is almost never what you want1; the desired result is to keep all 
the public members of the base class public in the derived class. 
You do this by using the public keyword during inheritance. 

In change( ), the base-class permute( ) function is called. The 
derived class has direct access to all the public base-class 
functions. 

The set( ) function in the derived class redefines the set( ) 
function in the base class. That is, if you call the functions read( ) 
and permute( ) for an object of type Y, you’ll get the base-class 
versions of those functions (you can see this happen inside 
main( )). But if you call set( ) for a Y object, you get the redefined 
version. This means that if you don’t like the version of a function 
you get during inheritance, you can change what it does. (You can 
also add completely new functions like change( ).) 

However, when you’re redefining a function, you may still want to 
call the base-class version. If, inside set( ), you simply call set( ) 
you’ll get the local version of the function – a recursive function 
call. To call the base-class version, you must explicitly name the 
base class using the scope resolution operator. 

The constructor initializer list 
You’ve seen how important it is in C++ to guarantee proper 
initialization, and it’s no different during composition and 
inheritance. When an object is created, the compiler guarantees 
that constructors for all of its subobjects are called. In the examples 
so far, all of the subobjects have default constructors, and that’s 
what the compiler automatically calls. But what happens if your 
subobjects don’t have default constructors, or if you want to change 
a default argument in a constructor? This is a problem because the 
new class constructor doesn’t have permission to access the 

                                                   
1 In Java, the compiler won’t let you decrease the access of a member during 
inheritance. 

14: Inheritance & Composition 589 

private data elements of the subobject, so it can’t initialize them 
directly. 

The solution is simple: Call the constructor for the subobject. C++ 
provides a special syntax for this, the constructor initializer list. 
The form of the constructor initializer list echoes the act of 
inheritance. With inheritance, you put the base classes after a colon 
and before the opening brace of the class body. In the constructor 
initializer list, you put the calls to subobject constructors after the 
constructor argument list and a colon, but before the opening brace 
of the function body. For a class MyType, inherited from Bar, this 
might look like this: 

MyType::MyType(int i) : Bar(i) { // ... 
 

if Bar has a constructor that takes a single int argument. 

Member object initialization 
It turns out that you use this very same syntax for member object 
initialization when using composition. For composition, you give 
the names of the objects instead of the class names. If you have 
more than one constructor call in the initializer list, you separate 
the calls with commas: 

MyType2::MyType2(int i) : Bar(i), m(i+1) { // ... 
 

This is the beginning of a constructor for class MyType2, which is 
inherited from Bar and contains a member object called m. Note 
that while you can see the type of the base class in the constructor 
initializer list, you only see the member object identifier. 

Built-in types in the initializer list 
The constructor initializer list allows you to explicitly call the 
constructors for member objects. In fact, there’s no other way to 
call those constructors. The idea is that the constructors are all 
called before you get into the body of the new class’s constructor. 
That way, any calls you make to member functions of subobjects 
will always go to initialized objects. There’s no way to get to the 
opening brace of the constructor without some constructor being 



590 Thinking in C++ www.BruceEckel.com 

called for all the member objects and base-class objects, even if the 
compiler must make a hidden call to a default constructor. This is a 
further enforcement of the C++ guarantee that no object (or part of 
an object) can get out of the starting gate without its constructor 
being called. 

This idea that all of the member objects are initialized by the time 
the opening brace of the constructor is reached is a convenient 
programming aid as well. Once you hit the opening brace, you can 
assume all subobjects are properly initialized and focus on specific 
tasks you want to accomplish in the constructor. However, there’s a 
hitch: What about member objects of built-in types, which don’t 
have constructors? 

To make the syntax consistent, you are allowed to treat built-in 
types as if they have a single constructor, which takes a single 
argument: a variable of the same type as the variable you’re 
initializing. Thus, you can say 

//: C14:PseudoConstructor.cpp 

class X { 

  int i; 

  float f; 

  char c; 

  char* s; 

public: 

  X() : i(7), f(1.4), c('x'), s("howdy") {} 

}; 

 

int main() { 

  X x; 

  int i(100);  // Applied to ordinary definition 

  int* ip = new int(47); 

} ///:~ 
 

The action of these “pseudo-constructor calls” is to perform a 
simple assignment. It’s a convenient technique and a good coding 
style, so you’ll see it used often. 

It’s even possible to use the pseudo-constructor syntax when 
creating a variable of a built-in type outside of a class: 

14: Inheritance & Composition 591 

int i(100); 

int* ip = new int(47); 
 

This makes built-in types act a little bit more like objects. 
Remember, though, that these are not real constructors. In 
particular, if you don’t explicitly make a pseudo-constructor call, no 
initialization is performed. 

Combining composition & inheritance 
Of course, you can use composition & inheritance together. The 
following example shows the creation of a more complex class using 
both of them. 

//: C14:Combined.cpp 

// Inheritance & composition 

 

class A { 

  int i; 

public: 

  A(int ii) : i(ii) {} 

  ~A() {} 

  void f() const {} 

}; 

 

class B { 

  int i; 

public: 

  B(int ii) : i(ii) {} 

  ~B() {} 

  void f() const {} 

}; 

 

class C : public B { 

  A a; 

public: 

  C(int ii) : B(ii), a(ii) {} 

  ~C() {} // Calls ~A() and ~B() 

  void f() const {  // Redefinition 

    a.f(); 

    B::f(); 

  } 

}; 



592 Thinking in C++ www.BruceEckel.com 

 

int main() { 

  C c(47); 

} ///:~ 
 

C inherits from B and has a member object (“is composed of”) of 
type A. You can see the constructor initializer list contains calls to 
both the base-class constructor and the member-object constructor. 

The function C::f( ) redefines B::f( ), which it inherits, and also 
calls the base-class version. In addition, it calls a.f( ). Notice that 
the only time you can talk about redefinition of functions is during 
inheritance; with a member object you can only manipulate the 
public interface of the object, not redefine it. In addition, calling f( ) 
for an object of class C would not call a.f( ) if C::f( ) had not been 
defined, whereas it would call B::f( ). 

Automatic destructor calls 
Although you are often required to make explicit constructor calls 
in the initializer list, you never need to make explicit destructor 
calls because there’s only one destructor for any class, and it doesn’t 
take any arguments. However, the compiler still ensures that all 
destructors are called, and that means all of the destructors in the 
entire hierarchy, starting with the most-derived destructor and 
working back to the root. 

It’s worth emphasizing that constructors and destructors are quite 
unusual in that every one in the hierarchy is called, whereas with a 
normal member function only that function is called, but not any of 
the base-class versions. If you also want to call the base-class 
version of a normal member function that you’re overriding, you 
must do it explicitly. 

Order of constructor & destructor calls 
It’s interesting to know the order of constructor and destructor calls 
when an object has many subobjects. The following example shows 
exactly how it works: 

//: C14:Order.cpp 

// Constructor/destructor order 

14: Inheritance & Composition 593 

#include <fstream> 

using namespace std; 

ofstream out("order.out"); 

 

#define CLASS(ID) class ID { \ 

public: \ 

  ID(int) { out << #ID " constructor\n"; } \ 

  ~ID() { out << #ID " destructor\n"; } \ 

}; 

 

CLASS(Base1); 

CLASS(Member1); 

CLASS(Member2); 

CLASS(Member3); 

CLASS(Member4); 

 

class Derived1 : public Base1 { 

  Member1 m1; 

  Member2 m2; 

public: 

  Derived1(int) : m2(1), m1(2), Base1(3) { 

    out << "Derived1 constructor\n"; 

  } 

  ~Derived1() { 

    out << "Derived1 destructor\n"; 

  } 

}; 

 

class Derived2 : public Derived1 { 

  Member3 m3; 

  Member4 m4; 

public: 

  Derived2() : m3(1), Derived1(2), m4(3) { 

    out << "Derived2 constructor\n"; 

  } 

  ~Derived2() { 

    out << "Derived2 destructor\n"; 

  } 

}; 

 

int main() { 

  Derived2 d2; 

} ///:~ 
 



594 Thinking in C++ www.BruceEckel.com 

First, an ofstream object is created to send all the output to a file. 
Then, to save some typing and demonstrate a macro technique that 
will be replaced by a much improved technique in Chapter 16, a 
macro is created to build some of the classes, which are then used in 
inheritance and composition. Each of the constructors and 
destructors report themselves to the trace file. Note that the 
constructors are not default constructors; they each have an int 
argument. The argument itself has no identifier; its only reason for 
existence is to force you to explicitly call the constructors in the 
initializer list. (Eliminating the identifier prevents compiler 
warning messages.) 

The output of this program is 

Base1 constructor 

Member1 constructor 

Member2 constructor 

Derived1 constructor 

Member3 constructor 

Member4 constructor 

Derived2 constructor 

Derived2 destructor 

Member4 destructor 

Member3 destructor 

Derived1 destructor 

Member2 destructor 

Member1 destructor 

Base1 destructor 
 

You can see that construction starts at the very root of the class 
hierarchy, and that at each level the base class constructor is called 
first, followed by the member object constructors. The destructors 
are called in exactly the reverse order of the constructors – this is 
important because of potential dependencies (in the derived-class 
constructor or destructor, you must be able to assume that the base-
class subobject is still available for use, and has already been 
constructed – or not destroyed yet). 

It’s also interesting that the order of constructor calls for member 
objects is completely unaffected by the order of the calls in the 
constructor initializer list. The order is determined by the order that 
the member objects are declared in the class. If you could change 

14: Inheritance & Composition 595 

the order of constructor calls via the constructor initializer list, you 
could have two different call sequences in two different 
constructors, but the poor destructor wouldn’t know how to 
properly reverse the order of the calls for destruction, and you could 
end up with a dependency problem. 

Name hiding 
If you inherit a class and provide a new definition for one of its 
member functions, there are two possibilities. The first is that you 
provide the exact signature and return type in the derived class 
definition as in the base class definition. This is called redefining 
for ordinary member functions and overriding when the base class 
member function is a virtual function (virtual functions are the 
normal case, and will be covered in detail in Chapter 15). But what 
happens if you change the member function argument list or return 
type in the derived class? Here’s an example: 

//: C14:NameHiding.cpp 

// Hiding overloaded names during inheritance 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Base { 

public: 

  int f() const {  

    cout << "Base::f()\n";  

    return 1;  

  } 

  int f(string) const { return 1; } 

  void g() {} 

}; 

 

class Derived1 : public Base { 

public: 

  void g() const {} 

}; 

 

class Derived2 : public Base { 

public: 

  // Redefinition: 



596 Thinking in C++ www.BruceEckel.com 

  int f() const {  

    cout << "Derived2::f()\n";  

    return 2; 

  } 

}; 

 

class Derived3 : public Base { 

public: 

  // Change return type: 

  void f() const { cout << "Derived3::f()\n"; } 

}; 

 

class Derived4 : public Base { 

public: 

  // Change argument list: 

  int f(int) const {  

    cout << "Derived4::f()\n";  

    return 4;  

  } 

}; 

 

int main() { 

  string s("hello"); 

  Derived1 d1; 

  int x = d1.f(); 

  d1.f(s); 

  Derived2 d2; 

  x = d2.f(); 

//!  d2.f(s); // string version hidden 

  Derived3 d3; 

//!  x = d3.f(); // return int version hidden 

  Derived4 d4; 

//!  x = d4.f(); // f() version hidden 

  x = d4.f(1); 

} ///:~ 
 

In Base you see an overloaded function f( ), and Derived1 doesn’t 
make any changes to f( ) but it does redefine g( ). In main( ), you 
can see that both overloaded versions of f( ) are available in 
Derived1. However, Derived2 redefines one overloaded version 
of f( ) but not the other, and the result is that the second 
overloaded form is unavailable. In Derived3, changing the return 
type hides both the base class versions, and Derived4 shows that 
changing the argument list also hides both the base class versions. 

14: Inheritance & Composition 597 

In general, we can say that anytime you redefine an overloaded 
function name from the base class, all the other versions are 
automatically hidden in the new class. In Chapter 15, you’ll see that 
the addition of the virtual keyword affects function overloading a 
bit more. 

If you change the interface of the base class by modifying the 
signature and/or return type of a member function from the base 
class, then you’re using the class in a different way than inheritance 
is normally intended to support. It doesn’t necessarily mean you’re 
doing it wrong, it’s just that the ultimate goal of inheritance is to 
support polymorphism, and if you change the function signature or 
return type then you are actually changing the interface of the base 
class. If this is what you have intended to do then you are using 
inheritance primarily to reuse code, and not to maintain the 
common interface of the base class (which is an essential aspect of 
polymorphism). In general, when you use inheritance this way it 
means you’re taking a general-purpose class and specializing it for a 
particular need – which is usually, but not always, considered the 
realm of composition. 

For example, consider the Stack class from Chapter 9. One of the 
problems with that class is that you had to perform a cast every 
time you fetched a pointer from the container. This is not only 
tedious, it’s unsafe – you could cast the pointer to anything you 
want. 

An approach that seems better at first glance is to specialize the 
general Stack class using inheritance. Here’s an example that uses 
the class from Chapter 9:  

//: C14:InheritStack.cpp 

// Specializing the Stack class 

#include "../C09/Stack4.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class StringStack : public Stack { 



598 Thinking in C++ www.BruceEckel.com 

public: 

  void push(string* str) { 

    Stack::push(str); 

  } 

  string* peek() const { 

    return (string*)Stack::peek(); 

  } 

  string* pop() { 

    return (string*)Stack::pop(); 

  } 

  ~StringStack() { 

    string* top = pop(); 

    while(top) { 

      delete top; 

      top = pop(); 

    } 

  } 

}; 

 

int main() { 

  ifstream in("InheritStack.cpp"); 

  assure(in, "InheritStack.cpp"); 

  string line; 

  StringStack textlines; 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  string* s; 

  while((s = textlines.pop()) != 0) { // No cast! 

    cout << *s << endl; 

    delete s; 

  } 

} ///:~ 
 

Since all of the member functions in Stack4.h are inlines, nothing 
needs to be linked. 

StringStack specializes Stack so that push( ) will accept only 
String pointers. Before, Stack would accept void pointers, so the 
user had no type checking to make sure the proper pointers were 
inserted. In addition, peek( ) and pop( ) now return String 
pointers instead of void pointers, so no cast is necessary to use the 
pointer. 

14: Inheritance & Composition 599 

Amazingly enough, this extra type-checking safety is free in 
push( ), peek( ), and pop( )! The compiler is being given extra 
type information that it uses at compile-time, but the functions are 
inlined and no extra code is generated. 

Name hiding comes into play here because, in particular, the 
push( ) function has a different signature: the argument list is 
different. If you had two versions of push( ) in the same class, that 
would be overloading, but in this case overloading is not what we 
want because that would still allow you to pass any kind of pointer 
into push( ) as a void*. Fortunately, C++ hides the push(void*) 
version in the base class in favor of the new version that’s defined in 
the derived class, and therefore it only allows us to push( ) string 
pointers onto the StringStack.  

Because we can now guarantee that we know exactly what kind of 
objects are in the container, the destructor works correctly and the 
ownership problem is solved – or at least, one approach to the 
ownership problem. Here, if you push( ) a string pointer onto the 
StringStack, then (according to the semantics of the 
StringStack) you’re also passing ownership of that pointer to the 
StringStack. If you pop( ) the pointer, you not only get the 
pointer, but you also get ownership of that pointer. Any pointers 
that are left on the StringStack when its destructor is called are 
then deleted by that destructor. And since these are always string 
pointers and the delete statement is working on string pointers 
instead of void pointers, the proper destruction happens and 
everything works correctly. 

There is a drawback: this class works only for string pointers. If 
you want a Stack that works with some other kind of object, you 
must write a new version of the class so that it works only with your 
new kind of object. This rapidly becomes tedious, and is finally 
solved using templates, as you will see in Chapter 16. 

We can make an additional observation about this example: it 
changes the interface of the Stack in the process of inheritance. If 
the interface is different, then a StringStack really isn’t a Stack, 
and you will never be able to correctly use a StringStack as a 
Stack. This makes the use of inheritance questionable here; if 



600 Thinking in C++ www.BruceEckel.com 

you’re not creating a StringStack that is-a type of Stack, then 
why are you inheriting? A more appropriate version of 
StringStack will be shown later in this chapter. 

Functions that don’t automatically 

inherit 
Not all functions are automatically inherited from the base class 
into the derived class. Constructors and destructors deal with the 
creation and destruction of an object, and they can know what to do 
with the aspects of the object only for their particular class, so all 
the constructors and destructors in the hierarchy below them must 
be called. Thus, constructors and destructors don’t inherit and must 
be created specially for each derived class. 

In addition, the operator= doesn’t inherit because it performs a 
constructor-like activity. That is, just because you know how to 
assign all the members of an object on the left-hand side of the = 
from an object on the right-hand side doesn’t mean that assignment 
will still have the same meaning after inheritance. 

In lieu of inheritance, these functions are synthesized by the 
compiler if you don’t create them yourself. (With constructors, you 
can’t create any constructors in order for the compiler to synthesize 
the default constructor and the copy-constructor.) This was briefly 
described in Chapter 6. The synthesized constructors use 
memberwise initialization and the synthesized operator= uses 
memberwise assignment. Here’s an example of the functions that 
are synthesized by the compiler: 

//: C14:SynthesizedFunctions.cpp 

// Functions that are synthesized by the compiler 

#include <iostream> 

using namespace std; 

 

class GameBoard { 

public: 

  GameBoard() { cout << "GameBoard()\n"; } 

  GameBoard(const GameBoard&) {  

    cout << "GameBoard(const GameBoard&)\n";  

14: Inheritance & Composition 601 

  } 

  GameBoard& operator=(const GameBoard&) { 

    cout << "GameBoard::operator=()\n"; 

    return *this; 

  } 

  ~GameBoard() { cout << "~GameBoard()\n"; } 

}; 

 

class Game { 

  GameBoard gb; // Composition 

public: 

  // Default GameBoard constructor called: 

  Game() { cout << "Game()\n"; } 

  // You must explicitly call the GameBoard 

  // copy-constructor or the default constructor 

  // is automatically called instead: 

  Game(const Game& g) : gb(g.gb) {  

    cout << "Game(const Game&)\n";  

  } 

  Game(int) { cout << "Game(int)\n"; } 

  Game& operator=(const Game& g) { 

    // You must explicitly call the GameBoard 

    // assignment operator or no assignment at  

    // all happens for gb! 

    gb = g.gb; 

    cout << "Game::operator=()\n"; 

    return *this; 

  } 

  class Other {}; // Nested class 

  // Automatic type conversion: 

  operator Other() const { 

    cout << "Game::operator Other()\n"; 

    return Other(); 

  } 

  ~Game() { cout << "~Game()\n"; } 

}; 

 

class Chess : public Game {}; 

 

void f(Game::Other) {} 

 

class Checkers : public Game { 

public: 

  // Default base-class constructor called: 

  Checkers() { cout << "Checkers()\n"; } 



602 Thinking in C++ www.BruceEckel.com 

  // You must explicitly call the base-class 

  // copy constructor or the default constructor 

  // will be automatically called instead: 

  Checkers(const Checkers& c) : Game(c) { 

    cout << "Checkers(const Checkers& c)\n"; 

  } 

  Checkers& operator=(const Checkers& c) { 

    // You must explicitly call the base-class 

    // version of operator=() or no base-class 

    // assignment will happen: 

    Game::operator=(c); 

    cout << "Checkers::operator=()\n"; 

    return *this; 

  } 

}; 

 

int main() { 

  Chess d1;  // Default constructor 

  Chess d2(d1); // Copy-constructor 

//! Chess d3(1); // Error: no int constructor 

  d1 = d2; // Operator= synthesized 

  f(d1); // Type-conversion IS inherited 

  Game::Other go; 

//!  d1 = go; // Operator= not synthesized  

           // for differing types 

  Checkers c1, c2(c1); 

  c1 = c2; 

} ///:~ 
 

The constructors and the operator= for GameBoard and Game 
announce themselves so you can see when they’re used by the 
compiler. In addition, the operator Other( ) performs automatic 
type conversion from a Game object to an object of the nested class 
Other. The class Chess simply inherits from Game and creates no 
functions (to see how the compiler responds). The function f( ) 
takes an Other object to test the automatic type conversion 
function. 

In main( ), the synthesized default constructor and copy-
constructor for the derived class Chess are called. The Game 
versions of these constructors are called as part of the constructor-
call hierarchy. Even though it looks like inheritance, new 
constructors are actually synthesized by the compiler. As you might 

14: Inheritance & Composition 603 

expect, no constructors with arguments are automatically created 
because that’s too much for the compiler to intuit. 

The operator= is also synthesized as a new function in Chess 
using memberwise assignment (thus, the base-class version is 
called) because that function was not explicitly written in the new 
class. And of course the destructor was automatically synthesized 
by the compiler. 

Because of all these rules about rewriting functions that handle 
object creation, it may seem a little strange at first that the 
automatic type conversion operator is inherited. But it’s not too 
unreasonable – if there are enough pieces in Game to make an 
Other object, those pieces are still there in anything derived from 
Game and the type conversion operator is still valid (even though 
you may in fact want to redefine it). 

operator= is synthesized only for assigning objects of the same 
type. If you want to assign one type to another you must always 
write that operator= yourself. 

If you look more closely at Game, you’ll see that the copy-
constructor and assignment operators have explicit calls to the 
member object copy-constructor and assignment operator. You will 
normally want to do this because otherwise, in the case of the copy-
constructor, the default member object constructor will be used 
instead, and in the case of the assignment operator, no assignment 
at all will be done for the member objects! 

Lastly, look at Checkers, which explicitly writes out the default 
constructor, copy-constructor, and assignment operators. In the 
case of the default constructor, the default base-class constructor is 
automatically called, and that’s typically what you want. But, and 
this is an important point, as soon as you decide to write your own 
copy-constructor and assignment operator, the compiler assumes 
that you know what you’re doing and does not automatically call the 
base-class versions, as it does in the synthesized functions. If you 
want the base class versions called (and you typically do) then you 
must explicitly call them yourself. In the Checkers copy-
constructor, this call appears in the constructor initializer list: 



604 Thinking in C++ www.BruceEckel.com 

Checkers(const Checkers& c) : Game(c) { 
 

In the Checkers assignment operator, the base class call is the first 
line in the function body: 

Game::operator=(c); 
 

These calls should be part of the canonical form that you use 
whenever you inherit a class. 

Inheritance and static member functions 
static member functions act the same as non-static member 
functions: 

1. They inherit into the derived class. 

2. If you redefine a static member, all the other overloaded 
functions in the base class are hidden. 

3. If you change the signature of a function in the base class, all 
the base class versions with that function name are hidden 
(this is really a variation of the previous point). 

However, static member functions cannot be virtual (a topic 
covered thoroughly in Chapter 15). 

Choosing composition vs. inheritance 
Both composition and inheritance place subobjects inside your new 
class. Both use the constructor initializer list to construct these 
subobjects. You may now be wondering what the difference is 
between the two, and when to choose one over the other. 

Composition is generally used when you want the features of an 
existing class inside your new class, but not its interface. That is, 
you embed an object to implement features of your new class, but 
the user of your new class sees the interface you’ve defined rather 
than the interface from the original class. To do this, you follow the 
typical path of embedding private objects of existing classes inside 
your new class. 

14: Inheritance & Composition 605 

Occasionally, however, it makes sense to allow the class user to 
directly access the composition of your new class, that is, to make 
the member objects public. The member objects use access control 
themselves, so this is a safe thing to do and when the user knows 
you’re assembling a bunch of parts, it makes the interface easier to 
understand. A Car class is a good example: 

//: C14:Car.cpp 

// Public composition 

 

class Engine { 

public: 

  void start() const {} 

  void rev() const {} 

  void stop() const {} 

}; 

 

class Wheel { 

public: 

  void inflate(int psi) const {} 

}; 

 

class Window { 

public: 

  void rollup() const {} 

  void rolldown() const {} 

}; 

 

class Door { 

public: 

  Window window; 

  void open() const {} 

  void close() const {} 

}; 

 

class Car { 

public: 

  Engine engine; 

  Wheel wheel[4]; 

  Door left, right; // 2-door 

}; 

 

int main() { 

  Car car; 



606 Thinking in C++ www.BruceEckel.com 

  car.left.window.rollup(); 

  car.wheel[0].inflate(72); 

} ///:~ 
 

Because the composition of a Car is part of the analysis of the 
problem (and not simply part of the underlying design), making the 
members public assists the client programmer’s understanding of 
how to use the class and requires less code complexity for the 
creator of the class. 

With a little thought, you’ll also see that it would make no sense to 
compose a Car using a “vehicle” object – a car doesn’t contain a 
vehicle, it is a vehicle. The is-a relationship is expressed with 
inheritance, and the has-a relationship is expressed with 
composition. 

Subtyping 
Now suppose you want to create a type of ifstream object that not 
only opens a file but also keeps track of the name of the file. You can 
use composition and embed both an ifstream and a string into 
the new class: 

//: C14:FName1.cpp 

// An fstream with a file name 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class FName1 { 

  ifstream file; 

  string fileName; 

  bool named; 

public: 

  FName1() : named(false) {} 

  FName1(const string& fname)  

    : fileName(fname), file(fname.c_str()) { 

    assure(file, fileName); 

    named = true; 

  } 

  string name() const { return fileName; } 

14: Inheritance & Composition 607 

  void name(const string& newName) { 

    if(named) return; // Don't overwrite 

    fileName = newName; 

    named = true; 

  } 

  operator ifstream&() { return file; } 

}; 

 

int main() { 

  FName1 file("FName1.cpp"); 

  cout << file.name() << endl; 

  // Error: close() not a member: 

//!  file.close(); 

} ///:~ 
 

There’s a problem here, however. An attempt is made to allow the 
use of the FName1 object anywhere an ifstream object is used by 
including an automatic type conversion operator from FName1 to 
an ifstream&. But in main, the line 

file.close(); 
 

will not compile because automatic type conversion happens only in 
function calls, not during member selection. So this approach won’t 
work. 

A second approach is to add the definition of close( ) to FName1: 

void close() { file.close(); } 
 

This will work if there are only a few functions you want to bring 
through from the ifstream class. In that case you’re only using part 
of the class, and composition is appropriate. 

But what if you want everything in the class to come through? This 
is called subtyping because you’re making a new type from an 
existing type, and you want your new type to have exactly the same 
interface as the existing type (plus any other member functions you 
want to add), so you can use it everywhere you’d use the existing 
type. This is where inheritance is essential. You can see that 
subtyping solves the problem in the preceding example perfectly: 

//: C14:FName2.cpp 



608 Thinking in C++ www.BruceEckel.com 

// Subtyping solves the problem 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class FName2 : public ifstream { 

  string fileName; 

  bool named; 

public: 

  FName2() : named(false) {} 

  FName2(const string& fname) 

    : ifstream(fname.c_str()), fileName(fname) { 

    assure(*this, fileName); 

    named = true; 

  } 

  string name() const { return fileName; } 

  void name(const string& newName) { 

    if(named) return; // Don't overwrite 

    fileName = newName; 

    named = true; 

  } 

}; 

 

int main() { 

  FName2 file("FName2.cpp"); 

  assure(file, "FName2.cpp"); 

  cout << "name: " << file.name() << endl; 

  string s; 

  getline(file, s); // These work too! 

  file.seekg(-200, ios::end); 

  file.close(); 

} ///:~ 
 

Now any member function available for an ifstream object is 
available for an FName2 object. You can also see that non-member 
functions like getline( ) that expect an ifstream can also work 
with an FName2. That’s because an FName2 is a type of 
ifstream; it doesn’t simply contain one. This is a very important 
issue that will be explored at the end of this chapter and in the next 
one. 

14: Inheritance & Composition 609 

private inheritance 
You can inherit a base class privately by leaving off the public in 
the base-class list, or by explicitly saying private (probably a better 
policy because it is clear to the user that you mean it). When you 
inherit privately, you’re “implementing in terms of;” that is, you’re 
creating a new class that has all of the data and functionality of the 
base class, but that functionality is hidden, so it’s only part of the 
underlying implementation. The class user has no access to the 
underlying functionality, and an object cannot be treated as a 
instance of the base class (as it was in FName2.cpp). 

You may wonder what the purpose of private inheritance is, 
because the alternative of using composition to create a private 
object in the new class seems more appropriate. private 
inheritance is included in the language for completeness, but if for 
no other reason than to reduce confusion, you’ll usually want to use 
composition rather than private inheritance. However, there may 
occasionally be situations where you want to produce part of the 
same interface as the base class and disallow the treatment of the 
object as if it were a base-class object. private inheritance provides 
this ability. 

Publicizing privately inherited members 
When you inherit privately, all the public members of the base 
class become private. If you want any of them to be visible, just say 
their names (no arguments or return values) in the public section 
of the derived class: 

//: C14:PrivateInheritance.cpp 

class Pet { 

public: 

  char eat() const { return 'a'; } 

  int speak() const { return 2; } 

  float sleep() const { return 3.0; } 

  float sleep(int) const { return 4.0; } 

}; 

 

class Goldfish : Pet { // Private inheritance 

public: 

  Pet::eat; // Name publicizes member 

  Pet::sleep; // Both overloaded members exposed 



610 Thinking in C++ www.BruceEckel.com 

}; 

 

int main() { 

  Goldfish bob; 

  bob.eat(); 

  bob.sleep(); 

  bob.sleep(1); 

//! bob.speak();// Error: private member function 

} ///:~ 
 

Thus, private inheritance is useful if you want to hide part of the 
functionality of the base class. 

Notice that giving the name of an overloaded function exposes all 
the versions of the overloaded function in the base class. 

You should think carefully before using private inheritance instead 
of composition; private inheritance has particular complications 
when combined with runtime type identification (this is the topic of 
a chapter in Volume 2 of this book, downloadable from 
www.BruceEckel.com). 

protected 
Now that you’ve been introduced to inheritance, the keyword 
protected finally has meaning. In an ideal world, private 
members would always be hard-and-fast private, but in real 
projects there are times when you want to make something hidden 
from the world at large and yet allow access for members of derived 
classes. The protected keyword is a nod to pragmatism; it says, 
“This is private as far as the class user is concerned, but available 
to anyone who inherits from this class.” 

The best approach is to leave the data members private – you 
should always preserve your right to change the underlying 
implementation. You can then allow controlled access to inheritors 
of your class through protected member functions: 

//: C14:Protected.cpp 

// The protected keyword 

#include <fstream> 

14: Inheritance & Composition 611 

using namespace std; 

 

class Base { 

  int i; 

protected: 

  int read() const { return i; } 

  void set(int ii) { i = ii; } 

public: 

  Base(int ii = 0) : i(ii) {} 

  int value(int m) const { return m*i; } 

}; 

 

class Derived : public Base { 

  int j; 

public: 

  Derived(int jj = 0) : j(jj) {} 

  void change(int x) { set(x); } 

};  

 

int main() { 

  Derived d; 

  d.change(10); 

} ///:~ 
 

You will find examples of the need for protected in examples later 
in this book, and in Volume 2. 

protected inheritance 
When you’re inheriting, the base class defaults to private, which 
means that all of the public member functions are private to the 
user of the new class. Normally, you’ll make the inheritance public 
so the interface of the base class is also the interface of the derived 
class. However, you can also use the protected keyword during 
inheritance. 

Protected derivation means “implemented-in-terms-of” to other 
classes but “is-a” for derived classes and friends. It’s something you 
don’t use very often, but it’s in the language for completeness. 



612 Thinking in C++ www.BruceEckel.com 

Operator overloading & inheritance 
Except for the assignment operator, operators are automatically 
inherited into a derived class. This can be demonstrated by 
inheriting from C12:Byte.h: 

//: C14:OperatorInheritance.cpp 

// Inheriting overloaded operators 

#include "../C12/Byte.h" 

#include <fstream> 

using namespace std; 

ofstream out("ByteTest.out"); 

 

class Byte2 : public Byte { 

public: 

  // Constructors don't inherit: 

  Byte2(unsigned char bb = 0) : Byte(bb) {}   

  // operator= does not inherit, but  

  // is synthesized for memberwise assignment. 

  // However, only the SameType = SameType 

  // operator= is synthesized, so you have to 

  // make the others explicitly: 

  Byte2& operator=(const Byte& right) { 

    Byte::operator=(right); 

    return *this; 

  } 

  Byte2& operator=(int i) {  

    Byte::operator=(i); 

    return *this; 

  } 

}; 

 

// Similar test function as in C12:ByteTest.cpp: 

void k(Byte2& b1, Byte2& b2) { 

  b1 = b1 * b2 + b2 % b1; 

 

  #define TRY2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    (b1 OP b2).print(out); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 

14: Inheritance & Composition 613 

  TRY2(+) TRY2(-) TRY2(*) TRY2(/) 

  TRY2(%) TRY2(^) TRY2(&) TRY2(|) 

  TRY2(<<) TRY2(>>) TRY2(+=) TRY2(-=) 

  TRY2(*=) TRY2(/=) TRY2(%=) TRY2(^=) 

  TRY2(&=) TRY2(|=) TRY2(>>=) TRY2(<<=) 

  TRY2(=) // Assignment operator 

 

  // Conditionals: 

  #define TRYC2(OP) \ 

    out << "b1 = "; b1.print(out); \ 

    out << ", b2 = "; b2.print(out); \ 

    out << ";  b1 " #OP " b2 produces "; \ 

    out << (b1 OP b2); \ 

    out << endl; 

 

  b1 = 9; b2 = 47; 

  TRYC2(<) TRYC2(>) TRYC2(==) TRYC2(!=) TRYC2(<=) 

  TRYC2(>=) TRYC2(&&) TRYC2(||) 

 

  // Chained assignment: 

  Byte2 b3 = 92; 

  b1 = b2 = b3; 

} 

 

int main() { 

  out << "member functions:" << endl; 

  Byte2 b1(47), b2(9); 

  k(b1, b2); 

} ///:~ 
 

The test code is identical to that in C12:ByteTest.cpp except that 
Byte2 is used instead of Byte. This way all the operators are 
verified to work with Byte2 via inheritance. 

When you examine the class Byte2, you’ll see that the constructor 
must be explicitly defined, and that only the operator= that 
assigns a Byte2 to a Byte2 is synthesized; any other assignment 
operators that you need you’ll have to synthesize on your own. 

Multiple inheritance 
You can inherit from one class, so it would seem to make sense to 
inherit from more than one class at a time. Indeed you can, but 



614 Thinking in C++ www.BruceEckel.com 

whether it makes sense as part of a design is a subject of continuing 
debate. One thing is generally agreed upon: You shouldn’t try this 
until you’ve been programming quite a while and understand the 
language thoroughly. By that time, you’ll probably realize that no 
matter how much you think you absolutely must use multiple 
inheritance, you can almost always get away with single inheritance.  

Initially, multiple inheritance seems simple enough: You add more 
classes in the base-class list during inheritance, separated by 
commas. However, multiple inheritance introduces a number of 
possibilities for ambiguity, which is why a chapter in Volume 2 is 
devoted to the subject. 

Incremental development 
One of the advantages of inheritance and composition is that these 
support incremental development by allowing you to introduce new 
code without causing bugs in existing code. If bugs do appear, they 
are isolated within the new code. By inheriting from (or composing 
with) an existing, functional class and adding data members and 
member functions (and redefining existing member functions 
during inheritance) you leave the existing code – that someone else 
may still be using – untouched and unbugged. If a bug happens, 
you know it’s in your new code, which is much shorter and easier to 
read than if you had modified the body of existing code. 

It’s rather amazing how cleanly the classes are separated. You don’t 
even need the source code for the member functions in order to 
reuse the code, just the header file describing the class and the 
object file or library file with the compiled member functions. (This 
is true for both inheritance and composition.) 

It’s important to realize that program development is an 
incremental process, just like human learning. You can do as much 
analysis as you want, but you still won’t know all the answers when 
you set out on a project. You’ll have much more success – and more 
immediate feedback – if you start out to “grow” your project as an 

14: Inheritance & Composition 615 

organic, evolutionary creature, rather than constructing it all at 
once like a glass-box skyscraper2. 

Although inheritance for experimentation is a useful technique, at 
some point after things stabilize you need to take a new look at your 
class hierarchy with an eye to collapsing it into a sensible structure3. 
Remember that underneath it all, inheritance is meant to express a 
relationship that says, “This new class is a type of that old class.” 
Your program should not be concerned with pushing bits around, 
but instead with creating and manipulating objects of various types 
to express a model in the terms given you from the problem space. 

Upcasting 
Earlier in the chapter, you saw how an object of a class derived from 
ifstream has all the characteristics and behaviors of an ifstream 
object. In FName2.cpp, any ifstream member function could be 
called for an FName2 object. 

The most important aspect of inheritance is not that it provides 
member functions for the new class, however. It’s the relationship 
expressed between the new class and the base class. This 
relationship can be summarized by saying, “The new class is a type 
of the existing class.”  

This description is not just a fanciful way of explaining inheritance 
– it’s supported directly by the compiler. As an example, consider a 
base class called Instrument that represents musical instruments 
and a derived class called Wind. Because inheritance means that 
all the functions in the base class are also available in the derived 
class, any message you can send to the base class can also be sent to 
the derived class. So if the Instrument class has a play( ) member 
function, so will Wind instruments. This means we can accurately 

                                                   
2 To learn more about this idea, see Extreme Programming Explained, by Kent Beck 
(Addison-Wesley 2000). 
3 See Refactoring: Improving the Design of Existing Code by Martin Fowler 
(Addison-Wesley 1999). 



616 Thinking in C++ www.BruceEckel.com 

say that a Wind object is also a type of Instrument. The following 
example shows how the compiler supports this notion: 

//: C14:Instrument.cpp 

// Inheritance & upcasting 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  void play(note) const {} 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument {}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

What’s interesting in this example is the tune( ) function, which 
accepts an Instrument reference. However, in main( ) the 
tune( ) function is called by handing it a reference to a Wind 
object. Given that C++ is very particular about type checking, it 
seems strange that a function that accepts one type will readily 
accept another type, until you realize that a Wind object is also an 
Instrument object, and there’s no function that tune( ) could call 
for an Instrument that isn’t also in Wind (this is what 
inheritance guarantees). Inside tune( ), the code works for 
Instrument and anything derived from Instrument, and the act 
of converting a Wind reference or pointer into an Instrument 
reference or pointer is called upcasting. 

14: Inheritance & Composition 617 

Why “upcasting?” 
The reason for the term is historical and is based on the way class 
inheritance diagrams have traditionally been drawn: with the root 
at the top of the page, growing downward. (Of course, you can draw 
your diagrams any way you find helpful.) The inheritance diagram 
for Instrument.cpp is then: 

Instrument

Wind

 
Casting from derived to base moves up on the inheritance diagram, 
so it’s commonly referred to as upcasting. Upcasting is always safe 
because you’re going from a more specific type to a more general 
type – the only thing that can occur to the class interface is that it 
can lose member functions, not gain them. This is why the compiler 
allows upcasting without any explicit casts or other special notation. 

Upcasting and the copy-constructor 
If you allow the compiler to synthesize a copy-constructor for a 
derived class, it will automatically call the base-class copy-
constructor, and then the copy-constructors for all the member 
objects (or perform a bitcopy on built-in types) so you’ll get the 
right behavior: 

//: C14:CopyConstructor.cpp 

// Correctly creating the copy-constructor 

#include <iostream> 

using namespace std; 

 

class Parent { 

  int i; 

public: 

  Parent(int ii) : i(ii) { 

    cout << "Parent(int ii)\n"; 

  } 

  Parent(const Parent& b) : i(b.i) { 

    cout << "Parent(const Parent&)\n"; 



618 Thinking in C++ www.BruceEckel.com 

  } 

  Parent() : i(0) { cout << "Parent()\n"; } 

  friend ostream& 

    operator<<(ostream& os, const Parent& b) { 

    return os << "Parent: " << b.i << endl; 

  } 

}; 

 

class Member { 

  int i; 

public: 

  Member(int ii) : i(ii) { 

    cout << "Member(int ii)\n"; 

  } 

  Member(const Member& m) : i(m.i) { 

    cout << "Member(const Member&)\n"; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Member& m) { 

    return os << "Member: " << m.i << endl; 

  } 

}; 

 

class Child : public Parent { 

  int i; 

  Member m; 

public: 

  Child(int ii) : Parent(ii), i(ii), m(ii) { 

    cout << "Child(int ii)\n"; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Child& c){ 

    return os << (Parent&)c << c.m 

              << "Child: " << c.i << endl; 

  } 

}; 

 

int main() { 

  Child c(2); 

  cout << "calling copy-constructor: " << endl; 

  Child c2 = c; // Calls copy-constructor 

  cout << "values in c2:\n" << c2; 

} ///:~ 
 

14: Inheritance & Composition 619 

The operator<< for Child is interesting because of the way that it 
calls the operator<< for the Parent part within it: by casting the 
Child object to a Parent& (if you cast to a base-class object 
instead of a reference you will usually get undesirable results): 

return os << (Parent&)c << c.m 
 

Since the compiler then sees it as a Parent, it calls the Parent 
version of operator<<. 

You can see that Child has no explicitly-defined copy-constructor. 
The compiler then synthesizes the copy-constructor (since that is 
one of the four functions it will synthesize, along with the default 
constructor – if you don’t create any constructors – the operator= 
and the destructor) by calling the Parent copy-constructor and the 
Member copy-constructor. This is shown in the output  

Parent(int ii) 

Member(int ii) 

Child(int ii) 

calling copy-constructor: 

Parent(const Parent&) 

Member(const Member&) 

values in c2: 

Parent: 2 

Member: 2 

Child: 2 
 

However, if you try to write your own copy-constructor for Child 
and you make an innocent mistake and do it badly: 

Child(const Child& c) : i(c.i), m(c.m) {} 
 

then the default constructor will automatically be called for the 
base-class part of Child, since that’s what the compiler falls back 
on when it has no other choice of constructor to call (remember that 
some constructor must always be called for every object, regardless 
of whether it’s a subobject of another class). The output will then 
be: 

Parent(int ii) 

Member(int ii) 

Child(int ii) 



620 Thinking in C++ www.BruceEckel.com 

calling copy-constructor: 

Parent() 

Member(const Member&) 

values in c2: 

Parent: 0 

Member: 2 

Child: 2 
 

This is probably not what you expect, since generally you’ll want the 
base-class portion to be copied from the existing object to the new 
object as part of copy-construction. 

To repair the problem you must remember to properly call the base-
class copy-constructor (as the compiler does) whenever you write 
your own copy-constructor. This can seem a little strange-looking at 
first but it’s another example of upcasting: 

  Child(const Child& c) 

    : Parent(c), i(c.i), m(c.m) { 

    cout << "Child(Child&)\n"; 

  } 
 

The strange part is where the Parent copy-constructor is called: 
Parent(c). What does it mean to pass a Child object to a Parent 
constructor? But Child is inherited from Parent, so a Child 
reference is a Parent reference. The base-class copy-constructor 
call upcasts a reference to Child to a reference to Parent and uses 
it to perform the copy-construction. When you write your own copy 
constructors you’ll almost always want to do the same thing. 

Composition vs. inheritance (revisited) 
One of the clearest ways to determine whether you should be using 
composition or inheritance is by asking whether you’ll ever need to 
upcast from your new class. Earlier in this chapter, the Stack class 
was specialized using inheritance. However, chances are the 
StringStack objects will be used only as string containers and 
never upcast, so a more appropriate alternative is composition: 

//: C14:InheritStack2.cpp 

// Composition vs. inheritance 

#include "../C09/Stack4.h" 

14: Inheritance & Composition 621 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

class StringStack { 

  Stack stack; // Embed instead of inherit 

public: 

  void push(string* str) { 

    stack.push(str); 

  } 

  string* peek() const { 

    return (string*)stack.peek(); 

  } 

  string* pop() { 

    return (string*)stack.pop(); 

  } 

}; 

 

int main() { 

  ifstream in("InheritStack2.cpp"); 

  assure(in, "InheritStack2.cpp"); 

  string line; 

  StringStack textlines; 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  string* s; 

  while((s = textlines.pop()) != 0) // No cast! 

    cout << *s << endl; 

} ///:~ 
 

The file is identical to InheritStack.cpp, except that a Stack 
object is embedded in StringStack, and member functions are 
called for the embedded object. There’s still no time or space 
overhead because the subobject takes up the same amount of space, 
and all the additional type checking happens at compile time. 

Although it tends to be more confusing, you could also use private 
inheritance to express “implemented in terms of.” This would also 
solve the problem adequately. One place it becomes important, 
however, is when multiple inheritance might be warranted. In that 
case, if you see a design in which composition can be used instead 



622 Thinking in C++ www.BruceEckel.com 

of inheritance, you may be able to eliminate the need for multiple 
inheritance. 

Pointer & reference upcasting 
In Instrument.cpp, the upcasting occurs during the function call 
– a Wind object outside the function has its reference taken and 
becomes an Instrument reference inside the function. Upcasting 
can also occur during a simple assignment to a pointer or reference: 

Wind w; 

Instrument* ip = &w; // Upcast 

Instrument& ir = w; // Upcast 
 

Like the function call, neither of these cases requires an explicit 
cast. 

A crisis 
Of course, any upcast loses type information about an object. If you 
say 

Wind w; 

Instrument* ip = &w; 
 

the compiler can deal with ip only as an Instrument pointer and 
nothing else. That is, it cannot know that ip actually happens to 
point to a Wind object. So when you call the play( ) member 
function by saying  

ip->play(middleC); 
 

the compiler can know only that it’s calling play( ) for an 
Instrument pointer, and call the base-class version of 
Instrument::play( ) instead of what it should do, which is call 
Wind::play( ). Thus, you won’t get the correct behavior. 

This is a significant problem; it is solved in Chapter 15 by 
introducing the third cornerstone of object-oriented programming: 
polymorphism (implemented in C++ with virtual functions). 

14: Inheritance & Composition 623 

Summary 
Both inheritance and composition allow you to create a new type 
from existing types, and both embed subobjects of the existing 
types inside the new type. Typically, however, you use composition 
to reuse existing types as part of the underlying implementation of 
the new type and inheritance when you want to force the new type 
to be the same type as the base class (type equivalence guarantees 
interface equivalence). Since the derived class has the base-class 
interface, it can be upcast to the base, which is critical for 
polymorphism as you’ll see in Chapter 15. 

Although code reuse through composition and inheritance is very 
helpful for rapid project development, you’ll generally want to 
redesign your class hierarchy before allowing other programmers to 
become dependent on it. Your goal is a hierarchy in which each 
class has a specific use and is neither too big (encompassing so 
much functionality that it’s unwieldy to reuse) nor annoyingly small 
(you can’t use it by itself or without adding functionality). 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Modify Car.cpp so that it also inherits from a class called 
Vehicle, placing appropriate member functions in 
Vehicle (that is, make up some member functions). Add 
a nondefault constructor to Vehicle, which you must call 
inside Car’s constructor. 

2.  Create two classes, A and B, with default constructors 
that announce themselves. Inherit a new class called C 
from A, and create a member object of B in C, but do not 
create a constructor for C. Create an object of class C and 
observe the results. 

3.  Create a three-level hierarchy of classes with default 
constructors, along with destructors, both of which 
announce themselves to cout. Verify that for an object of 
the most derived type, all three constructors and 



624 Thinking in C++ www.BruceEckel.com 

destructors are automatically called. Explain the order in 
which the calls are made. 

4.  Modify Combined.cpp to add another level of 
inheritance and a new member object. Add code to show 
when the constructors and destructors are being called. 

5.  In Combined.cpp, create a class D that inherits from B 
and has a member object of class C. Add code to show 
when the constructors and destructors are being called. 

6.  Modify Order.cpp to add another level of inheritance 
Derived3 with member objects of class Member4 and 
Member5. Trace the output of the program. 

7.  In NameHiding.cpp, verify that in Derived2, 
Derived3, and Derived4, none of the base-class 
versions of f( ) are available. 

8.  Modify NameHiding.cpp by adding three overloaded 
functions named h( ) to Base, and show that redefining 
one of them in a derived class hides the others. 

9.  Inherit a class StringVector from vector<void*> and 
redefine the push_back( ) and operator[] member 
functions to accept and produce string*. What happens 
if you try to push_back( ) a void*? 

10.  Write a class containing a long and use the psuedo-
constructor call syntax in the constructor to initialize the 
long. 

11.  Create a class called Asteroid. Use inheritance to 
specialize the PStash class in Chapter 13 (PStash.h & 
PStash.cpp) so that it accepts and returns Asteroid 
pointers. Also modify PStashTest.cpp to test your 
classes. Change the class so PStash is a member object. 

12.  Repeat Exercise 11 with a vector instead of a PStash. 

13.  In SynthesizedFunctions.cpp, modify Chess to give 
it a default constructor, copy-constructor, and 
assignment operator. Demonstrate that you’ve written 
these correctly. 

14.  Create two classes called Traveler and Pager without 
default constructors, but with constructors that take an 
argument of type string, which they simply copy to an 
internal string variable. For each class, write the correct 

14: Inheritance & Composition 625 

copy-constructor and assignment operator. Now inherit a 
class BusinessTraveler from Traveler and give it a 
member object of type Pager. Write the correct default 
constructor, a constructor that takes a string argument, 
a copy-constructor, and an assignment operator. 

15.  Create a class with two static member functions. Inherit 
from this class and redefine one of the member functions. 
Show that the other is hidden in the derived class. 

16.  Look up more of the member functions for ifstream. In 
FName2.cpp, try them out on the file object. 

17.  Use private and protected inheritance to create two 
new classes from a base class. Then attempt to upcast 
objects of the derived class to the base class. Explain what 
happens. 

18.  In Protected.cpp, add a member function in Derived 
that calls the protected Base member read( ). 

19.  Change Protected.cpp so that Derived is using 
protected inheritance. See if you can call value( ) for a 
Derived object. 

20.  Create a class called SpaceShip with a fly( ) method. 
Inherit Shuttle from SpaceShip and add a land( ) 
method. Create a new Shuttle, upcast by pointer or 
reference to a SpaceShip, and try to call the land( ) 
method. Explain the results. 

21.  Modify Instrument.cpp to add a prepare( ) method 
to Instrument. Call prepare( ) inside tune( ). 

22.  Modify Instrument.cpp so that play( ) prints a 
message to cout, and Wind redefines play( ) to print a 
different message to cout. Run the program and explain 
why you probably wouldn’t want this behavior. Now put 
the virtual keyword (which you will learn about in 
Chapter 15) in front of the play( ) declaration in 
Instrument and observe the change in the behavior. 

23.  In CopyConstructor.cpp, inherit a new class from 
Child and give it a Member m. Write a proper 
constructor, copy-constructor, operator=, and 
operator<< for ostreams, and test the class in main( ). 



626 Thinking in C++ www.BruceEckel.com 

24.  Take the example CopyConstructor.cpp and modify it 
by adding your own copy-constructor to Child without 
calling the base-class copy-constructor and see what 
happens. Fix the problem by making a proper explicit call 
to the base-class copy constructor in the constructor-
initializer list of the Child copy-constructor. 

25.  Modify InheritStack2.cpp to use a vector<string> 
instead of a Stack. 

26.  Create a class Rock with a default constructor, a copy-
constructor, an assignment operator, and a destructor, all 
of which announce to cout that they’ve been called. In 
main( ), create a vector<Rock> (that is, hold Rock 
objects by value) and add some Rocks. Run the program 
and explain the output you get. Note whether the 
destructors are called for the Rock objects in the vector. 
Now repeat the exercise with a vector<Rock*>. Is it 
possible to create a vector<Rock&>? 

27.  This exercise creates the design pattern called proxy. 
Start with a base class Subject and give it three 
functions: f( ), g( ), and h( ). Now inherit a class Proxy 
and two classes Implementation1 and 
Implementation2 from Subject. Proxy should 
contain a pointer to a Subject, and all the member 
functions for Proxy should just turn around and make 
the same calls through the Subject pointer. The Proxy 
constructor takes a pointer to a Subject that is installed 
in the Proxy (usually by the constructor). In main( ), 
create two different Proxy objects that use the two 
different implementations. Now modify Proxy so that 
you can dynamically change implementations. 

28.  Modify ArrayOperatorNew.cpp from Chapter 13 to 
show that, if you inherit from Widget, the allocation still 
works correctly. Explain why inheritance in Framis.cpp 
from Chapter 13 would not work correctly. 

29.  Modify Framis.cpp from Chapter 13 by inheriting from 
Framis and creating new versions of new and delete 
for your derived class. Demonstrate that they work 
correctly. 

  627 

 

 

 

 

 

 

 

15: Polymorphism &  

Virtual Functions 
Polymorphism (implemented in C++ with virtual 

functions) is the third essential feature of an object-

oriented programming language, after data abstraction 

and inheritance.  



628 Thinking in C++ www.BruceEckel.com 

It provides another dimension of separation of interface from 
implementation, to decouple what from how. Polymorphism allows 
improved code organization and readability as well as the creation 
of extensible programs that can be “grown” not only during the 
original creation of the project, but also when new features are 
desired. 

Encapsulation creates new data types by combining characteristics 
and behaviors. Access control separates the interface from the 
implementation by making the details private. This kind of 
mechanical organization makes ready sense to someone with a 
procedural programming background. But virtual functions deal 
with decoupling in terms of types. In Chapter 14, you saw how 
inheritance allows the treatment of an object as its own type or its 
base type. This ability is critical because it allows many types 
(derived from the same base type) to be treated as if they were one 
type, and a single piece of code to work on all those different types 
equally. The virtual function allows one type to express its 
distinction from another, similar type, as long as they’re both 
derived from the same base type. This distinction is expressed 
through differences in behavior of the functions that you can call 
through the base class. 

In this chapter, you’ll learn about virtual functions, starting from 
the basics with simple examples that strip away everything but the 
“virtualness” of the program. 

Evolution of C++ programmers 
C programmers seem to acquire C++ in three steps. First, as simply 
a “better C,” because C++ forces you to declare all functions before 
using them and is much pickier about how variables are used. You 
can often find the errors in a C program simply by compiling it with 
a C++ compiler. 

The second step is “object-based” C++. This means that you easily 
see the code organization benefits of grouping a data structure 
together with the functions that act upon it, the value of 
constructors and destructors, and perhaps some simple inheritance. 

15: Polymorphism & Virtual Functions 629 

Most programmers who have been working with C for a while 
quickly see the usefulness of this because, whenever they create a 
library, this is exactly what they try to do. With C++, you have the 
aid of the compiler. 

You can get stuck at the object-based level because you can quickly 
get there and you get a lot of benefit without much mental effort. 
It’s also easy to feel like you’re creating data types – you make 
classes and objects, you send messages to those objects, and 
everything is nice and neat. 

But don’t be fooled. If you stop here, you’re missing out on the 
greatest part of the language, which is the jump to true object-
oriented programming. You can do this only with virtual functions. 

Virtual functions enhance the concept of type instead of just 
encapsulating code inside structures and behind walls, so they are 
without a doubt the most difficult concept for the new C++ 
programmer to fathom. However, they’re also the turning point in 
the understanding of object-oriented programming. If you don’t use 
virtual functions, you don’t understand OOP yet. 

Because the virtual function is intimately bound with the concept of 
type, and type is at the core of object-oriented programming, there 
is no analog to the virtual function in a traditional procedural 
language. As a procedural programmer, you have no referent with 
which to think about virtual functions, as you do with almost every 
other feature in the language. Features in a procedural language can 
be understood on an algorithmic level, but virtual functions can be 
understood only from a design viewpoint. 

Upcasting 
In Chapter 14 you saw how an object can be used as its own type or 
as an object of its base type. In addition, it can be manipulated 
through an address of the base type. Taking the address of an object 
(either a pointer or a reference) and treating it as the address of the 
base type is called upcasting because of the way inheritance trees 
are drawn with the base class at the top. 



630 Thinking in C++ www.BruceEckel.com 

You also saw a problem arise, which is embodied in the following 
code: 

//: C15:Instrument2.cpp 

// Inheritance & upcasting 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Eflat }; // Etc. 

 

class Instrument { 

public: 

  void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument { 

public: 

  // Redefine interface function: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

The function tune( ) accepts (by reference) an Instrument, but 
also without complaint anything derived from Instrument. In 
main( ), you can see this happening as a Wind object is passed to 
tune( ), with no cast necessary. This is acceptable; the interface in 
Instrument must exist in Wind, because Wind is publicly 
inherited from Instrument. Upcasting from Wind to 

15: Polymorphism & Virtual Functions 631 

Instrument may “narrow” that interface, but never less than the 
full interface to Instrument. 

The same arguments are true when dealing with pointers; the only 
difference is that the user must explicitly take the addresses of 
objects as they are passed into the function. 

The problem 
The problem with Instrument2.cpp can be seen by running the 
program. The output is Instrument::play. This is clearly not the 
desired output, because you happen to know that the object is 
actually a Wind and not just an Instrument. The call should 
produce Wind::play. For that matter, any object of a class derived 
from Instrument should have its version of play( ) used, 
regardless of the situation. 

The behavior of Instrument2.cpp is not surprising, given C’s 
approach to functions. To understand the issues, you need to be 
aware of the concept of binding. 

Function call binding 
Connecting a function call to a function body is called binding. 
When binding is performed before the program is run (by the 
compiler and linker), it’s called early binding. You may not have 
heard the term before because it’s never been an option with 
procedural languages: C compilers have only one kind of function 
call, and that’s early binding. 

The problem in the program above is caused by early binding 
because the compiler cannot know the correct function to call when 
it has only an Instrument address. 

The solution is called late binding, which means the binding occurs 
at runtime, based on the type of the object. Late binding is also 
called dynamic binding or runtime binding. When a language 
implements late binding, there must be some mechanism to 
determine the type of the object at runtime and call the appropriate 



632 Thinking in C++ www.BruceEckel.com 

member function. In the case of a compiled language, the compiler 
still doesn’t know the actual object type, but it inserts code that 
finds out and calls the correct function body. The late-binding 
mechanism varies from language to language, but you can imagine 
that some sort of type information must be installed in the objects. 
You’ll see how this works later. 

virtual functions 
To cause late binding to occur for a particular function, C++ 
requires that you use the virtual keyword when declaring the 
function in the base class. Late binding occurs only with virtual 
functions, and only when you’re using an address of the base class 
where those virtual functions exist, although they may also be 
defined in an earlier base class. 

To create a member function as virtual, you simply precede the 
declaration of the function with the keyword virtual. Only the 
declaration needs the virtual keyword, not the definition. If a 
function is declared as virtual in the base class, it is virtual in all 
the derived classes. The redefinition of a virtual function in a 
derived class is usually called overriding. 

Notice that you are only required to declare a function virtual in 
the base class. All derived-class functions that match the signature 
of the base-class declaration will be called using the virtual 
mechanism. You can use the virtual keyword in the derived-class 
declarations (it does no harm to do so), but it is redundant and can 
be confusing.  

To get the desired behavior from Instrument2.cpp, simply add 
the virtual keyword in the base class before play( ): 

//: C15:Instrument3.cpp 

// Late binding with the virtual keyword 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

15: Polymorphism & Virtual Functions 633 

public: 

  virtual void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

}; 

 

// Wind objects are Instruments 

// because they have the same interface: 

class Wind : public Instrument { 

public: 

  // Override interface function: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

}; 

 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

int main() { 

  Wind flute; 

  tune(flute); // Upcasting 

} ///:~ 
 

This file is identical to Instrument2.cpp except for the addition of 
the virtual keyword, and yet the behavior is significantly different: 
Now the output is Wind::play. 

Extensibility 
With play( ) defined as virtual in the base class, you can add as 
many new types as you want without changing the tune( ) 
function. In a well-designed OOP program, most or all of your 
functions will follow the model of tune( ) and communicate only 
with the base-class interface. Such a program is extensible because 
you can add new functionality by inheriting new data types from the 
common base class. The functions that manipulate the base-class 
interface will not need to be changed at all to accommodate the new 
classes. 



634 Thinking in C++ www.BruceEckel.com 

Here’s the instrument example with more virtual functions and a 
number of new classes, all of which work correctly with the old, 
unchanged tune( ) function: 

//: C15:Instrument4.cpp 

// Extensibility in OOP 

#include <iostream> 

using namespace std; 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  virtual void play(note) const { 

    cout << "Instrument::play" << endl; 

  } 

  virtual char* what() const { 

    return "Instrument"; 

  } 

  // Assume this will modify the object: 

  virtual void adjust(int) {} 

}; 

 

class Wind : public Instrument { 

public: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

  char* what() const { return "Wind"; } 

  void adjust(int) {} 

}; 

 

class Percussion : public Instrument { 

public: 

  void play(note) const { 

    cout << "Percussion::play" << endl; 

  } 

  char* what() const { return "Percussion"; } 

  void adjust(int) {} 

}; 

 

class Stringed : public Instrument { 

public: 

  void play(note) const { 

    cout << "Stringed::play" << endl; 

15: Polymorphism & Virtual Functions 635 

  } 

  char* what() const { return "Stringed"; } 

  void adjust(int) {} 

}; 

 

class Brass : public Wind { 

public: 

  void play(note) const { 

    cout << "Brass::play" << endl; 

  } 

  char* what() const { return "Brass"; } 

}; 

 

class Woodwind : public Wind { 

public: 

  void play(note) const { 

    cout << "Woodwind::play" << endl; 

  } 

  char* what() const { return "Woodwind"; } 

}; 

 

// Identical function from before: 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

// New function: 

void f(Instrument& i) { i.adjust(1); } 

 

// Upcasting during array initialization: 

Instrument* A[] = { 

  new Wind, 

  new Percussion, 

  new Stringed, 

  new Brass, 

}; 

 

int main() { 

  Wind flute; 

  Percussion drum; 

  Stringed violin; 

  Brass flugelhorn; 

  Woodwind recorder; 

  tune(flute); 



636 Thinking in C++ www.BruceEckel.com 

  tune(drum); 

  tune(violin); 

  tune(flugelhorn); 

  tune(recorder); 

  f(flugelhorn); 

} ///:~ 
 

You can see that another inheritance level has been added beneath 
Wind, but the virtual mechanism works correctly no matter how 
many levels there are. The adjust( ) function is not overridden for 
Brass and Woodwind. When this happens, the “closest” 
definition in the inheritance hierarchy is automatically used – the 
compiler guarantees there’s always some definition for a virtual 
function, so you’ll never end up with a call that doesn’t bind to a 
function body. (That would be disastrous.) 

The array A[ ] contains pointers to the base class Instrument, so 
upcasting occurs during the process of array initialization. This 
array and the function f( ) will be used in later discussions. 

In the call to tune( ), upcasting is performed on each different type 
of object, yet the desired behavior always takes place. This can be 
described as “sending a message to an object and letting the object 
worry about what to do with it.” The virtual function is the lens to 
use when you’re trying to analyze a project: Where should the base 
classes occur, and how might you want to extend the program? 
However, even if you don’t discover the proper base class interfaces 
and virtual functions at the initial creation of the program, you’ll 
often discover them later, even much later, when you set out to 
extend or otherwise maintain the program. This is not an analysis 
or design error; it simply means you didn’t or couldn’t know all the 
information the first time. Because of the tight class modularization 
in C++, it isn’t a large problem when this occurs because changes 
you make in one part of a system tend not to propagate to other 
parts of the system as they do in C. 

How C++ implements late binding 
How can late binding happen? All the work goes on behind the 
scenes by the compiler, which installs the necessary late-binding 

15: Polymorphism & Virtual Functions 637 

mechanism when you ask it to (you ask by creating virtual 
functions). Because programmers often benefit from understanding 
the mechanism of virtual functions in C++, this section will 
elaborate on the way the compiler implements this mechanism. 

The keyword virtual tells the compiler it should not perform early 
binding. Instead, it should automatically install all the mechanisms 
necessary to perform late binding. This means that if you call 
play( ) for a Brass object through an address for the base-class 
Instrument, you’ll get the proper function. 

To accomplish this, the typical compiler1 creates a single table 
(called the VTABLE) for each class that contains virtual functions. 
The compiler places the addresses of the virtual functions for that 
particular class in the VTABLE. In each class with virtual functions, 
it secretly places a pointer, called the vpointer (abbreviated as 
VPTR), which points to the VTABLE for that object. When you 
make a virtual function call through a base-class pointer (that is, 
when you make a polymorphic call), the compiler quietly inserts 
code to fetch the VPTR and look up the function address in the 
VTABLE, thus calling the correct function and causing late binding 
to take place. 

All of this – setting up the VTABLE for each class, initializing the 
VPTR, inserting the code for the virtual function call – happens 
automatically, so you don’t have to worry about it. With virtual 
functions, the proper function gets called for an object, even if the 
compiler cannot know the specific type of the object. 

The following sections go into this process in more detail. 

Storing type information 
You can see that there is no explicit type information stored in any 
of the classes. But the previous examples, and simple logic, tell you 
that there must be some sort of type information stored in the 

                                                   
1 Compilers may implement virtual behavior any way they want, but the way it’s 
described here is an almost universal approach. 



638 Thinking in C++ www.BruceEckel.com 

objects; otherwise the type could not be established at runtime. This 
is true, but the type information is hidden. To see it, here’s an 
example to examine the sizes of classes that use virtual functions 
compared with those that don’t: 

//: C15:Sizes.cpp 

// Object sizes with/without virtual functions 

#include <iostream> 

using namespace std; 

 

class NoVirtual { 

  int a; 

public: 

  void x() const {} 

  int i() const { return 1; } 

}; 

 

class OneVirtual { 

  int a; 

public: 

  virtual void x() const {} 

  int i() const { return 1; } 

}; 

 

class TwoVirtuals { 

  int a; 

public: 

  virtual void x() const {} 

  virtual int i() const { return 1; } 

}; 

 

int main() { 

  cout << "int: " << sizeof(int) << endl; 

  cout << "NoVirtual: " 

       << sizeof(NoVirtual) << endl; 

  cout << "void* : " << sizeof(void*) << endl; 

  cout << "OneVirtual: " 

       << sizeof(OneVirtual) << endl; 

  cout << "TwoVirtuals: " 

       << sizeof(TwoVirtuals) << endl; 

} ///:~ 
 

15: Polymorphism & Virtual Functions 639 

With no virtual functions, the size of the object is exactly what you’d 
expect: the size of a single2 int. With a single virtual function in 
OneVirtual, the size of the object is the size of NoVirtual plus the 
size of a void pointer. It turns out that the compiler inserts a single 
pointer (the VPTR) into the structure if you have one or more 
virtual functions. There is no size difference between OneVirtual 
and TwoVirtuals. That’s because the VPTR points to a table of 
function addresses. You need only one table because all the virtual 
function addresses are contained in that single table. 

This example required at least one data member. If there had been 
no data members, the C++ compiler would have forced the objects 
to be a nonzero size because each object must have a distinct 
address. If you imagine indexing into an array of zero-sized objects, 
you’ll understand. A “dummy” member is inserted into objects that 
would otherwise be zero-sized. When the type information is 
inserted because of the virtual keyword, this takes the place of the 
“dummy” member. Try commenting out the int a in all the classes 
in the example above to see this. 

Picturing virtual functions 
To understand exactly what’s going on when you use a virtual 
function, it’s helpful to visualize the activities going on behind the 
curtain. Here’s a drawing of the array of pointers A[ ] in 
Instrument4.cpp: 

                                                   
2 Some compilers might have size issues here but it will be rare. 



640 Thinking in C++ www.BruceEckel.com 

Wind object

vptr

Percussion object

vptr

Stringed object

vptr

Brass object

vptr

&Wind::play

&Wind::what

&Wind::adjust

&Percussion::play

&Percussion::what

&Percussion::adjust

&Stringed::play

&Stringed::what

&Stringed::adjust

&Brass::play

&Brass::what

&Wind::adjust

Array of

Instrument

pointers A[ ]

Objects:
VTABLEs:

 

The array of Instrument pointers has no specific type 
information; they each point to an object of type Instrument. 
Wind, Percussion, Stringed, and Brass all fit into this category 
because they are derived from Instrument (and thus have the 
same interface as Instrument, and can respond to the same 
messages), so their addresses can also be placed into the array. 
However, the compiler doesn’t know that they are anything more 
than Instrument objects, so left to its own devices it would 
normally call the base-class versions of all the functions. But in this 
case, all those functions have been declared with the virtual 
keyword, so something different happens. 

Each time you create a class that contains virtual functions, or you 
derive from a class that contains virtual functions, the compiler 
creates a unique VTABLE for that class, seen on the right of the 
diagram. In that table it places the addresses of all the functions 
that are declared virtual in this class or in the base class. If you 
don’t override a function that was declared virtual in the base class, 
the compiler uses the address of the base-class version in the 
derived class. (You can see this in the adjust entry in the Brass 
VTABLE.) Then it places the VPTR (discovered in Sizes.cpp) into 
the class. There is only one VPTR for each object when using simple 
inheritance like this. The VPTR must be initialized to point to the 

15: Polymorphism & Virtual Functions 641 

starting address of the appropriate VTABLE. (This happens in the 
constructor, which you’ll see later in more detail.) 

Once the VPTR is initialized to the proper VTABLE, the object in 
effect “knows” what type it is. But this self-knowledge is worthless 
unless it is used at the point a virtual function is called. 

When you call a virtual function through a base class address (the 
situation when the compiler doesn’t have all the information 
necessary to perform early binding), something special happens. 
Instead of performing a typical function call, which is simply an 
assembly-language CALL to a particular address, the compiler 
generates different code to perform the function call. Here’s what a 
call to adjust( ) for a Brass object looks like, if made through an 
Instrument pointer (An Instrument reference produces the 
same result): 

Brass object

vptr

&Brass::play

&Brass::what

&Wind::adjust

Instrument

pointer

Brass VTABLE:

[0]

[1]

[2]  

The compiler begins with the Instrument pointer, which points to 
the starting address of the object. All Instrument objects or 
objects derived from Instrument have their VPTR in the same 
place (often at the beginning of the object), so the compiler can pick 
the VPTR out of the object. The VPTR points to the starting address 
of the VTABLE. All the VTABLE function addresses are laid out in 
the same order, regardless of the specific type of the object. play( ) 
is first, what( ) is second, and adjust( ) is third. The compiler 
knows that regardless of the specific object type, the adjust( ) 
function is at the location VPTR+2. Thus, instead of saying, “Call 
the function at the absolute location Instrument::adjust” (early 
binding; the wrong action), it generates code that says, in effect, 
“Call the function at VPTR+2.” Because the fetching of the VPTR 
and the determination of the actual function address occur at 
runtime, you get the desired late binding. You send a message to the 
object, and the object figures out what to do with it. 



642 Thinking in C++ www.BruceEckel.com 

Under the hood 
It can be helpful to see the assembly-language code generated by a 
virtual function call, so you can see that late-binding is indeed 
taking place. Here’s the output from one compiler for the call  

i.adjust(1); 
 

inside the function f(Instrument& i): 

push  1 

push  si 

mov   bx, word ptr [si] 

call  word ptr [bx+4] 

add   sp, 4 
 

The arguments of a C++ function call, like a C function call, are 
pushed on the stack from right to left (this order is required to 
support C’s variable argument lists), so the argument 1 is pushed on 
the stack first. At this point in the function, the register si (part of 
the Intel X86 processor architecture) contains the address of i. This 
is also pushed on the stack because it is the starting address of the 
object of interest. Remember that the starting address corresponds 
to the value of this, and this is quietly pushed on the stack as an 
argument before every member function call, so the member 
function knows which particular object it is working on. So you’ll 
always see one more than the number of arguments pushed on the 
stack before a member function call (except for static member 
functions, which have no this). 

Now the actual virtual function call must be performed. First, the 
VPTR must be produced, so the VTABLE can be found. For this 
compiler the VPTR is inserted at the beginning of the object, so the 
contents of this correspond to the VPTR. The line 

mov bx, word ptr [si] 
 

fetches the word that si (that is, this) points to, which is the VPTR. 
It places the VPTR into the register bx. 

The VPTR contained in bx points to the starting address of the 
VTABLE, but the function pointer to call isn’t at location zero of the 

15: Polymorphism & Virtual Functions 643 

VTABLE, but instead at location two (because it’s the third function 
in the list). For this memory model each function pointer is two 
bytes long, so the compiler adds four to the VPTR to calculate where 
the address of the proper function is. Note that this is a constant 
value, established at compile time, so the only thing that matters is 
that the function pointer at location number two is the one for 
adjust( ). Fortunately, the compiler takes care of all the 
bookkeeping for you and ensures that all the function pointers in all 
the VTABLEs of a particular class hierarchy occur in the same 
order, regardless of the order that you may override them in derived 
classes. 

Once the address of the proper function pointer in the VTABLE is 
calculated, that function is called. So the address is fetched and 
called all at once in the statement 

call word ptr [bx+4] 
 

Finally, the stack pointer is moved back up to clean off the 
arguments that were pushed before the call. In C and C++ assembly 
code you’ll often see the caller clean off the arguments but this may 
vary depending on processors and compiler implementations. 

Installing the vpointer 
Because the VPTR determines the virtual function behavior of the 
object, you can see how it’s critical that the VPTR always be 
pointing to the proper VTABLE. You don’t ever want to be able to 
make a call to a virtual function before the VPTR is properly 
initialized. Of course, the place where initialization can be 
guaranteed is in the constructor, but none of the Instrument 
examples has a constructor. 

This is where creation of the default constructor is essential. In the 
Instrument examples, the compiler creates a default constructor 
that does nothing except initialize the VPTR. This constructor, of 
course, is automatically called for all Instrument objects before 
you can do anything with them, so you know that it’s always safe to 
call virtual functions. 



644 Thinking in C++ www.BruceEckel.com 

The implications of the automatic initialization of the VPTR inside 
the constructor are discussed in a later section. 

Objects are different 
It’s important to realize that upcasting deals only with addresses. If 
the compiler has an object, it knows the exact type and therefore (in 
C++) will not use late binding for any function calls – or at least, the 
compiler doesn’t need to use late binding. For efficiency’s sake, 
most compilers will perform early binding when they are making a 
call to a virtual function for an object because they know the exact 
type. Here’s an example: 

//: C15:Early.cpp 

// Early binding & virtual functions 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Pet { 

public: 

  virtual string speak() const { return ""; } 

}; 

 

class Dog : public Pet { 

public: 

  string speak() const { return "Bark!"; } 

}; 

 

int main() { 

  Dog ralph; 

  Pet* p1 = &ralph; 

  Pet& p2 = ralph; 

  Pet p3; 

  // Late binding for both: 

  cout << "p1->speak() = " << p1->speak() <<endl; 

  cout << "p2.speak() = " << p2.speak() << endl; 

  // Early binding (probably): 

  cout << "p3.speak() = " << p3.speak() << endl; 

} ///:~ 
 

In p1–>speak( ) and p2.speak( ), addresses are used, which 
means the information is incomplete: p1 and p2 can represent the 

15: Polymorphism & Virtual Functions 645 

address of a Pet or something derived from Pet, so the virtual 
mechanism must be used. When calling p3.speak( ) there’s no 
ambiguity. The compiler knows the exact type and that it’s an 
object, so it can’t possibly be an object derived from Pet – it’s 
exactly a Pet. Thus, early binding is probably used. However, if the 
compiler doesn’t want to work so hard, it can still use late binding 
and the same behavior will occur. 

Why virtual functions? 
At this point you may have a question: “If this technique is so 
important, and if it makes the ‘right’ function call all the time, why 
is it an option? Why do I even need to know about it?” 

This is a good question, and the answer is part of the fundamental 
philosophy of C++: “Because it’s not quite as efficient.” You can see 
from the previous assembly-language output that instead of one 
simple CALL to an absolute address, there are two – more 
sophisticated – assembly instructions required to set up the virtual 
function call. This requires both code space and execution time. 

Some object-oriented languages have taken the approach that late 
binding is so intrinsic to object-oriented programming that it 
should always take place, that it should not be an option, and the 
user shouldn’t have to know about it. This is a design decision when 
creating a language, and that particular path is appropriate for 
many languages.3 However, C++ comes from the C heritage, where 
efficiency is critical. After all, C was created to replace assembly 
language for the implementation of an operating system (thereby 
rendering that operating system – Unix – far more portable than its 
predecessors). One of the main reasons for the invention of C++ 
was to make C programmers more efficient.4 And the first question 
asked when C programmers encounter C++ is, “What kind of size 
and speed impact will I get?” If the answer were, “Everything’s great 

                                                   
3 Smalltalk, Java, and Python, for instance, use this approach with great success. 
4 At Bell Labs, where C++ was invented, there are a lot of C programmers. Making 
them all more efficient, even just a bit, saves the company many millions. 



646 Thinking in C++ www.BruceEckel.com 

except for function calls when you’ll always have a little extra 
overhead,” many people would stick with C rather than make the 
change to C++. In addition, inline functions would not be possible, 
because virtual functions must have an address to put into the 
VTABLE. So the virtual function is an option, and the language 
defaults to nonvirtual, which is the fastest configuration. Stroustrup 
stated that his guideline was, “If you don’t use it, you don’t pay for 
it.” 

Thus, the virtual keyword is provided for efficiency tuning. When 
designing your classes, however, you shouldn’t be worrying about 
efficiency tuning. If you’re going to use polymorphism, use virtual 
functions everywhere. You only need to look for functions that can 
be made non-virtual when searching for ways to speed up your code 
(and there are usually much bigger gains to be had in other areas – 
a good profiler will do a better job of finding bottlenecks than you 
will by making guesses). 

Anecdotal evidence suggests that the size and speed impacts of 
going to C++ are within 10 percent of the size and speed of C, and 
often much closer to the same. The reason you might get better size 
and speed efficiency is because you may design a C++ program in a 
smaller, faster way than you would using C. 

Abstract base classes and pure 

virtual functions 
Often in a design, you want the base class to present only an 
interface for its derived classes. That is, you don’t want anyone to 
actually create an object of the base class, only to upcast to it so that 
its interface can be used. This is accomplished by making that class 
abstract, which happens if you give it at least one pure virtual 
function. You can recognize a pure virtual function because it uses 
the virtual keyword and is followed by = 0. If anyone tries to make 
an object of an abstract class, the compiler prevents them. This is a 
tool that allows you to enforce a particular design. 

15: Polymorphism & Virtual Functions 647 

When an abstract class is inherited, all pure virtual functions must 
be implemented, or the inherited class becomes abstract as well. 
Creating a pure virtual function allows you to put a member 
function in an interface without being forced to provide a possibly 
meaningless body of code for that member function. At the same 
time, a pure virtual function forces inherited classes to provide a 
definition for it.  

In all of the instrument examples, the functions in the base class 
Instrument were always “dummy” functions. If these functions 
are ever called, something is wrong. That’s because the intent of 
Instrument is to create a common interface for all of the classes 
derived from it. 

Instrument

virtual void play()

virtual char* what()

virtual void adjust()

Wind

void play()

char* what()

void adjust()

Percussion

void play()

char* what()

void adjust()

Stringed

void play()

char* what()

void adjust()

Woodwind

void play()

char* what()

Brass

void play()

char* what()
 

The only reason to establish the common interface is so it can be 
expressed differently for each different subtype. It creates a basic 
form that determines what’s in common with all of the derived 



648 Thinking in C++ www.BruceEckel.com 

classes – nothing else. So Instrument is an appropriate candidate 
to be an abstract class. You create an abstract class when you only 
want to manipulate a set of classes through a common interface, but 
the common interface doesn’t need to have an implementation (or 
at least, a full implementation).  

If you have a concept like Instrument that works as an abstract 
class, objects of that class almost always have no meaning. That is, 
Instrument is meant to express only the interface, and not a 
particular implementation, so creating an object that is only an 
Instrument makes no sense, and you’ll probably want to prevent 
the user from doing it. This can be accomplished by making all the 
virtual functions in Instrument print error messages, but that 
delays the appearance of the error information until runtime and it 
requires reliable exhaustive testing on the part of the user. It is 
much better to catch the problem at compile time. 

Here is the syntax used for a pure virtual declaration: 

virtual void f() = 0; 
 

By doing this, you tell the compiler to reserve a slot for a function in 
the VTABLE, but not to put an address in that particular slot. Even 
if only one function in a class is declared as pure virtual, the 
VTABLE is incomplete. 

If the VTABLE for a class is incomplete, what is the compiler 
supposed to do when someone tries to make an object of that class? 
It cannot safely create an object of an abstract class, so you get an 
error message from the compiler. Thus, the compiler guarantees the 
purity of the abstract class. By making a class abstract, you ensure 
that the client programmer cannot misuse it. 

Here’s Instrument4.cpp modified to use pure virtual functions. 
Because the class has nothing but pure virtual functions, we call it a 
pure abstract class: 

//: C15:Instrument5.cpp 

// Pure abstract base classes 

#include <iostream> 

using namespace std; 

15: Polymorphism & Virtual Functions 649 

enum note { middleC, Csharp, Cflat }; // Etc. 

 

class Instrument { 

public: 

  // Pure virtual functions: 

  virtual void play(note) const = 0; 

  virtual char* what() const = 0; 

  // Assume this will modify the object: 

  virtual void adjust(int) = 0; 

}; 

// Rest of the file is the same ... 

 

class Wind : public Instrument { 

public: 

  void play(note) const { 

    cout << "Wind::play" << endl; 

  } 

  char* what() const { return "Wind"; } 

  void adjust(int) {} 

}; 

 

class Percussion : public Instrument { 

public: 

  void play(note) const { 

    cout << "Percussion::play" << endl; 

  } 

  char* what() const { return "Percussion"; } 

  void adjust(int) {} 

}; 

 

class Stringed : public Instrument { 

public: 

  void play(note) const { 

    cout << "Stringed::play" << endl; 

  } 

  char* what() const { return "Stringed"; } 

  void adjust(int) {} 

}; 

 

class Brass : public Wind { 

public: 

  void play(note) const { 

    cout << "Brass::play" << endl; 

  } 

  char* what() const { return "Brass"; } 



650 Thinking in C++ www.BruceEckel.com 

}; 

 

class Woodwind : public Wind { 

public: 

  void play(note) const { 

    cout << "Woodwind::play" << endl; 

  } 

  char* what() const { return "Woodwind"; } 

}; 

 

// Identical function from before: 

void tune(Instrument& i) { 

  // ... 

  i.play(middleC); 

} 

 

// New function: 

void f(Instrument& i) { i.adjust(1); } 

 

int main() { 

  Wind flute; 

  Percussion drum; 

  Stringed violin; 

  Brass flugelhorn; 

  Woodwind recorder; 

  tune(flute); 

  tune(drum); 

  tune(violin); 

  tune(flugelhorn); 

  tune(recorder); 

  f(flugelhorn); 

} ///:~ 
 

Pure virtual functions are helpful because they make explicit the 
abstractness of a class and tell both the user and the compiler how 
it was intended to be used. 

Note that pure virtual functions prevent an abstract class from 
being passed into a function by value. Thus, it is also a way to 
prevent object slicing (which will be described shortly). By making 
a class abstract, you can ensure that a pointer or reference is always 
used during upcasting to that class. 

15: Polymorphism & Virtual Functions 651 

Just because one pure virtual function prevents the VTABLE from 
being completed doesn’t mean that you don’t want function bodies 
for some of the others. Often you will want to call a base-class 
version of a function, even if it is virtual. It’s always a good idea to 
put common code as close as possible to the root of your hierarchy. 
Not only does this save code space, it allows easy propagation of 
changes. 

Pure virtual definitions 
It’s possible to provide a definition for a pure virtual function in the 
base class. You’re still telling the compiler not to allow objects of 
that abstract base class, and the pure virtual functions must still be 
defined in derived classes in order to create objects. However, there 
may be a common piece of code that you want some or all of the 
derived class definitions to call rather than duplicating that code in 
every function.  

Here’s what a pure virtual definition looks like: 

//: C15:PureVirtualDefinitions.cpp 

// Pure virtual base definitions 

#include <iostream> 

using namespace std; 

 

class Pet { 

public: 

  virtual void speak() const = 0; 

  virtual void eat() const = 0; 

  // Inline pure virtual definitions illegal: 

  //!  virtual void sleep() const = 0 {} 

}; 

 

// OK, not defined inline 

void Pet::eat() const { 

  cout << "Pet::eat()" << endl; 

} 

 

void Pet::speak() const {  

  cout << "Pet::speak()" << endl; 

} 

 



652 Thinking in C++ www.BruceEckel.com 

class Dog : public Pet { 

public: 

  // Use the common Pet code: 

  void speak() const { Pet::speak(); } 

  void eat() const { Pet::eat(); } 

}; 

 

int main() { 

  Dog simba;  // Richard's dog 

  simba.speak(); 

  simba.eat(); 

} ///:~ 
 

The slot in the Pet VTABLE is still empty, but there happens to be a 
function by that name that you can call in the derived class. 

The other benefit to this feature is that it allows you to change from 
an ordinary virtual to a pure virtual without disturbing the existing 
code. (This is a way for you to locate classes that don’t override that 
virtual function.) 

Inheritance and the VTABLE 
You can imagine what happens when you perform inheritance and 
override some of the virtual functions. The compiler creates a new 
VTABLE for your new class, and it inserts your new function 
addresses using the base-class function addresses for any virtual 
functions you don’t override. One way or another, for every object 
that can be created (that is, its class has no pure virtuals) there’s 
always a full set of function addresses in the VTABLE, so you’ll 
never be able to make a call to an address that isn’t there (which 
would be disastrous). 

But what happens when you inherit and add new virtual functions 
in the derived class? Here’s a simple example: 

//: C15:AddingVirtuals.cpp 

// Adding virtuals in derivation 

#include <iostream> 

#include <string> 

using namespace std; 

15: Polymorphism & Virtual Functions 653 

 

class Pet { 

  string pname; 

public: 

  Pet(const string& petName) : pname(petName) {} 

  virtual string name() const { return pname; } 

  virtual string speak() const { return ""; } 

}; 

 

class Dog : public Pet { 

  string name; 

public: 

  Dog(const string& petName) : Pet(petName) {} 

  // New virtual function in the Dog class: 

  virtual string sit() const { 

    return Pet::name() + " sits"; 

  } 

  string speak() const { // Override 

    return Pet::name() + " says 'Bark!'"; 

  } 

}; 

 

int main() { 

  Pet* p[] = {new Pet("generic"),new Dog("bob")}; 

  cout << "p[0]->speak() = " 

       << p[0]->speak() << endl; 

  cout << "p[1]->speak() = " 

       << p[1]->speak() << endl; 

//! cout << "p[1]->sit() = " 

//!      << p[1]->sit() << endl; // Illegal 

} ///:~ 
 

The class Pet contains a two virtual functions: speak( ) and 
name( ). Dog adds a third virtual function called sit( ), as well as 
overriding the meaning of speak( ). A diagram will help you 
visualize what’s happening. Here are the VTABLEs created by the 
compiler for Pet and Dog: 



654 Thinking in C++ www.BruceEckel.com 

&Pet::name

&Pet::speak

&Pet::name

&Dog::speak

&Dog::sit

 

Notice that the compiler maps the location of the speak( ) address 
into exactly the same spot in the Dog VTABLE as it is in the Pet 
VTABLE. Similarly, if a class Pug is inherited from Dog, its version 
of sit( ) would be placed in its VTABLE in exactly the same spot as 
it is in Dog. This is because (as you saw with the assembly-language 
example) the compiler generates code that uses a simple numerical 
offset into the VTABLE to select the virtual function. Regardless of 
the specific subtype the object belongs to, its VTABLE is laid out the 
same way, so calls to the virtual functions will always be made the 
same way. 

In this case, however, the compiler is working only with a pointer to 
a base-class object. The base class has only the speak( ) and 
name( ) functions, so those is the only functions the compiler will 
allow you to call. How could it possibly know that you are working 
with a Dog object, if it has only a pointer to a base-class object? 
That pointer might point to some other type, which doesn’t have a 
sit( ) function. It may or may not have some other function address 
at that point in the VTABLE, but in either case, making a virtual call 
to that VTABLE address is not what you want to do. So the compiler 
is doing its job by protecting you from making virtual calls to 
functions that exist only in derived classes. 

There are some less-common cases in which you may know that the 
pointer actually points to an object of a specific subclass. If you 
want to call a function that only exists in that subclass, then you 
must cast the pointer. You can remove the error message produced 
by the previous program like this: 

  ((Dog*)p[1])->sit() 
 

Here, you happen to know that p[1] points to a Dog object, but in 
general you don’t know that. If your problem is set up so that you 

15: Polymorphism & Virtual Functions 655 

must know the exact types of all objects, you should rethink it, 
because you’re probably not using virtual functions properly. 
However, there are some situations in which the design works best 
(or you have no choice) if you know the exact type of all objects kept 
in a generic container. This is the problem of run-time type 
identification (RTTI). 

RTTI is all about casting base-class pointers down to derived-class 
pointers (“up” and “down” are relative to a typical class diagram, 
with the base class at the top). Casting up happens automatically, 
with no coercion, because it’s completely safe. Casting down is 
unsafe because there’s no compile time information about the 
actual types, so you must know exactly what type the object is. If 
you cast it into the wrong type, you’ll be in trouble. 

RTTI is described later in this chapter, and Volume 2 of this book 
has a chapter devoted to the subject. 

Object slicing 
There is a distinct difference between passing the addresses of 
objects and passing objects by value when using polymorphism. All 
the examples you’ve seen here, and virtually all the examples you 
should see, pass addresses and not values. This is because addresses 
all have the same size5, so passing the address of an object of a 
derived type (which is usually a bigger object) is the same as 
passing the address of an object of the base type (which is usually a 
smaller object). As explained before, this is the goal when using 
polymorphism – code that manipulates a base type can 
transparently manipulate derived-type objects as well. 

If you upcast to an object instead of a pointer or reference, 
something will happen that may surprise you: the object is “sliced” 
until all that remains is the subobject that corresponds to the 
destination type of your cast. In the following example you can see 
what happens when an object is sliced: 

                                                   
5 Actually, not all pointers are the same size on all machines. In the context of this 
discussion, however, they can be considered to be the same. 



656 Thinking in C++ www.BruceEckel.com 

//: C15:ObjectSlicing.cpp 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Pet { 

  string pname; 

public: 

  Pet(const string& name) : pname(name) {} 

  virtual string name() const { return pname; } 

  virtual string description() const { 

    return "This is " + pname; 

  } 

}; 

 

class Dog : public Pet { 

  string favoriteActivity; 

public: 

  Dog(const string& name, const string& activity) 

    : Pet(name), favoriteActivity(activity) {} 

  string description() const { 

    return Pet::name() + " likes to " + 

      favoriteActivity; 

  } 

}; 

 

void describe(Pet p) { // Slices the object 

  cout << p.description() << endl; 

} 

 

int main() { 

  Pet p("Alfred"); 

  Dog d("Fluffy", "sleep"); 

  describe(p); 

  describe(d); 

} ///:~ 
 

The function describe( ) is passed an object of type Pet by value. 
It then calls the virtual function description( ) for the Pet object. 
In main( ), you might expect the first call to produce “This is 
Alfred,” and the second to produce “Fluffy likes to sleep.” In fact, 
both calls use the base-class version of description( ). 

15: Polymorphism & Virtual Functions 657 

Two things are happening in this program. First, because 
describe( ) accepts a Pet object (rather than a pointer or 
reference), any calls to describe( ) will cause an object the size of 
Pet to be pushed on the stack and cleaned up after the call. This 
means that if an object of a class inherited from Pet is passed to 
describe( ), the compiler accepts it, but it copies only the Pet 
portion of the object. It slices the derived portion off of the object, 
like this:  

favoriteActivity

Dog vptr

pname

Pet vptr

pname

Before Slice After Slice

 

Now you may wonder about the virtual function call. 
Dog::description( ) makes use of portions of both Pet (which 
still exists) and Dog, which no longer exists because it was sliced 
off! So what happens when the virtual function is called? 

You’re saved from disaster because the object is being passed by 
value. Because of this, the compiler knows the precise type of the 
object because the derived object has been forced to become a base 
object. When passing by value, the copy-constructor for a Pet 
object is used, which initializes the VPTR to the Pet VTABLE and 
copies only the Pet parts of the object. There’s no explicit copy-
constructor here, so the compiler synthesizes one. Under all 
interpretations, the object truly becomes a Pet during slicing. 

Object slicing actually removes part of the existing object as it 
copies it into the new object, rather than simply changing the 
meaning of an address as when using a pointer or reference. 
Because of this, upcasting into an object is not done often; in fact, 
it’s usually something to watch out for and prevent. Note that, in 
this example, if description( ) were made into a pure virtual 
function in the base class (which is not unreasonable, since it 
doesn’t really do anything in the base class), then the compiler 



658 Thinking in C++ www.BruceEckel.com 

would prevent object slicing because that wouldn’t allow you to 
“create” an object of the base type (which is what happens when you 
upcast by value). This could be the most important value of pure 
virtual functions: to prevent object slicing by generating a compile-
time error message if someone tries to do it. 

Overloading & overriding 
In Chapter 14, you saw that redefining an overloaded function in 
the base class hides all of the other base-class versions of that 
function. When virtual functions are involved the behavior is a 
little different. Consider a modified version of the 
NameHiding.cpp example from Chapter 14: 

//: C15:NameHiding2.cpp 

// Virtual functions restrict overloading 

#include <iostream> 

#include <string> 

using namespace std; 

 

class Base { 

public: 

  virtual int f() const {  

    cout << "Base::f()\n";  

    return 1;  

  } 

  virtual void f(string) const {} 

  virtual void g() const {} 

}; 

 

class Derived1 : public Base { 

public: 

  void g() const {} 

}; 

 

class Derived2 : public Base { 

public: 

  // Overriding a virtual function: 

  int f() const {  

    cout << "Derived2::f()\n";  

    return 2; 

  } 

15: Polymorphism & Virtual Functions 659 

}; 

 

class Derived3 : public Base { 

public: 

  // Cannot change return type: 

  //! void f() const{ cout << "Derived3::f()\n";} 

}; 

 

class Derived4 : public Base { 

public: 

  // Change argument list: 

  int f(int) const {  

    cout << "Derived4::f()\n";  

    return 4;  

  } 

}; 

 

int main() { 

  string s("hello"); 

  Derived1 d1; 

  int x = d1.f(); 

  d1.f(s); 

  Derived2 d2; 

  x = d2.f(); 

//!  d2.f(s); // string version hidden 

  Derived4 d4; 

  x = d4.f(1); 

//!  x = d4.f(); // f() version hidden 

//!  d4.f(s); // string version hidden 

  Base& br = d4; // Upcast 

//!  br.f(1); // Derived version unavailable 

  br.f(); // Base version available 

  br.f(s); // Base version abailable 

} ///:~ 
 

The first thing to notice is that in Derived3, the compiler will not 
allow you to change the return type of an overridden function (it 
will allow it if f( ) is not virtual). This is an important restriction 
because the compiler must guarantee that you can polymorphically 
call the function through the base class, and if the base class is 
expecting an int to be returned from f( ), then the derived-class 
version of f( ) must keep that contract or else things will break. 



660 Thinking in C++ www.BruceEckel.com 

The rule shown in Chapter 14 still works: if you override one of the 
overloaded member functions in the base class, the other 
overloaded versions become hidden in the derived class. In 
main( ) the code that tests Derived4 shows that this happens 
even if the new version of f( ) isn’t actually overriding an existing 
virtual function interface – both of the base-class versions of f( ) 
are hidden by f(int). However, if you upcast d4 to Base, then only 
the base-class versions are available (because that’s what the base-
class contract promises) and the derived-class version is not 
available (because it isn’t specified in the base class). 

Variant return type 
The Derived3 class above suggests that you cannot modify the 
return type of a virtual function during overriding. This is generally 
true, but there is a special case in which you can slightly modify the 
return type. If you’re returning a pointer or a reference to a base 
class, then the overridden version of the function may return a 
pointer or reference to a class derived from what the base returns. 
For example: 

//: C15:VariantReturn.cpp 

// Returning a pointer or reference to a derived 

// type during ovverriding 

#include <iostream> 

#include <string> 

using namespace std; 

 

class PetFood { 

public: 

  virtual string foodType() const = 0; 

}; 

 

class Pet { 

public: 

  virtual string type() const = 0; 

  virtual PetFood* eats() = 0; 

}; 

 

class Bird : public Pet { 

public: 

  string type() const { return "Bird"; } 

15: Polymorphism & Virtual Functions 661 

  class BirdFood : public PetFood { 

  public: 

    string foodType() const {  

      return "Bird food";  

    } 

  }; 

  // Upcast to base type: 

  PetFood* eats() { return &bf; } 

private: 

  BirdFood bf; 

}; 

 

class Cat : public Pet { 

public: 

  string type() const { return "Cat"; } 

  class CatFood : public PetFood { 

  public: 

    string foodType() const { return "Birds"; } 

  }; 

  // Return exact type instead: 

  CatFood* eats() { return &cf; } 

private: 

  CatFood cf; 

}; 

 

int main() { 

  Bird b;  

  Cat c; 

  Pet* p[] = { &b, &c, }; 

  for(int i = 0; i < sizeof p / sizeof *p; i++) 

    cout << p[i]->type() << " eats " 

         << p[i]->eats()->foodType() << endl; 

  // Can return the exact type: 

  Cat::CatFood* cf = c.eats(); 

  Bird::BirdFood* bf; 

  // Cannot return the exact type: 

//!  bf = b.eats(); 

  // Must downcast: 

  bf = dynamic_cast<Bird::BirdFood*>(b.eats()); 

} ///:~ 
 

The Pet::eats( ) member function returns a pointer to a PetFood. 
In Bird, this member function is overloaded exactly as in the base 



662 Thinking in C++ www.BruceEckel.com 

class, including the return type. That is, Bird::eats( ) upcasts the 
BirdFood to a PetFood. 

But in Cat, the return type of eats( )  is a pointer to CatFood, a 
type derived from PetFood. The fact that the return type is 
inherited from the return type of the base-class function is the only 
reason this compiles. That way, the contract is still fulfilled; eats( ) 
always returns a PetFood pointer. 

If you think polymorphically, this doesn’t seem necessary. Why not 
just upcast all the return types to PetFood*, just as Bird::eats( ) 
did? This is typically a good solution, but at the end of main( ), you 
see the difference: Cat::eats( ) can return the exact type of 
PetFood, whereas the return value of Bird::eats( ) must be 
downcast to the exact type. 

So being able to return the exact type is a little more general, and 
doesn’t lose the specific type information by automatically 
upcasting. However, returning the base type will generally solve 
your problems so this is a rather specialized feature. 

virtual functions & constructors 
When an object containing virtual functions is created, its VPTR 
must be initialized to point to the proper VTABLE. This must be 
done before there’s any possibility of calling a virtual function. As 
you might guess, because the constructor has the job of bringing an 
object into existence, it is also the constructor’s job to set up the 
VPTR. The compiler secretly inserts code into the beginning of the 
constructor that initializes the VPTR. And as described in Chapter 
14, if you don’t explicitly create a constructor for a class, the 
compiler will synthesize one for you. If the class has virtual 
functions, the synthesized constructor will include the proper VPTR 
initialization code. This has several implications. 

The first concerns efficiency. The reason for inline functions is to 
reduce the calling overhead for small functions. If C++ didn’t 
provide inline functions, the preprocessor might be used to create 
these “macros.” However, the preprocessor has no concept of access 

15: Polymorphism & Virtual Functions 663 

or classes, and therefore couldn’t be used to create member 
function macros. In addition, with constructors that must have 
hidden code inserted by the compiler, a preprocessor macro 
wouldn’t work at all. 

You must be aware when hunting for efficiency holes that the 
compiler is inserting hidden code into your constructor function. 
Not only must it initialize the VPTR, it must also check the value of 
this (in case the operator new returns zero) and call base-class 
constructors. Taken together, this code can impact what you 
thought was a tiny inline function call. In particular, the size of the 
constructor may overwhelm the savings you get from reduced 
function-call overhead. If you make a lot of inline constructor calls, 
your code size can grow without any benefits in speed. 

Of course, you probably won’t make all tiny constructors non-inline 
right away, because they’re much easier to write as inlines. But 
when you’re tuning your code, remember to consider removing the 
inline constructors. 

Order of constructor calls 
The second interesting facet of constructors and virtual functions 
concerns the order of constructor calls and the way virtual calls are 
made within constructors. 

All base-class constructors are always called in the constructor for 
an inherited class. This makes sense because the constructor has a 
special job: to see that the object is built properly. A derived class 
has access only to its own members, and not those of the base class. 
Only the base-class constructor can properly initialize its own 
elements. Therefore it’s essential that all constructors get called; 
otherwise the entire object wouldn’t be constructed properly. That’s 
why the compiler enforces a constructor call for every portion of a 
derived class. It will call the default constructor if you don’t 
explicitly call a base-class constructor in the constructor initializer 
list. If there is no default constructor, the compiler will complain. 

The order of the constructor calls is important. When you inherit, 
you know all about the base class and can access any public and 



664 Thinking in C++ www.BruceEckel.com 

protected members of the base class. This means you must be able 
to assume that all the members of the base class are valid when 
you’re in the derived class. In a normal member function, 
construction has already taken place, so all the members of all parts 
of the object have been built. Inside the constructor, however, you 
must be able to assume that all members that you use have been 
built. The only way to guarantee this is for the base-class 
constructor to be called first. Then when you’re in the derived-class 
constructor, all the members you can access in the base class have 
been initialized. “Knowing all members are valid” inside the 
constructor is also the reason that, whenever possible, you should 
initialize all member objects (that is, objects placed in the class 
using composition) in the constructor initializer list. If you follow 
this practice, you can assume that all base class members and 
member objects of the current object have been initialized. 

Behavior of virtual functions inside 

constructors 
The hierarchy of constructor calls brings up an interesting dilemma. 
What happens if you’re inside a constructor and you call a virtual 
function? Inside an ordinary member function you can imagine 
what will happen – the virtual call is resolved at runtime because 
the object cannot know whether it belongs to the class the member 
function is in, or some class derived from it. For consistency, you 
might think this is what should happen inside constructors. 

This is not the case. If you call a virtual function inside a 
constructor, only the local version of the function is used. That is, 
the virtual mechanism doesn’t work within the constructor. 

This behavior makes sense for two reasons. Conceptually, the 
constructor’s job is to bring the object into existence (which is 
hardly an ordinary feat). Inside any constructor, the object may 
only be partially formed – you can only know that the base-class 
objects have been initialized, but you cannot know which classes are 
inherited from you. A virtual function call, however, reaches 
“forward” or “outward” into the inheritance hierarchy. It calls a 
function in a derived class. If you could do this inside a constructor, 

15: Polymorphism & Virtual Functions 665 

you’d be calling a function that might manipulate members that 
hadn’t been initialized yet, a sure recipe for disaster. 

The second reason is a mechanical one. When a constructor is 
called, one of the first things it does is initialize its VPTR. However, 
it can only know that it is of the “current” type – the type the 
constructor was written for. The constructor code is completely 
ignorant of whether or not the object is in the base of another class. 
When the compiler generates code for that constructor, it generates 
code for a constructor of that class, not a base class and not a class 
derived from it (because a class can’t know who inherits it). So the 
VPTR it uses must be for the VTABLE of that class. The VPTR 
remains initialized to that VTABLE for the rest of the object’s 
lifetime unless this isn’t the last constructor call. If a more-derived 
constructor is called afterwards, that constructor sets the VPTR to 
its VTABLE, and so on, until the last constructor finishes. The state 
of the VPTR is determined by the constructor that is called last. 
This is another reason why the constructors are called in order from 
base to most-derived. 

But while all this series of constructor calls is taking place, each 
constructor has set the VPTR to its own VTABLE. If it uses the 
virtual mechanism for function calls, it will produce only a call 
through its own VTABLE, not the most-derived VTABLE (as would 
be the case after all the constructors were called). In addition, many 
compilers recognize that a virtual function call is being made inside 
a constructor, and perform early binding because they know that 
late-binding will produce a call only to the local function. In either 
event, you won’t get the results you might initially expect from a 
virtual function call inside a constructor. 

Destructors and virtual destructors 
You cannot use the virtual keyword with constructors, but 
destructors can and often must be virtual. 

The constructor has the special job of putting an object together 
piece-by-piece, first by calling the base constructor, then the more 
derived constructors in order of inheritance (it must also call 



666 Thinking in C++ www.BruceEckel.com 

member-object constructors along the way). Similarly, the 
destructor has a special job: it must disassemble an object that may 
belong to a hierarchy of classes. To do this, the compiler generates 
code that calls all the destructors, but in the reverse order that they 
are called by the constructor. That is, the destructor starts at the 
most-derived class and works its way down to the base class. This is 
the safe and desirable thing to do because  the current destructor 
can always know that the base-class members are alive and active. 
If you need to call a base-class member function inside your 
destructor, it is safe to do so. Thus, the destructor can perform its 
own cleanup, then call the next-down destructor, which will 
perform its own cleanup, etc. Each destructor knows what its class 
is derived from, but not what is derived from it. 

You should keep in mind that constructors and destructors are the 
only places where this hierarchy of calls must happen (and thus the 
proper hierarchy is automatically generated by the compiler). In all 
other functions, only that function will be called (and not base-class 
versions), whether it’s virtual or not. The only way for base-class 
versions of the same function to be called in ordinary functions 
(virtual or not) is if you explicitly call that function. 

Normally, the action of the destructor is quite adequate. But what 
happens if you want to manipulate an object through a pointer to its 
base class (that is, manipulate the object through its generic 
interface)? This activity is a major objective in object-oriented 
programming. The problem occurs when you want to delete a 
pointer of this type for an object that has been created on the heap 
with new. If the pointer is to the base class, the compiler can only 
know to call the base-class version of the destructor during delete. 
Sound familiar? This is the same problem that virtual functions 
were created to solve for the general case. Fortunately, virtual 
functions work for destructors as they do for all other functions 
except constructors. 

//: C15:VirtualDestructors.cpp 

// Behavior of virtual vs. non-virtual destructor 

#include <iostream> 

using namespace std; 

 

15: Polymorphism & Virtual Functions 667 

class Base1 { 

public: 

  ~Base1() { cout << "~Base1()\n"; } 

}; 

 

class Derived1 : public Base1 { 

public: 

  ~Derived1() { cout << "~Derived1()\n"; } 

}; 

 

class Base2 { 

public: 

  virtual ~Base2() { cout << "~Base2()\n"; } 

}; 

 

class Derived2 : public Base2 { 

public: 

  ~Derived2() { cout << "~Derived2()\n"; } 

}; 

 

int main() { 

  Base1* bp = new Derived1; // Upcast 

  delete bp; 

  Base2* b2p = new Derived2; // Upcast 

  delete b2p; 

} ///:~ 
 

When you run the program, you’ll see that delete bp only calls the 
base-class destructor, while delete b2p calls the derived-class 
destructor followed by the base-class destructor, which is the 
behavior we desire. Forgetting to make a destructor virtual is an 
insidious bug because it often doesn’t directly affect the behavior of 
your program, but it can quietly introduce a memory leak. Also, the 
fact that some destruction is occurring can further mask the 
problem. 

Even though the destructor, like the constructor, is an “exceptional” 
function, it is possible for the destructor to be virtual because the 
object already knows what type it is (whereas it doesn’t during 
construction). Once an object has been constructed, its VPTR is 
initialized, so virtual function calls can take place. 



668 Thinking in C++ www.BruceEckel.com 

Pure virtual destructors 
While pure virtual destructors are legal in Standard C++, there is an 
added constraint when using them: you must provide a function 
body for the pure virtual destructor. This seems counterintuitive;  
how can a virtual function be “pure” if it needs a function body? But 
if you keep in mind that constructors and destructors are special 
operations it makes more sense, especially if you remember that all 
destructors in a class hierarchy are always called. If you could leave 
off the definition for a pure virtual destructor, what function body 
would be called during destruction? Thus, it’s absolutely necessary 
that the compiler and linker enforce the existence of a function 
body for a pure virtual destructor. 

If it’s pure, but it has to have a function body, what’s the value of it? 
The only difference you’ll see between the pure and non-pure 
virtual destructor is that the pure virtual destructor does cause the 
base class to be abstract, so you cannot create an object of the base 
class (although this would also be true if any other member 
function of the base class were pure virtual). 

Things are a bit confusing, however, when you inherit a class from 
one that contains a pure virtual destructor. Unlike every other pure 
virtual function, you are not required to provide a definition of a 
pure virtual destructor in the derived class. The fact that the 
following compiles and links is the proof: 

//: C15:UnAbstract.cpp 

// Pure virtual destructors  

// seem to behave strangely 

 

class AbstractBase { 

public: 

  virtual ~AbstractBase() = 0; 

}; 

 

AbstractBase::~AbstractBase() {} 

 

class Derived : public AbstractBase {}; 

// No overriding of destructor necessary? 

 

int main() { Derived d; } ///:~ 

15: Polymorphism & Virtual Functions 669 

 

Normally, a pure virtual function in a base class would cause the 
derived class to be abstract unless it (and all other pure virtual 
functions) is given a definition. But here, this seems not to be the 
case. However, remember that the compiler automatically creates a 
destructor definition for every class if you don’t create one. That’s 
what’s happening here – the base class destructor is being quietly 
overridden, and thus the definition is being provided by the 
compiler and Derived is not actually abstract. 

This brings up an interesting question: What is the point of a pure 
virtual destructor? Unlike an ordinary pure virtual function, you 
must give it a function body. In a derived class, you aren’t forced to 
provide a definition since the compiler synthesizes the destructor 
for you. So what’s the difference between a regular virtual 
destructor and a pure virtual destructor? 

The only distinction occurs when you have a class that only has a 
single pure virtual function: the destructor. In this case, the only 
effect of the purity of the destructor is to prevent the instantiation 
of the base class. If there were any other pure virtual functions, they 
would prevent the instantiation of the base class, but if there are no 
others, then the pure virtual destructor will do it. So, while the 
addition of a virtual destructor is essential, whether it’s pure or not 
isn’t so important. 

When you run the following example, you can see that the pure 
virtual function body is called after the derived class version, just as 
with any other destructor: 

//: C15:PureVirtualDestructors.cpp 

// Pure virtual destructors 

// require a function body 

#include <iostream> 

using namespace std; 

 

class Pet { 

public: 

  virtual ~Pet() = 0; 

}; 

 

Pet::~Pet() { 



670 Thinking in C++ www.BruceEckel.com 

  cout << "~Pet()" << endl; 

} 

 

class Dog : public Pet { 

public: 

  ~Dog() { 

    cout << "~Dog()" << endl; 

  } 

}; 

 

int main() { 

  Pet* p = new Dog; // Upcast 

  delete p; // Virtual destructor call 

} ///:~ 
 

As a guideline, any time you have a virtual function in a class, you 
should immediately add a virtual destructor (even if it does 
nothing). This way, you ensure against any surprises later. 

Virtuals in destructors 
There’s something that happens during destruction that you might 
not immediately expect. If you’re inside an ordinary member 
function and you call a virtual function, that function is called using 
the late-binding mechanism. This is not true with destructors, 
virtual or not. Inside a destructor, only the “local” version of the 
member function is called; the virtual mechanism is ignored. 

//: C15:VirtualsInDestructors.cpp 

// Virtual calls inside destructors 

#include <iostream> 

using namespace std; 

 

class Base { 

public: 

  virtual ~Base() {  

    cout << "Base1()\n";  

    f();  

  } 

  virtual void f() { cout << "Base::f()\n"; } 

}; 

 

class Derived : public Base { 

15: Polymorphism & Virtual Functions 671 

public: 

  ~Derived() { cout << "~Derived()\n"; } 

  void f() { cout << "Derived::f()\n"; } 

}; 

 

int main() { 

  Base* bp = new Derived; // Upcast 

  delete bp; 

} ///:~ 
 

During the destructor call, Derived::f( ) is not called, even though 
f( ) is virtual. 

Why is this? Suppose the virtual mechanism were used inside the 
destructor. Then it would be possible for the virtual call to resolve 
to a function that was “farther out” (more derived) on the 
inheritance hierarchy than the current destructor. But destructors 
are called from the “outside in” (from the most-derived destructor 
down to the base destructor), so the actual function called would 
rely on portions of an object that have already been destroyed! 
Instead, the compiler resolves the calls at compile-time and calls 
only the “local” version of the function. Notice that the same is true 
for the constructor (as described earlier), but in the constructor’s 
case the type information wasn’t available, whereas in the 
destructor the information (that is, the VPTR) is there, but is isn’t 
reliable. 

Creating an object-based hierarchy 
An issue that has been recurring throughout this book during the 
demonstration of the container classes Stack and Stash is the 
“ownership problem.” The “owner” refers to who or what is 
responsible for calling delete for objects that have been created 
dynamically (using new). The problem when using containers is 
that they need to be flexible enough to hold different types of 
objects. To do this, the containers have held void pointers and so 
they haven’t known the type of object they’ve held. Deleting a void 
pointer doesn’t call the destructor, so the container couldn’t be 
responsible for cleaning up its objects. 



672 Thinking in C++ www.BruceEckel.com 

One solution was presented in the example 
C14:InheritStack.cpp, in which the Stack was inherited into a 
new class that accepted and produced only string pointers. Since it 
knew that it could hold only pointers to string objects, it could 
properly delete them. This was a nice solution, but it requires you to 
inherit a new container class for each type that you want to hold in 
the container. (Although this seems tedious now, it will actually 
work quite well in Chapter 16, when templates are introduced.) 

The problem is that you want the container to hold more than one 
type, but you don’t want to use void pointers. Another solution is to 
use polymorphism by forcing all the objects held in the container to 
be inherited from the same base class. That is, the container holds 
the objects of the base class, and then you can call virtual functions 
– in particular, you can call virtual destructors to solve the 
ownership problem. 

This solution uses what is referred to as a singly-rooted hierarchy 
or an object-based hierarchy (because the root class of the 
hierarchy is usually named “Object”). It turns out that there are 
many other benefits to using a singly-rooted hierarchy; in fact, 
every other object-oriented language but C++ enforces the use of 
such a hierarchy – when you create a class, you are automatically 
inheriting it directly or indirectly from a common base class, a base 
class that was established by the creators of the language. In C++, it 
was thought that the enforced use of this common base class would 
cause too much overhead, so it was left out. However, you can 
choose to use a common base class in your own projects, and this 
subject will be examined further in Volume 2 of this book. 

To solve the ownership problem, we can create an extremely simple 
Object for the base class, which contains only a virtual destructor. 
The Stack can then hold classes inherited from Object:  

//: C15:OStack.h 

// Using a singly-rooted hierarchy 

#ifndef OSTACK_H 

#define OSTACK_H 

 

class Object { 

public: 

15: Polymorphism & Virtual Functions 673 

  virtual ~Object() = 0; 

}; 

 

// Required definition: 

inline Object::~Object() {} 

 

class Stack { 

  struct Link { 

    Object* data; 

    Link* next; 

    Link(Object* dat, Link* nxt) :  

      data(dat), next(nxt) {} 

  }* head; 

public: 

  Stack() : head(0) {} 

  ~Stack(){  

    while(head) 

      delete pop(); 

  } 

  void push(Object* dat) { 

    head = new Link(dat, head); 

  } 

  Object* peek() const {  

    return head ? head->data : 0; 

  } 

  Object* pop() { 

    if(head == 0) return 0; 

    Object* result = head->data; 

    Link* oldHead = head; 

    head = head->next; 

    delete oldHead; 

    return result; 

  } 

}; 

#endif // OSTACK_H ///:~ 
 

To simplify things by keeping everything in the header file, the 
(required) definition for the pure virtual destructor is inlined into 
the header file, and pop( ) (which might be considered too large for 
inlining) is also inlined. 

Link objects now hold pointers to Object rather than void 
pointers, and the Stack will only accept and return Object 
pointers. Now Stack is much more flexible, since it will hold lots of 



674 Thinking in C++ www.BruceEckel.com 

different types but will also destroy any objects that are left on the 
Stack. The new limitation (which will be finally removed when 
templates are applied to the problem in Chapter 16) is that anything 
that is placed on the Stack must be inherited from Object. That’s 
fine if you are starting your class from scratch, but what if you 
already have a class such as string that you want to be able to put 
onto the Stack? In this case, the new class must be both a string 
and an Object, which means it must be inherited from both classes. 
This is called multiple inheritance and it is the subject of an entire 
chapter in Volume 2 of this book (downloadable from 
www.BruceEckel.com). When you read that chapter, you’ll see that 
multiple inheritance can be fraught with complexity, and is a 
feature you should use sparingly. In this situation, however, 
everything is simple enough that we don’t trip across any multiple 
inheritance pitfalls: 

//: C15:OStackTest.cpp 

//{T} OStackTest.cpp 

#include "OStack.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

// Use multiple inheritance. We want  

// both a string and an Object: 

class MyString: public string, public Object { 

public: 

  ~MyString() { 

    cout << "deleting string: " << *this << endl; 

  } 

  MyString(string s) : string(s) {} 

}; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack textlines; 

  string line; 

  // Read file and store lines in the stack: 

  while(getline(in, line)) 

15: Polymorphism & Virtual Functions 675 

    textlines.push(new MyString(line)); 

  // Pop some lines from the stack: 

  MyString* s; 

  for(int i = 0; i < 10; i++) { 

    if((s=(MyString*)textlines.pop())==0) break; 

    cout << *s << endl; 

    delete s;  

  } 

  cout << "Letting the destructor do the rest:" 

    << endl; 

} ///:~ 
 

Although this is similar to the previous version of the test program 
for Stack, you’ll notice that only 10 elements are popped from the 
stack, which means there are probably some objects remaining. 
Because the Stack knows that it holds Objects, the destructor can 
properly clean things up, and you’ll see this in the output of the 
program, since the MyString objects print messages as they are 
destroyed. 

Creating containers that hold Objects is not an unreasonable 
approach – if you have a singly-rooted hierarchy (enforced either by 
the language or by the requirement that every class inherit from 
Object). In that case, everything is guaranteed to be an Object and 
so it’s not very complicated to use the containers. In C++, however, 
you cannot expect this from every class, so you’re bound to trip over 
multiple inheritance if you take this approach. You’ll see in Chapter 
16 that templates solve the problem in a much simpler and more 
elegant fashion. 

Operator overloading 
You can make operators virtual just like other member functions. 
Implementing virtual operators often becomes confusing, 
however, because you may be operating on two objects, both with 
unknown types. This is usually the case with mathematical 
components (for which you often overload operators). For example, 
consider a system that deals with matrices, vectors and scalar 
values, all three of which are derived from class Math: 

//: C15:OperatorPolymorphism.cpp 



676 Thinking in C++ www.BruceEckel.com 

// Polymorphism with overloaded operators 

#include <iostream> 

using namespace std; 

 

class Matrix; 

class Scalar; 

class Vector; 

 

class Math { 

public: 

  virtual Math& operator*(Math& rv) = 0; 

  virtual Math& multiply(Matrix*) = 0; 

  virtual Math& multiply(Scalar*) = 0; 

  virtual Math& multiply(Vector*) = 0; 

  virtual ~Math() {} 

}; 

 

class Matrix : public Math { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Matrix" << endl; 

    return *this; 

  } 

  Math& multiply(Scalar*) { 

    cout << "Scalar * Matrix" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Matrix" << endl; 

    return *this; 

  } 

}; 

 

class Scalar : public Math  { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Scalar" << endl; 

    return *this; 

  } 

15: Polymorphism & Virtual Functions 677 

  Math& multiply(Scalar*) { 

    cout << "Scalar * Scalar" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Scalar" << endl; 

    return *this; 

  } 

}; 

 

class Vector : public Math  { 

public: 

  Math& operator*(Math& rv) { 

    return rv.multiply(this); // 2nd dispatch 

  } 

  Math& multiply(Matrix*) { 

    cout << "Matrix * Vector" << endl; 

    return *this; 

  } 

  Math& multiply(Scalar*) { 

    cout << "Scalar * Vector" << endl; 

    return *this; 

  } 

  Math& multiply(Vector*) { 

    cout << "Vector * Vector" << endl; 

    return *this; 

  } 

}; 

 

int main() { 

  Matrix m; Vector v; Scalar s; 

  Math* math[] = { &m, &v, &s }; 

  for(int i = 0; i < 3; i++) 

    for(int j = 0; j < 3; j++) { 

      Math& m1 = *math[i]; 

      Math& m2 = *math[j]; 

      m1 * m2; 

    } 

} ///:~ 
 

For simplicity, only the operator* has been overloaded. The goal is 
to be able to multiply any two Math objects and produce the 
desired result – and note that multiplying a matrix by a vector is a 
very different operation than multiplying a vector by a matrix. 



678 Thinking in C++ www.BruceEckel.com 

The problem is that, in main( ), the expression m1 * m2 contains 
two upcast Math references, and thus two objects of unknown type. 
A virtual function is only capable of making a single dispatch – that 
is, determining the type of one unknown object. To determine both 
types a technique called multiple dispatching is used in this 
example, whereby what appears to be a single virtual function call 
results in a second virtual call. By the time this second call is made, 
you’ve determined both types of object, and can perform the proper 
activity. It’s not transparent at first, but if you stare at the example 
for awhile it should begin to make sense. This topic is explored in 
more depth in the Design Patterns chapter in Volume 2, which you 
can download at www.BruceEckel.com.  

Downcasting 
As you might guess, since there’s such a thing as upcasting – 
moving up an inheritance hierarchy – there should also be 
downcasting to move down a hierarchy. But upcasting is easy since 
as you move up an inheritance hierarchy the classes always 
converge to more general classes. That is, when you upcast you are 
always clearly derived from an ancestor class (typically only one, 
except in the case of multiple inheritance) but when you downcast 
there are usually several possibilities that you could cast to. More 
specifically, a Circle is a type of Shape (that’s the upcast), but if 
you try to downcast a Shape it could be a Circle, Square, 
Triangle, etc. So the dilemma is figuring out a way to safely 
downcast. (But an even more important issue is asking yourself why 
you’re downcasting in the first place instead of just using 
polymorphism to automatically figure out the correct type. The 
avoidance of downcasting is covered in Volume 2 of this book.) 

C++ provides a special explicit cast (introduced in Chapter 3) called 
dynamic_cast that is a type-safe downcast operation. When you 
use dynamic_cast to try to cast down to a particular type, the 
return value will be a pointer to the desired type only if the cast is 
proper and successful, otherwise it will return zero to indicate that 
this was not the correct type. Here’s a minimal example: 

//: C15:DynamicCast.cpp 

15: Polymorphism & Virtual Functions 679 

#include <iostream> 

using namespace std; 

 

class Pet { public: virtual ~Pet(){}}; 

class Dog : public Pet {}; 

class Cat : public Pet {}; 

 

int main() { 

  Pet* b = new Cat; // Upcast 

  // Try to cast it to Dog*: 

  Dog* d1 = dynamic_cast<Dog*>(b); 

  // Try to cast it to Cat*: 

  Cat* d2 = dynamic_cast<Cat*>(b); 

  cout << "d1 = " << (long)d1 << endl; 

  cout << "d2 = " << (long)d2 << endl; 

} ///:~ 
 

When you use dynamic_cast, you must be working with a true 
polymorphic hierarchy – one with virtual functions – because 
dynamic_cast uses information stored in the VTABLE to 
determine the actual type. Here, the base class contains a virtual 
destructor and that suffices. In main( ), a Cat pointer is upcast to a 
Pet, and then a downcast is attempted to both a Dog pointer and a 
Cat pointer. Both pointers are printed, and you’ll see when you run 
the program that the incorrect downcast produces a zero result. Of 
course, whenever you downcast you are responsible for checking to 
make sure that the result of the cast is nonzero. Also, you should 
not assume that the pointer will be exactly the same, because 
sometimes pointer adjustments take place during upcasting and 
downcasting (in particular, with multiple inheritance). 

A dynamic_cast requires a little bit of extra overhead to run; not 
much, but if you’re doing a lot of dynamic_casting (in which case 
you should be seriously questioning your program design) this may 
become a performance issue. In some cases you may know 
something special during downcasting that allows you to say for 
sure what type you’re dealing with, in which case the extra overhead 
of the dynamic_cast becomes unnecessary, and you can use a 
static_cast instead. Here’s how it might work: 

//: C15:StaticHierarchyNavigation.cpp 

// Navigating class hierarchies with static_cast 



680 Thinking in C++ www.BruceEckel.com 

#include <iostream> 

#include <typeinfo> 

using namespace std; 

 

class Shape { public: virtual ~Shape() {}; }; 

class Circle : public Shape {}; 

class Square : public Shape {}; 

class Other {}; 

 

int main() { 

  Circle c; 

  Shape* s = &c; // Upcast: normal and OK 

  // More explicit but unnecessary: 

  s = static_cast<Shape*>(&c); 

  // (Since upcasting is such a safe and common 

  // operation, the cast becomes cluttering) 

  Circle* cp = 0; 

  Square* sp = 0; 

  // Static Navigation of class hierarchies 

  // requires extra type information: 

  if(typeid(s) == typeid(cp)) // C++ RTTI 

    cp = static_cast<Circle*>(s); 

  if(typeid(s) == typeid(sp)) 

    sp = static_cast<Square*>(s); 

  if(cp != 0) 

    cout << "It's a circle!" << endl; 

  if(sp != 0) 

    cout << "It's a square!" << endl; 

  // Static navigation is ONLY an efficiency hack; 

  // dynamic_cast is always safer. However: 

  // Other* op = static_cast<Other*>(s); 

  // Conveniently gives an error message, while 

  Other* op2 = (Other*)s; 

  // does not 

} ///:~ 
 

In this program, a new feature is used that is not fully described 
until Volume 2 of this book, where a chapter is given to the topic: 
C++’s run-time type information (RTTI) mechanism. RTTI allows 
you to discover type information that has been lost by upcasting. 
The dynamic_cast is actually one form of RTTI. Here, the typeid 
keyword (declared in the header file <typeinfo>) is used to detect 
the types of the pointers. You can see that the type of the upcast 
Shape pointer is successively compared to a Circle pointer and a 

15: Polymorphism & Virtual Functions 681 

Square pointer to see if there’s a match. There’s more to RTTI than 
typeid, and you can also imagine that it would be fairly easy to 
implement your own type information system using a virtual 
function. 

A Circle object is created and the address is upcast to a Shape 
pointer; the second version of the expression shows how you can 
use static_cast to be more explicit about the upcast. However, 
since an upcast is always safe and it’s a common thing to do, I 
consider an explicit cast for upcasting to be cluttering and 
unnecessary.  

RTTI is used to determine the type, and then static_cast is used to 
perform the downcast. But notice that in this design the process is 
effectively the same as using dynamic_cast, and the client 
programmer must do some testing to discover the cast that was 
actually successful. You’ll typically want a situation that’s more 
deterministic than in the example above before using static_cast 
rather than dynamic_cast (and, again, you want to carefully 
examine your design before using dynamic_cast). 

If a class hierarchy has no virtual functions (which is a 
questionable design) or if you have other information that allows 
you to safely downcast, it’s a tiny bit faster to do the downcast 
statically than with dynamic_cast. In addition, static_cast won’t 
allow you to cast out of the hierarchy, as the traditional cast will, so 
it’s safer. However, statically navigating class hierarchies is always 
risky and you should use dynamic_cast unless you have a special 
situation. 

Summary 
Polymorphism – implemented in C++ with virtual functions – 
means “different forms.” In object-oriented programming, you have 
the same face (the common interface in the base class) and different 
forms using that face: the different versions of the virtual functions. 

You’ve seen in this chapter that it’s impossible to understand, or 
even create, an example of polymorphism without using data 



682 Thinking in C++ www.BruceEckel.com 

abstraction and inheritance. Polymorphism is a feature that cannot 
be viewed in isolation (like const or a switch statement, for 
example), but instead works only in concert, as part of a “big 
picture” of class relationships. People are often confused by other, 
non-object-oriented features of C++, like overloading and default 
arguments, which are sometimes presented as object-oriented. 
Don’t be fooled; if it isn’t late binding, it isn’t polymorphism. 

To use polymorphism – and thus, object-oriented techniques – 
effectively in your programs you must expand your view of 
programming to include not just members and messages of an 
individual class, but also the commonality among classes and their 
relationships with each other. Although this requires significant 
effort, it’s a worthy struggle, because the results are faster program 
development, better code organization, extensible programs, and 
easier code maintenance. 

Polymorphism completes the object-oriented features of the 
language, but there are two more major features in C++: templates 
(which are introduced in Chapter 16 and covered in much more 
detail in Volume 2), and exception handling (which is covered in 
Volume 2). These features provide you as much increase in 
programming power as each of the object-oriented features: 
abstract data typing, inheritance, and polymorphism. 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.  

1.  Create a simple “shape” hierarchy: a base class called 
Shape and derived classes called Circle, Square, and 
Triangle. In the base class, make a virtual function 
called draw( ), and override this in the derived classes. 
Make an array of pointers to Shape objects that you 
create on the heap (and thus perform upcasting of the 
pointers), and call draw( ) through the base-class 
pointers, to verify the behavior of the virtual function. If 
your debugger supports it, single-step through the code. 

15: Polymorphism & Virtual Functions 683 

2.  Modify Exercise 1 so draw( ) is a pure virtual function. 
Try creating an object of type Shape. Try to call the pure 
virtual function inside the constructor and see what 
happens. Leaving it as a pure virtual, give draw( ) a 
definition. 

3.  Expanding on Exercise 2, create a function that takes a 
Shape object by value and try to upcast a derived object 
in as an argument. See what happens. Fix the function by 
taking a reference to the Shape object. 

4.  Modify C14:Combined.cpp so that f( ) is virtual in 
the base class. Change main( ) to perform an upcast and 
a virtual call. 

5.  Modify Instrument3.cpp by adding a virtual 
prepare( ) function. Call prepare( ) inside tune( ). 

6.  Create an inheritance hierarchy of Rodent: Mouse, 
Gerbil, Hamster, etc. In the base class, provide 
methods that are common to all Rodents, and redefine 
these in the derived classes to perform different 
behaviors depending on the specific type of Rodent. 
Create an array of pointers to Rodent, fill it with 
different specific types of Rodents, and call your base-
class methods to see what happens. 

7.  Modify Exercise 6 so that you use a vector<Rodent*> 
instead of an array of pointers. Make sure that memory is 
cleaned up properly. 

8.  Starting with the previous Rodent hierarchy, inherit 
BlueHamster from Hamster (yes, there is such a 
thing; I had one when I was a kid), override the base-
class methods, and show that the code that calls the base-
class methods doesn’t need to change in order to 
accommodate the new type.  

9.  Starting with the previous Rodent hierarchy, add a non 
virtual destructor, create an object of class Hamster 
using new, upcast the pointer to a Rodent*, and delete 
the pointer to show that it doesn’t call all the destructors 
in the hierarchy. Change the destructor to be virtual and 
demonstrate that the behavior is now correct. 

10.  Starting with the previous Rodent hierarchy, modify 
Rodent so it is a pure abstract base class. 



684 Thinking in C++ www.BruceEckel.com 

11.  Create an air-traffic control system with base-class 
Aircraft and various derived types. Create a Tower 
class with a vector<Aircraft*> that sends the 
appropriate messages to the various aircraft under its 
control. 

12.  Create a model of a greenhouse by inheriting various 
types of Plant and building mechanisms into your 
greenhouse that take care of the plants. 

13.  In Early.cpp, make Pet a pure abstract base class. 

14.  In AddingVirtuals.cpp, make all the member functions 
of Pet pure virtuals, but provide a definition for 
name( ). Fix Dog as necessary, using the base-class 
definition of name( ). 

15.  Write a small program to show the difference between 
calling a virtual function inside a normal member 
function and calling a virtual function inside a 
constructor. The program should prove that the two calls 
produce different results. 

16.  Modify VirtualsInDestructors.cpp by inheriting a 
class from Derived and overriding f( ) and the 
destructor. In main( ), create and upcast an object of 
your new type, then delete it. 

17.  Take Exercise 16 and add calls to f( ) in each destructor. 
Explain what happens. 

18.  Create a class that has a data member and a derived class 
that adds another data member. Write a non-member 
function that takes an object of the base class by value 
and prints out the size of that object using sizeof. In 
main( ) create an object of the derived class, print out its 
size, and then call your function. Explain what happens. 

19.  Create a simple example of a virtual function call and 
generate assembly output. Locate the assembly code for 
the virtual call and trace and explain the code. 

20.  Write a class with one virtual function and one non-
virtual function. Inherit a new class, make an object of 
this class, and upcast to a pointer of the base-class type. 
Use the clock( ) function found in <ctime> (you’ll need 
to look this up in your local C library guide) to measure 

15: Polymorphism & Virtual Functions 685 

the difference between a virtual call and non-virtual call. 
You’ll need to make multiple calls to each function inside 
your timing loop in order to see the difference. 

21.  Modify C14:Order.cpp by adding a virtual function in 
the base class of the CLASS macro (have it print 
something) and by making the destructor virtual. Make 
objects of the various subclasses and upcast them to the 
base class. Verify that the virtual behavior works and that 
proper construction and destruction takes place. 

22.  Write a class with three overloaded virtual functions. 
Inherit a new class from this and override one of the 
functions. Create an object of your derived class. Can you 
call all the base class functions through the derived-class 
object? Upcast the address of the object to the base. Can 
you call all three functions through the base? Remove the 
overridden definition in the derived class. Now can you 
call all the base class functions through the derived-class 
object? 

23.  Modify VariantReturn.cpp to show that its behavior 
works with references as well as pointers. 

24.  In Early.cpp, how can you tell whether the compiler 
makes the call using early or late binding? Determine the 
case for your own compiler. 

25.  Create a base class containing a clone( ) function that 
returns a pointer to a copy of the current object. Derive 
two subclasses that override clone( ) to return copies of 
their specific types. In main( ), create and upcast objects 
of your two derived types, then call clone( ) for each and 
verify that the cloned copies are the correct subtypes. 
Experiment with your clone( ) function so that you 
return the base type, then try returning the exact derived 
type. Can you think of situations in which the latter 
approach is necessary? 

26.  Modify OStackTest.cpp by creating your own class, 
then multiply-inheriting it with Object to create 
something that can be placed into the Stack. Test your 
class in main( ). 

27.  Add a type called Tensor to 
OperatorPolymorphism.cpp. 



686 Thinking in C++ www.BruceEckel.com 

28.  (Intermediate) Create a base class X with no data 
members and no constructor, but with a virtual function. 
Create a class Y that inherits from X, but without an 
explicit constructor. Generate assembly code and 
examine it to determine if a constructor is created and 
called for X, and if so, what the code does. Explain what 
you discover. X has no default constructor, so why 
doesn’t the compiler complain? 

29.  (Intermediate) Modify Exercise 28 by writing 
constructors for both classes so that each constructor 
calls a virtual function. Generate assembly code. 
Determine where the VPTR is being assigned inside each 
constructor. Is the virtual mechanism being used by your 
compiler inside the constructor? Establish why the local 
version of the function is still being called. 

30.  (Advanced) If function calls to an object passed by value 
weren’t early-bound, a virtual call might access parts that 
didn’t exist. Is this possible? Write some code to force a 
virtual call, and see if this causes a crash. To explain the 
behavior, examine what happens when you pass an object 
by value. 

31.  (Advanced) Find out exactly how much more time is 
required for a virtual function call by going to your 
processor’s assembly-language information or other 
technical manual and finding out the number of clock 
states required for a simple call versus the number 
required for the virtual function instructions. 

32.  Determine the sizeof the VPTR for your implementation. 
Now multiply-inherit two classes that contain virtual 
functions. Did you get one VPTR or two in the derived 
class? 

33.  Create a class with data members and virtual functions. 
Write a function that looks at the memory in an object of 
your class and prints out the various pieces of it. To do 
this you will need to experiment and iteratively discover 
where the VPTR is located in the object. 

34.  Pretend that virtual functions don’t exist, and modify 
Instrument4.cpp so that it uses dynamic_cast to 

15: Polymorphism & Virtual Functions 687 

make the equivalent of the virtual calls. Explain why this 
is a bad idea. 

35.  Modify StaticHierarchyNavigation.cpp so that 
instead of using C++ RTTI you create your own RTTI via 
a virtual function in the base class called whatAmI( ) 
and an enum type { Circles, Squares };. 

36.  Start with PointerToMemberOperator.cpp from 
Chapter 12 and show that polymorphism still works with 
pointers-to-members, even if operator->* is 
overloaded. 



  689 

 

 

 

 

 

 

 

 

16: Introduction to 

Templates 
Inheritance and composition provide a way to reuse 

object code. The template feature in C++ provides  

a way to reuse source code. 



690 Thinking in C++ www.BruceEckel.com 

Although C++ templates are a general-purpose programming tool, 
when they were introduced in the language, they seemed to 
discourage the use of object-based container-class hierarchies 
(demonstrated at the end of Chapter 15). For example, the Standard 
C++ containers and algorithms (explained in two chapters of 
Volume 2 of this book, downloadable from www.BruceEckel.com) 
are built exclusively with templates and are relatively easy for the 
programmer to use. 

This chapter not only demonstrates the basics of templates, it is 
also an introduction to containers, which are fundamental 
components of object-oriented programming and are almost 
completely realized through the containers in the Standard C++ 
Library. You’ll see that this book has been using container examples 
– the Stash and Stack – throughout, precisely to get you 
comfortable with containers; in this chapter the concept of the 
iterator will also be added. Although containers are ideal examples 
for use with templates, in Volume 2 (which has an advanced 
templates chapter) you’ll learn that there are many other uses for 
templates as well. 

Containers 
Suppose you want to create a stack, as we have been doing 
throughout the book. This stack class will hold ints, to keep it 
simple: 

//: C16:IntStack.cpp 

// Simple integer stack 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 

  int top; 

public: 

  IntStack() : top(0) {} 

16: Introduction to Templates 691 

  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

}; 

 

int main() { 

  IntStack is; 

  // Add some Fibonacci numbers, for interest: 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Pop & print them: 

  for(int k = 0; k < 20; k++) 

    cout << is.pop() << endl; 

} ///:~ 
 

The class IntStack is a trivial example of a push-down stack. For 
simplicity it has been created here with a fixed size, but you can also 
modify it to automatically expand by allocating memory off the 
heap, as in the Stack class that has been examined throughout the 
book. 

main( ) adds some integers to the stack, and pops them off again. 
To make the example more interesting, the integers are created 
with the fibonacci( ) function, which generates the traditional 
rabbit-reproduction numbers. Here is the header file that declares 
the function: 

//: C16:fibonacci.h 

// Fibonacci number generator 

int fibonacci(int n); ///:~ 
 

Here’s the implementation: 

//: C16:fibonacci.cpp {O} 

#include "../require.h" 

 

int fibonacci(int n) { 

  const int sz = 100; 

  require(n < sz); 



692 Thinking in C++ www.BruceEckel.com 

  static int f[sz]; // Initialized to zero 

  f[0] = f[1] = 1; 

  // Scan for unfilled array elements: 

  int i; 

  for(i = 0; i < sz; i++) 

    if(f[i] == 0) break; 

  while(i <= n) { 

    f[i] = f[i-1] + f[i-2]; 

    i++; 

  } 

  return f[n]; 

} ///:~ 
 

This is a fairly efficient implementation, because it never generates 
the numbers more than once. It uses a static array of int, and 
relies on the fact that the compiler will initialize a static array to 
zero. The first for loop moves the index i to where the first array 
element is zero, then a while loop adds Fibonacci numbers to the 
array until the desired element is reached. But notice that if the 
Fibonacci numbers through element n are already initialized, it 
skips the while loop altogether. 

The need for containers 
Obviously, an integer stack isn’t a crucial tool. The real need for 
containers comes when you start making objects on the heap using 
new and destroying them with delete. In the general 
programming problem, you don’t know how many objects you’re 
going to need while you’re writing the program. For example, in an 
air-traffic control system you don’t want to limit the number of 
planes your system can handle. You don’t want the program to 
abort just because you exceed some number. In a computer-aided 
design system, you’re dealing with lots of shapes, but only the user 
determines (at runtime) exactly how many shapes you’re going to 
need. Once you notice this tendency, you’ll discover lots of 
examples in your own programming situations. 

C programmers who rely on virtual memory to handle their 
“memory management” often find the idea of new, delete, and 
container classes disturbing. Apparently, one practice in C is to 
create a huge global array, larger than anything the program would 

16: Introduction to Templates 693 

appear to need. This may not require much thought (or awareness 
of malloc( ) and free( )), but it produces programs that don’t port 
well and that hide subtle bugs. 

In addition, if you create a huge global array of objects in C++, the 
constructor and destructor overhead can slow things down 
significantly. The C++ approach works much better: When you 
need an object, create it with new, and put its pointer in a 
container. Later on, fish it out and do something to it. This way, you 
create only the objects you absolutely need. And usually you don’t 
have all the initialization conditions available at the start-up of the 
program. new allows you to wait until something happens in the 
environment before you can actually create the object. 

So in the most common situation, you’ll make a container that 
holds pointers to some objects of interest. You will create those 
objects using new and put the resulting pointer in the container 
(potentially upcasting it in the process), pulling it out later when 
you want to do something with the object. This technique produces 
the most flexible, general sort of program. 

Overview of templates 
Now a problem arises. You have an IntStack, which holds integers. 
But you want a stack that holds shapes or aircraft or plants or 
something else. Reinventing your source code every time doesn’t 
seem like a very intelligent approach with a language that touts 
reusability. There must be a better way. 

There are three techniques for source code reuse in this situation: 
the C way, presented here for contrast; the Smalltalk approach, 
which significantly affected C++; and the C++ approach: templates. 

The C solution. Of course you’re trying to get away from the C 
approach because it’s messy and error prone and completely 
inelegant. In this approach, you copy the source code for a Stack 
and make modifications by hand, introducing new errors in the 
process. This is certainly not a very productive technique. 



694 Thinking in C++ www.BruceEckel.com 

The Smalltalk solution. Smalltalk (and Java, following its 
example) took a simple and straightforward approach: You want to 
reuse code, so use inheritance. To implement this, each container 
class holds items of the generic base class Object (similar to the 
example at the end of Chapter 15). But because the library in 
Smalltalk is of such fundamental importance, you don’t ever create 
a class from scratch. Instead, you must always inherit it from an 
existing class. You find a class as close as possible to the one you 
want, inherit from it, and make a few changes. Obviously, this is a 
benefit because it minimizes your effort (and explains why you 
spend a lot of time learning the class library before becoming an 
effective Smalltalk programmer). 

But it also means that all classes in Smalltalk end up being part of a 
single inheritance tree. You must inherit from a branch of this tree 
when creating a new class. Most of the tree is already there (it’s the 
Smalltalk class library), and at the root of the tree is a class called 
Object – the same class that each Smalltalk container holds. 

This is a neat trick because it means that every class in the 
Smalltalk (and Java1) class hierarchy is derived from Object, so 
every class can be held in every container (including that container 
itself). This type of single-tree hierarchy based on a fundamental 
generic type (often named Object, which is also the case in Java) is 
referred to as an “object-based hierarchy.” You may have heard this 
term and assumed it was some new fundamental concept in OOP, 
like polymorphism. It simply refers to a class hierarchy with Object 
(or some similar name) at its root and container classes that hold 
Object. 

Because the Smalltalk class library had a much longer history and 
experience behind it than did C++, and because the original C++ 
compilers had no container class libraries, it seemed like a good 
idea to duplicate the Smalltalk library in C++. This was done as an 
experiment with an early C++ implementation2, and because it 

                                                   
1 With the exception, in Java, of the primitive data types. These were made non-
Objects for efficiency. 
2 The OOPS library, by Keith Gorlen while he was at NIH.  

16: Introduction to Templates 695 

represented a significant body of code, many people began using it. 
In the process of trying to use the container classes, they discovered 
a problem. 

The problem was that in Smalltalk (and most other OOP languages 
that I know of), all classes are automatically derived from a single 
hierarchy, but this isn’t true in C++. You might have your nice 
object-based hierarchy with its container classes, but then you 
might buy a set of shape classes or aircraft classes from another 
vendor who didn’t use that hierarchy. (For one thing, using that 
hierarchy imposes overhead, which C programmers eschew.) How 
do you insert a separate class tree into the container class in your 
object-based hierarchy? Here’s what the problem looks like: 

(Not derived

from Object)

Container
(Holds pointers

to Objects)

Object

Object

Object

Shape

Circle Square Triangle

 
Because C++ supports multiple independent hierarchies, 
Smalltalk’s object-based hierarchy does not work so well. 

The solution seemed obvious. If you can have many inheritance 
hierarchies, then you should be able to inherit from more than one 
class: Multiple inheritance will solve the problem. So you do the 
following (a similar example was given at the end of Chapter 15): 

Shape

Circle Square
OShape

OCircle OSquare OTriangle

Triangle

Object

 
Now OShape has Shape’s characteristics and behaviors, but 
because it is also derived from Object it can be placed in 



696 Thinking in C++ www.BruceEckel.com 

Container. The extra inheritance into OCircle, OSquare, etc. is 
necessary so that those classes can be upcast into OShape and thus 
retain the correct behavior. You can see that things are rapidly 
getting messy. 

Compiler vendors invented and included their own object-based 
container-class hierarchies, most of which have since been replaced 
by template versions. You can argue that multiple inheritance is 
needed for solving general programming problems, but you’ll see in 
Volume 2 of this book that its complexity is best avoided except in 
special cases. 

The template solution 
Although an object-based hierarchy with multiple inheritance is 
conceptually straightforward, it turns out to be painful to use. In his 
original book3 Stroustrup demonstrated what he considered a 
preferable alternative to the object-based hierarchy. Container 
classes were created as large preprocessor macros with arguments 
that could be substituted with your desired type. When you wanted 
to create a container to hold a particular type, you made a couple of 
macro calls. 

Unfortunately, this approach was confused by all the existing 
Smalltalk literature and programming experience, and it was a bit 
unwieldy. Basically, nobody got it. 

In the meantime, Stroustrup and the C++ team at Bell Labs had 
modified his original macro approach, simplifying it and moving it 
from the domain of the preprocessor into the compiler. This new 
code-substitution device is called a template4, and it represents a 
completely different way to reuse code. Instead of reusing object 
code, as with inheritance and composition, a template reuses source 
code. The container no longer holds a generic base class called 
Object, but instead it holds an unspecified parameter. When you 

                                                   
3 The C++ Programming Language by Bjarne Stroustrup (1st edition, Addison-
Wesley, 1986). 
4 The inspiration for templates appears to be ADA generics. 

16: Introduction to Templates 697 

use a template, the parameter is substituted by the compiler, much 
like the old macro approach, but cleaner and easier to use. 

Now, instead of worrying about inheritance or composition when 
you want to use a container class, you take the template version of 
the container and stamp out a specific version for your particular 
problem, like this: 

Shape

Container

Shape

Shape

Shape

 
The compiler does the work for you, and you end up with exactly 
the container you need to do your job, rather than an unwieldy 
inheritance hierarchy. In C++, the template implements the 
concept of a parameterized type. Another benefit of the template 
approach is that the novice programmer who may be unfamiliar or 
uncomfortable with inheritance can still use canned container 
classes right away (as we’ve been doing with vector throughout the 
book). 

Template syntax 
The template keyword tells the compiler that the class definition 
that follows will manipulate one or more unspecified types. At the 
time the actual class code is generated from the template, those 
types must be specified so that the compiler can substitute them. 

To demonstrate the syntax, here’s a small example that produces a 
bounds-checked array: 

//: C16:Array.cpp 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

template<class T> 

class Array { 



698 Thinking in C++ www.BruceEckel.com 

  enum { size = 100 }; 

  T A[size]; 

public: 

  T& operator[](int index) { 

    require(index >= 0 && index < size, 

      "Index out of range"); 

    return A[index]; 

  } 

}; 

 

int main() { 

  Array<int> ia; 

  Array<float> fa; 

  for(int i = 0; i < 20; i++) { 

    ia[i] = i * i; 

    fa[i] = float(i) * 1.414; 

  } 

  for(int j = 0; j < 20; j++) 

    cout << j << ": " << ia[j] 

         << ", " << fa[j] << endl; 

} ///:~ 
 

You can see that it looks like a normal class except for the line 

template<class T>  
 

which says that T is the substitution parameter, and that it 
represents a type name. Also, you see T used everywhere in the 
class where you would normally see the specific type the container 
holds. 

In Array, elements are inserted and extracted with the same 
function: the overloaded operator [ ] . It returns a reference, so it 
can be used on both sides of an equal sign (that is, as both an lvalue 
and an rvalue). Notice that if the index is out of bounds, the 
require( ) function is used to print a message. Since operator[] 
is an inline, you could use this approach to guarantee that no 
array-bounds violations occur, then remove the require( ) for the 
shipping code. 

In main( ), you can see how easy it is to create Arrays that hold 
different types of objects. When you say 

16: Introduction to Templates 699 

Array<int> ia; 

Array<float> fa; 
 

the compiler expands the Array template (this is called 
instantiation) twice, to create two new generated classes, which 
you can think of as Array_int and Array_float. (Different 
compilers may decorate the names in different ways.) These are 
classes just like the ones you would have produced if you had 
performed the substitution by hand, except that the compiler 
creates them for you as you define the objects ia and fa. Also note 
that duplicate class definitions are either avoided by the compiler or 
merged by the linker. 

Non-inline function definitions 
Of course, there are times when you’ll want to have non-inline 
member function definitions. In this case, the compiler needs to see 
the template declaration before the member function definition. 
Here’s the example above, modified to show the non-inline member 
definition: 

//: C16:Array2.cpp 

// Non-inline template definition 

#include "../require.h" 

 

template<class T> 

class Array { 

  enum { size = 100 }; 

  T A[size]; 

public: 

  T& operator[](int index); 

}; 

 

template<class T> 

T& Array<T>::operator[](int index) { 

  require(index >= 0 && index < size, 

    "Index out of range"); 

  return A[index]; 

} 

 

int main() { 

  Array<float> fa; 

  fa[0] = 1.414; 



700 Thinking in C++ www.BruceEckel.com 

} ///:~ 
 

Any reference to a template’s class name must be accompanied by 
its template argument list, as in Array<T>::operator[]. You can 
imagine that internally, the class name is being decorated with the 
arguments in the template argument list to produce a unique class 
name identifier for each template instantiation. 

Header files 
Even if you create non-inline function definitions, you’ll usually 
want to put all declarations and definitions for a template into a 
header file. This may seem to violate the normal header file rule of 
“Don’t put in anything that allocates storage,” (which prevents 
multiple definition errors at link time), but template definitions are 
special. Anything preceded by template<...> means the compiler 
won’t allocate storage for it at that point, but will instead wait until 
it’s told to (by a template instantiation), and that somewhere in the 
compiler and linker there’s a mechanism for removing multiple 
definitions of an identical template. So you’ll almost always put the 
entire template declaration and definition in the header file, for 
ease of use. 

There are times when you may need to place the template 
definitions in a separate cpp file to satisfy special needs (for 
example, forcing template instantiations to exist in only a single 
Windows dll file). Most compilers have some mechanism to allow 
this; you’ll have to investigate your particular compiler’s 
documentation to use it. 

Some people feel that putting all of the source code for your 
implementation in a header file makes it possible for people to steal 
and modify your code if they buy a library from you. This might be 
an issue, but it probably depends on the way you look at the 
problem: Are they buying a product or a service? If it’s a product, 
then you have to do everything you can to protect it, and probably 
you don’t want to give source code, just compiled code. But many 
people see software as a service, and even more than that, a 
subscription service. The customer wants your expertise, they want 
you to continue maintaining this piece of reusable code so that they 
don’t have to – so they can focus on getting their job done. I 

16: Introduction to Templates 701 

personally think most customers will treat you as a valuable 
resource and will not want to jeopardize their relationship with you. 
As for the few who want to steal rather than buy or do original 
work, they probably can’t keep up with you anyway. 

IntStack as a template 
Here is the container and iterator from IntStack.cpp, 
implemented as a generic container class using templates: 

//: C16:StackTemplate.h 

// Simple stack template 

#ifndef STACKTEMPLATE_H 

#define STACKTEMPLATE_H 

#include "../require.h" 

 

template<class T> 

class StackTemplate { 

  enum { ssize = 100 }; 

  T stack[ssize]; 

  int top; 

public: 

  StackTemplate() : top(0) {} 

  void push(const T& i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  int size() { return top; } 

}; 

#endif // STACKTEMPLATE_H ///:~ 
 

Notice that a template makes certain assumptions about the objects 
it is holding. For example, StackTemplate assumes there is some 
sort of assignment operation for T inside the push( ) function. You 
could say that a template “implies an interface” for the types it is 
capable of holding. 

Another way to say this is that templates provide a kind of weak 
typing mechanism for C++, which is ordinarily a strongly-typed 



702 Thinking in C++ www.BruceEckel.com 

language. Instead of insisting that an object be of some exact type in 
order to be acceptable, weak typing requires only that the member 
functions that it wants to call are available for a particular object. 
Thus, weakly-typed code can be applied to any object that can 
accept those member function calls, and is thus much more 
flexible5. 

Here’s the revised example to test the template: 

//: C16:StackTemplateTest.cpp 

// Test simple stack template 

//{L} fibonacci 

#include "fibonacci.h" 

#include "StackTemplate.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  StackTemplate<int> is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  for(int k = 0; k < 20; k++) 

    cout << is.pop() << endl; 

  ifstream in("StackTemplateTest.cpp"); 

  assure(in, "StackTemplateTest.cpp"); 

  string line; 

  StackTemplate<string> strings; 

  while(getline(in, line)) 

    strings.push(line); 

  while(strings.size() > 0) 

    cout << strings.pop() << endl; 

} ///:~ 
 

The only difference is in the creation of is. Inside the template 
argument list you specify the type of object the stack and iterator 
should hold. To demonstrate the genericness of the template, a 

                                                   
5 All methods in both Smalltalk and Python are weakly typed, and so those languages 
do not need a template mechanism. In effect, you get templates without templates. 

16: Introduction to Templates 703 

StackTemplate is also created to hold string. This is tested by 
reading in lines from the source-code file. 

Constants in templates 
Template arguments are not restricted to class types; you can also 
use built-in types. The values of these arguments then become 
compile-time constants for that particular instantiation of the 
template. You can even use default values for these arguments. The 
following example allows you to set the size of the Array class 
during instantiation, but also provides a default value: 

//: C16:Array3.cpp 

// Built-in types as template arguments 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

template<class T, int size = 100> 

class Array { 

  T array[size]; 

public: 

  T& operator[](int index) { 

    require(index >= 0 && index < size, 

      "Index out of range"); 

    return array[index]; 

  } 

  int length() const { return size; } 

}; 

 

class Number { 

  float f; 

public: 

  Number(float ff = 0.0f) : f(ff) {} 

  Number& operator=(const Number& n) { 

    f = n.f; 

    return *this; 

  } 

  operator float() const { return f; } 

  friend ostream& 

    operator<<(ostream& os, const Number& x) { 

      return os << x.f; 

  } 



704 Thinking in C++ www.BruceEckel.com 

}; 

 

template<class T, int size = 20> 

class Holder { 

  Array<T, size>* np; 

public: 

  Holder() : np(0) {} 

  T& operator[](int i) { 

    require(0 <= i && i < size); 

    if(!np) np = new Array<T, size>; 

    return np->operator[](i); 

  } 

  int length() const { return size; } 

  ~Holder() { delete np; } 

}; 

 

int main() { 

  Holder<Number> h; 

  for(int i = 0; i < 20; i++) 

    h[i] = i; 

  for(int j = 0; j < 20; j++) 

    cout << h[j] << endl; 

} ///:~ 
 

As before, Array is a checked array of objects and prevents you 
from indexing out of bounds. The class Holder is much like Array 
except that it has a pointer to an Array instead of an embedded 
object of type Array. This pointer is not initialized in the 
constructor; the initialization is delayed until the first access. This is 
called lazy initialization; you might use a technique like this if you 
are creating a lot of objects, but not accessing them all, and want to 
save storage. 

You’ll notice that the size value in both templates is never stored 
internally in the class, but it is used as if it were a data member 
inside the member functions. 

16: Introduction to Templates 705 

Stack and Stash 

as templates 
The recurring  “ownership” problems with the Stash and Stack 
container classes that have been revisited throughout this book 
come from the fact that these containers haven’t been able to know 
exactly what types they hold. The nearest they’ve come is the Stack 
“container of Object” that was seen at the end of Chapter 15 in 
OStackTest.cpp. 

If the client programmer doesn’t explicitly remove all the pointers 
to objects that are held in the container, then the container should 
be able to correctly delete those pointers. That is to say, the 
container “owns” any objects that haven’t been removed, and is 
thus responsible for cleaning them up. The snag has been that 
cleanup requires knowing the type of the object, and creating a 
generic container class requires not knowing the type of the object. 
With templates, however, we can write code that doesn’t know the 
type of the object, and easily instantiate a new version of that 
container for every type that we want to contain. The individual 
instantiated containers do know the type of objects they hold and 
can thus call the correct destructor (assuming, in the typical case 
where polymorphism is involved, that a virtual destructor has been 
provided). 

For the Stack this turns out to be quite simple since all of the 
member functions can be reasonably inlined: 

//: C16:TStack.h 

// The Stack as a template 

#ifndef TSTACK_H 

#define TSTACK_H 

 

template<class T> 

class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt):  

      data(dat), next(nxt) {} 

  }* head; 



706 Thinking in C++ www.BruceEckel.com 

public: 

  Stack() : head(0) {} 

  ~Stack(){  

    while(head) 

      delete pop(); 

  } 

  void push(T* dat) { 

    head = new Link(dat, head); 

  } 

  T* peek() const { 

    return head ? head->data : 0;  

  } 

  T* pop(){ 

    if(head == 0) return 0; 

    T* result = head->data; 

    Link* oldHead = head; 

    head = head->next; 

    delete oldHead; 

    return result; 

  } 

}; 

#endif // TSTACK_H ///:~ 
 

If you compare this to the OStack.h example at the end of Chapter 
15, you will see that Stack is virtually identical, except that Object 
has been replaced with T. The test program is also nearly identical, 
except that the necessity for multiply-inheriting from string and 
Object (and even the need for Object itself) has been eliminated. 
Now there is no MyString class to announce its destruction, so a 
small new class is added to show a Stack container cleaning up its 
objects: 

//: C16:TStackTest.cpp 

//{T} TStackTest.cpp 

#include "TStack.h" 

#include "../require.h" 

#include <fstream> 

#include <iostream> 

#include <string> 

using namespace std; 

 

class X { 

public: 

  virtual ~X() { cout << "~X " << endl; } 

16: Introduction to Templates 707 

}; 

 

int main(int argc, char* argv[]) { 

  requireArgs(argc, 1); // File name is argument 

  ifstream in(argv[1]); 

  assure(in, argv[1]); 

  Stack<string> textlines; 

  string line; 

  // Read file and store lines in the Stack: 

  while(getline(in, line)) 

    textlines.push(new string(line)); 

  // Pop some lines from the stack: 

  string* s; 

  for(int i = 0; i < 10; i++) { 

    if((s = (string*)textlines.pop())==0) break; 

    cout << *s << endl; 

    delete s;  

  } // The destructor deletes the other strings. 

  // Show that correct destruction happens: 

  Stack<X> xx; 

  for(int j = 0; j < 10; j++) 

    xx.push(new X); 

} ///:~ 
 

The destructor for X is virtual, not because it’s necessary here, but 
because xx could later be used to hold objects derived from X. 

Notice how easy it is to create different kinds of Stacks for string 
and for X. Because of the template, you get the best of both worlds: 
the ease of use of the Stack class along with proper cleanup. 

Templatized pointer Stash 
Reorganizing the PStash code into a template isn’t quite so simple 
because there are a number of member functions that should not be 
inlined. However, as a template those function definitions still 
belong in the header file (the compiler and linker take care of any 
multiple definition problems). The code looks quite similar to the 
ordinary PStash except that you’ll notice the size of the increment 
(used by inflate( )) has been templatized as a non-class parameter 
with a default value, so that the increment size can be modified at 
the point of instantiation (notice that this means that the increment 



708 Thinking in C++ www.BruceEckel.com 

size is fixed; you may also argue that the increment size should be 
changeable throughout the lifetime of the object): 

//: C16:TPStash.h 

#ifndef TPSTASH_H 

#define TPSTASH_H 

 

template<class T, int incr = 10> 

class PStash { 

  int quantity; // Number of storage spaces 

  int next; // Next empty space 

  T** storage; 

  void inflate(int increase = incr); 

public: 

  PStash() : quantity(0), next(0), storage(0) {} 

  ~PStash(); 

  int add(T* element); 

  T* operator[](int index) const; // Fetch 

  // Remove the reference from this PStash: 

  T* remove(int index); 

  // Number of elements in Stash: 

  int count() const { return next; } 

}; 

 

template<class T, int incr> 

int PStash<T, incr>::add(T* element) { 

  if(next >= quantity) 

    inflate(incr); 

  storage[next++] = element; 

  return(next - 1); // Index number 

} 

 

// Ownership of remaining pointers: 

template<class T, int incr> 

PStash<T, incr>::~PStash() { 

  for(int i = 0; i < next; i++) { 

    delete storage[i]; // Null pointers OK 

    storage[i] = 0; // Just to be safe 

  } 

  delete []storage; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::operator[](int index) const { 

16: Introduction to Templates 709 

  require(index >= 0, 

    "PStash::operator[] index negative"); 

  if(index >= next) 

    return 0; // To indicate the end 

  require(storage[index] != 0,  

    "PStash::operator[] returned null pointer"); 

  // Produce pointer to desired element: 

  return storage[index]; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::remove(int index) { 

  // operator[] performs validity checks: 

  T* v = operator[](index); 

  // "Remove" the pointer: 

  if(v != 0) storage[index] = 0; 

  return v; 

} 

 

template<class T, int incr> 

void PStash<T, incr>::inflate(int increase) { 

  const int psz = sizeof(T*); 

  T** st = new T*[quantity + increase]; 

  memset(st, 0, (quantity + increase) * psz); 

  memcpy(st, storage, quantity * psz); 

  quantity += increase; 

  delete []storage; // Old storage 

  storage = st; // Point to new memory 

} 

#endif // TPSTASH_H ///:~ 
 

The default increment size used here is small to guarantee that calls 
to inflate( ) occur. This way we can make sure it works correctly. 

To test the ownership control of the templatized PStash, the 
following class will report creations and destructions of itself, and 
also guarantee that all objects that have been created were also 
destroyed. AutoCounter will allow only objects of its type to be 
created on the stack: 

//: C16:AutoCounter.h 

#ifndef AUTOCOUNTER_H 

#define AUTOCOUNTER_H 

#include "../require.h" 



710 Thinking in C++ www.BruceEckel.com 

#include <iostream> 

#include <set> // Standard C++ Library container 

#include <string> 

 

class AutoCounter { 

  static int count; 

  int id; 

  class CleanupCheck { 

    std::set<AutoCounter*> trace; 

  public: 

    void add(AutoCounter* ap) { 

      trace.insert(ap); 

    } 

    void remove(AutoCounter* ap) { 

      require(trace.erase(ap) == 1, 

        "Attempt to delete AutoCounter twice"); 

    } 

    ~CleanupCheck() { 

      std::cout << "~CleanupCheck()"<< std::endl; 

      require(trace.size() == 0, 

       "All AutoCounter objects not cleaned up"); 

    } 

  }; 

  static CleanupCheck verifier; 

  AutoCounter() : id(count++) { 

    verifier.add(this); // Register itself 

    std::cout << "created[" << id << "]"  

              << std::endl; 

  } 

  // Prevent assignment and copy-construction: 

  AutoCounter(const AutoCounter&); 

  void operator=(const AutoCounter&); 

public: 

  // You can only create objects with this: 

  static AutoCounter* create() {  

    return new AutoCounter(); 

  } 

  ~AutoCounter() { 

    std::cout << "destroying[" << id  

              << "]" << std::endl; 

    verifier.remove(this); 

  } 

  // Print both objects and pointers: 

  friend std::ostream& operator<<( 

    std::ostream& os, const AutoCounter& ac){ 

16: Introduction to Templates 711 

    return os << "AutoCounter " << ac.id; 

  } 

  friend std::ostream& operator<<( 

    std::ostream& os, const AutoCounter* ac){ 

    return os << "AutoCounter " << ac->id; 

  } 

};  

#endif // AUTOCOUNTER_H ///:~ 
 

The AutoCounter class does two things. First, it sequentially 
numbers each instance of AutoCounter: the value of this number 
is kept in id, and the number is generated using the static data 
member count. 

Second, and more complex, a static instance (called verifier) of 
the nested class CleanupCheck keeps track of all of the 
AutoCounter objects that are created and destroyed, and reports 
back to you if you don’t clean all of them up (i.e. if there is a 
memory leak). This behavior is accomplished using a set class from 
the Standard C++ Library, which is a wonderful example of how 
well-designed templates can make life easy (you can learn about all 
the containers in the Standard C++ Library in Volume 2 of this 
book, available online). 

The set class is templatized on the type that it holds; here it is 
instantiated to hold AutoCounter pointers. A set will allow only 
one instance of each distinct object to be added; in add( ) you can 
see this take place with the set::insert( ) function. insert( ) 
actually informs you with its return value if you’re trying to add 
something that’s already been added; however, since object 
addresses are being added we can rely on C++’s guarantee that all 
objects have unique addresses. 

In remove( ), set::erase( ) is used to remove an AutoCounter 
pointer from the set. The return value tells you how many instances 
of the element were removed; in our case we only expect zero or 
one. If the value is zero, however, it means this object was already 
deleted from the set and you’re trying to delete it a second time, 
which is a programming error that will be reported through 
require( ). 



712 Thinking in C++ www.BruceEckel.com 

The destructor for CleanupCheck does a final check by making 
sure that the size of the set is zero – this means that all of the 
objects have been properly cleaned up. If it’s not zero, you have a 
memory leak, which is reported through require( ). 

The constructor and destructor for AutoCounter register and 
unregister themselves with the verifier object. Notice that the 
constructor, copy-constructor, and assignment operator are 
private, so the only way for you to create an object is with the 
static create( ) member function – this is a simple example of a 
factory, and it guarantees that all objects are created on the heap, 
so verifier will not get confused over assignments and copy-
constructions. 

Since all of the member functions have been inlined, the only 
reason for the implementation file is to contain the static data 
member definitions: 

//: C16:AutoCounter.cpp {O} 

// Definition of static class members 

#include "AutoCounter.h" 

AutoCounter::CleanupCheck AutoCounter::verifier; 

int AutoCounter::count = 0; 

///:~ 
 

With AutoCounter in hand, we can now test the facilities of the 
PStash. The following example not only shows that the PStash 
destructor cleans up all the objects that it currently owns, but it also 
demonstrates how the AutoCounter class detects objects that 
haven’t been cleaned up: 

//: C16:TPStashTest.cpp 

//{L} AutoCounter 

#include "AutoCounter.h" 

#include "TPStash.h" 

#include <iostream> 

#include <fstream> 

using namespace std; 

 

int main() { 

  PStash<AutoCounter> acStash; 

  for(int i = 0; i < 10; i++) 

16: Introduction to Templates 713 

    acStash.add(AutoCounter::create()); 

  cout << "Removing 5 manually:" << endl; 

  for(int j = 0; j < 5; j++) 

    delete acStash.remove(j); 

  cout << "Remove two without deleting them:" 

       << endl; 

  // ... to generate the cleanup error message. 

  cout << acStash.remove(5) << endl; 

  cout << acStash.remove(6) << endl; 

  cout << "The destructor cleans up the rest:" 

       << endl; 

  // Repeat the test from earlier chapters:  

  ifstream in("TPStashTest.cpp"); 

  assure(in, "TPStashTest.cpp"); 

  PStash<string> stringStash; 

  string line; 

  while(getline(in, line)) 

    stringStash.add(new string(line)); 

  // Print out the strings: 

  for(int u = 0; stringStash[u]; u++) 

    cout << "stringStash[" << u << "] = " 

         << *stringStash[u] << endl; 

} ///:~ 
 

When AutoCounter elements 5 and 6 are removed from the 
PStash, they become the responsibility of the caller, but since the 
caller never cleans them up they cause memory leaks, which are 
then detected by AutoCounter at run time. 

When you run the program, you’ll see that the error message isn’t 
as specific as it could be. If you use the scheme presented in 
AutoCounter to discover memory leaks in your own system, you 
will probably want to have it print out more detailed information 
about the objects that haven’t been cleaned up. Volume 2 of this 
book shows more sophisticated ways to do this. 

Turning ownership on and off 
Let’s return to the ownership problem. Containers that hold objects 
by value don’t usually worry about ownership because they clearly 
own the objects they contain. But if your container holds pointers 
(which is more common with C++, especially with polymorphism), 



714 Thinking in C++ www.BruceEckel.com 

then it’s very likely those pointers may also be used somewhere else 
in the program, and you don’t necessarily want to delete the object 
because then the other pointers in the program would be 
referencing a destroyed object. To prevent this from happening, you 
must consider ownership when designing and using a container. 

Many programs are much simpler than this, and don’t encounter 
the ownership problem: One container holds pointers to objects 
that are used only by that container. In this case ownership is very 
straightforward: The container owns its objects. 

The best approach to handling the ownership problem is to give the 
client programmer a choice. This is often accomplished by a 
constructor argument that defaults to indicating ownership (the 
simplest case). In addition there may be “get” and “set” functions to 
view and modify the ownership of the container. If the container 
has functions to remove an object, the ownership state usually 
affects that removal, so you may also find options to control 
destruction in the removal function. You could conceivably add 
ownership data for every element in the container, so each position 
would know whether it needed to be destroyed; this is a variant of 
reference counting,  except that the container and not the object 
knows the number of references pointing to an object. 

//: C16:OwnerStack.h 

// Stack with runtime conrollable ownership 

#ifndef OWNERSTACK_H 

#define OWNERSTACK_H 

 

template<class T> class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt)  

      : data(dat), next(nxt) {} 

  }* head; 

  bool own; 

public: 

  Stack(bool own = true) : head(0), own(own) {} 

  ~Stack(); 

  void push(T* dat) { 

    head = new Link(dat,head); 

16: Introduction to Templates 715 

  } 

  T* peek() const {  

    return head ? head->data : 0;  

  } 

  T* pop(); 

  bool owns() const { return own; } 

  void owns(bool newownership) { 

    own = newownership; 

  } 

  // Auto-type conversion: true if not empty: 

  operator bool() const { return head != 0; } 

}; 

 

template<class T> T* Stack<T>::pop() { 

  if(head == 0) return 0; 

  T* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

 

template<class T> Stack<T>::~Stack() { 

  if(!own) return; 

  while(head) 

    delete pop(); 

} 

#endif // OWNERSTACK_H ///:~ 
 

The default behavior is for the container to destroy its objects but 
you can change this by either modifying the constructor argument 
or using the owns( ) read/write member functions. 

As with most templates you’re likely to see, the entire 
implementation is contained in the header file. Here’s a small test 
that exercises the ownership abilities: 

//: C16:OwnerStackTest.cpp 

//{L} AutoCounter  

#include "AutoCounter.h" 

#include "OwnerStack.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 



716 Thinking in C++ www.BruceEckel.com 

#include <string> 

using namespace std; 

 

int main() { 

  Stack<AutoCounter> ac; // Ownership on 

  Stack<AutoCounter> ac2(false); // Turn it off 

  AutoCounter* ap; 

  for(int i = 0; i < 10; i++) { 

    ap = AutoCounter::create(); 

    ac.push(ap); 

    if(i % 2 == 0) 

      ac2.push(ap); 

  } 

  while(ac2) 

    cout << ac2.pop() << endl; 

  // No destruction necessary since 

  // ac "owns" all the objects 

} ///:~ 
 

The ac2 object doesn’t own the objects you put into it, thus ac is 
the “master” container which takes responsibility for ownership. If, 
partway through the lifetime of a container, you want to change 
whether a container owns its objects, you can do so using owns( ). 

It would also be possible to change the granularity of the ownership 
so that it is on an object-by-object basis, but that will probably 
make the solution to the ownership problem more complex than the 
problem. 

Holding objects by value 
Actually creating a copy of the objects inside a generic container is a 
complex problem if you don’t have templates. With templates, 
things are relatively simple – you just say that you are holding 
objects rather than pointers: 

//: C16:ValueStack.h 

// Holding objects by value in a Stack 

#ifndef VALUESTACK_H 

#define VALUESTACK_H 

#include "../require.h" 

 

16: Introduction to Templates 717 

template<class T, int ssize = 100> 

class Stack { 

  // Default constructor performs object 

  // initialization for each element in array: 

  T stack[ssize]; 

  int top; 

public: 

  Stack() : top(0) {} 

  // Copy-constructor copies object into array: 

  void push(const T& x) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = x; 

  } 

  T peek() const { return stack[top]; } 

  // Object still exists when you pop it;  

  // it just isn't available anymore: 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

}; 

#endif // VALUESTACK_H ///:~ 
 

The copy constructor for the contained objects does most of the 
work by passing and returning the objects by value. Inside push( ), 
storage of the object onto the Stack array is accomplished with 
T::operator=. To guarantee that it works, a class called 
SelfCounter keeps track of object creations and copy-
constructions: 

//: C16:SelfCounter.h 

#ifndef SELFCOUNTER_H 

#define SELFCOUNTER_H 

#include "ValueStack.h" 

#include <iostream> 

 

class SelfCounter { 

  static int counter; 

  int id; 

public: 

  SelfCounter() : id(counter++) { 

    std::cout << "Created: " << id << std::endl; 

  } 

  SelfCounter(const SelfCounter& rv) : id(rv.id){ 



718 Thinking in C++ www.BruceEckel.com 

    std::cout << "Copied: " << id << std::endl; 

  } 

  SelfCounter operator=(const SelfCounter& rv) { 

    std::cout << "Assigned " << rv.id << " to "  

              << id << std::endl; 

    return *this; 

  } 

  ~SelfCounter() { 

    std::cout << "Destroyed: "<< id << std::endl; 

  } 

  friend std::ostream& operator<<(  

    std::ostream& os, const SelfCounter& sc){ 

    return os << "SelfCounter: " << sc.id; 

  } 

}; 

#endif // SELFCOUNTER_H ///:~ 

 

//: C16:SelfCounter.cpp {O} 

#include "SelfCounter.h" 

int SelfCounter::counter = 0; ///:~ 

 

//: C16:ValueStackTest.cpp 

//{L} SelfCounter 

#include "ValueStack.h" 

#include "SelfCounter.h" 

#include <iostream> 

using namespace std; 

 

int main() { 

  Stack<SelfCounter> sc; 

  for(int i = 0; i < 10; i++) 

    sc.push(SelfCounter()); 

  // OK to peek(), result is a temporary: 

  cout << sc.peek() << endl; 

  for(int k = 0; k < 10; k++) 

    cout << sc.pop() << endl; 

} ///:~ 
 

When a Stack container is created, the default constructor of the 
contained object is called for each object in the array. You’ll initially 
see 100 SelfCounter objects created for no apparent reason, but 
this is just the array initialization. This can be a bit expensive, but 
there’s no way around it in a simple design like this. An even more 
complex situation arises if you make the Stack more general by 

16: Introduction to Templates 719 

allowing the size to grow dynamically, because in the 
implementation shown above this would involve creating a new 
(larger) array, copying the old array to the new, and destroying the 
old array (this is, in fact, what the Standard C++ Library vector 
class does). 

Introducing iterators 
An iterator is an object that moves through a container of other 
objects and selects them one at a time, without providing direct 
access to the implementation of that container. Iterators provide a 
standard way to access elements, whether or not a container 
provides a way to access the elements directly. You will see iterators 
used most often in association with container classes, and iterators 
are a fundamental concept in the design and use of the Standard 
C++ containers, which are fully described in Volume 2 of this book 
(downloadable from www.BruceEckel.com). An iterator is also a 
kind of design pattern, which is the subject of a chapter in Volume 
2. 

In many ways, an iterator is a “smart pointer,” and in fact you’ll 
notice that iterators usually mimic most pointer operations. Unlike 
a pointer, however, the iterator is designed to be safe, so you’re 
much less likely to do the equivalent of walking off the end of an 
array (or if you do, you find out about it more easily). 

Consider the first example in this chapter. Here it is with a simple 
iterator added: 

//: C16:IterIntStack.cpp 

// Simple integer stack with iterators 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 



720 Thinking in C++ www.BruceEckel.com 

  int top; 

public: 

  IntStack() : top(0) {} 

  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  friend class IntStackIter; 

}; 

 

// An iterator is like a "smart" pointer: 

class IntStackIter { 

  IntStack& s; 

  int index; 

public: 

  IntStackIter(IntStack& is) : s(is), index(0) {} 

  int operator++() { // Prefix 

    require(index < s.top,  

      "iterator moved out of range"); 

    return s.stack[++index]; 

  } 

  int operator++(int) { // Postfix 

    require(index < s.top,  

      "iterator moved out of range"); 

    return s.stack[index++]; 

  } 

}; 

 

int main() { 

  IntStack is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Traverse with an iterator: 

  IntStackIter it(is); 

  for(int j = 0; j < 20; j++) 

    cout << it++ << endl; 

} ///:~ 
 

16: Introduction to Templates 721 

The IntStackIter has been created to work only with an IntStack. 
Notice that IntStackIter is a friend of IntStack, which gives it 
access to all the private elements of IntStack. 

Like a pointer, IntStackIter’s job is to move through an IntStack 
and retrieve values. In this simple example, the IntStackIter can 
move only forward (using both the pre- and postfix forms of the 
operator++). However, there is no boundary to the way an 
iterator can be defined, other than those imposed by the constraints 
of the container it works with. It is perfectly acceptable (within the 
limits of the underlying container) for an iterator to move around in 
any way within its associated container and to cause the contained 
values to be modified. 

It is customary that an iterator is created with a constructor that 
attaches it to a single container object, and that the iterator is not 
attached to a different container during its lifetime. (Iterators are 
usually small and cheap, so you can easily make another one.) 

With the iterator, you can traverse the elements of the stack without 
popping them, just as a pointer can move through the elements of 
an array. However, the iterator knows the underlying structure of 
the stack and how to traverse the elements, so even though you are 
moving through them by pretending to “increment a pointer,” 
what’s going on underneath is more involved. That’s the key to the 
iterator: It is abstracting the complicated process of moving from 
one container element to the next into something that looks like a 
pointer. The goal is for every iterator in your program to have the 
same interface so that any code that uses the iterator doesn’t care 
what it’s pointing to – it just knows that it can reposition all 
iterators the same way, so the container that the iterator points to is 
unimportant. In this way you can write more generic code. All of the 
containers and algorithms in the Standard C++ Library are based 
on this principle of iterators. 

To aid in making things more generic, it would be nice to be able to 
say “every container has an associated class called iterator,” but 
this will typically cause naming problems. The solution is to add a 
nested iterator class to each container (notice that in this case, 
“iterator” begins with a lowercase letter so that it conforms to the 



722 Thinking in C++ www.BruceEckel.com 

style of the Standard C++ Library). Here is IterIntStack.cpp with 
a nested iterator: 

//: C16:NestedIterator.cpp 

// Nesting an iterator inside the container 

//{L} fibonacci 

#include "fibonacci.h" 

#include "../require.h" 

#include <iostream> 

#include <string> 

using namespace std; 

 

class IntStack { 

  enum { ssize = 100 }; 

  int stack[ssize]; 

  int top; 

public: 

  IntStack() : top(0) {} 

  void push(int i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  int pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  class iterator; 

  friend class iterator; 

  class iterator { 

    IntStack& s; 

    int index; 

  public: 

    iterator(IntStack& is) : s(is), index(0) {} 

    // To create the "end sentinel" iterator: 

    iterator(IntStack& is, bool)  

      : s(is), index(s.top) {} 

    int current() const { return s.stack[index]; } 

    int operator++() { // Prefix 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[++index]; 

    } 

    int operator++(int) { // Postfix 

      require(index < s.top,  

16: Introduction to Templates 723 

        "iterator moved out of range"); 

      return s.stack[index++]; 

    } 

    // Jump an iterator forward 

    iterator& operator+=(int amount) { 

      require(index + amount < s.top, 

        "IntStack::iterator::operator+=() " 

        "tried to move out of bounds"); 

      index += amount; 

      return *this; 

    } 

    // To see if you're at the end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

    friend ostream&  

    operator<<(ostream& os, const iterator& it) { 

      return os << it.current(); 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  // Create the "end sentinel": 

  iterator end() { return iterator(*this, true);} 

}; 

 

int main() { 

  IntStack is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  cout << "Traverse the whole IntStack\n"; 

  IntStack::iterator it = is.begin(); 

  while(it != is.end()) 

    cout << it++ << endl; 

  cout << "Traverse a portion of the IntStack\n"; 

  IntStack::iterator  

    start = is.begin(), end = is.begin(); 

  start += 5, end += 15; 

  cout << "start = " << start << endl; 

  cout << "end = " << end << endl; 

  while(start != end) 

    cout << start++ << endl; 

} ///:~ 



724 Thinking in C++ www.BruceEckel.com 

 

When making a nested friend class, you must go through the 
process of first declaring the name of the class, then declaring it as a 
friend, then defining the class. Otherwise, the compiler will get 
confused. 

Some new twists have been added to the iterator. The current( ) 
member function produces the element in the container that the 
iterator is currently selecting. You can “jump” an iterator forward 
by an arbitrary number of elements using operator+=. Also, you’ll 
see two overloaded operators: == and != that will compare one 
iterator with another. These can compare any two 
IntStack::iterators, but they are primarily intended as a test to 
see if the iterator is at the end of a sequence in the same way that 
the “real” Standard C++ Library iterators do. The idea is that two 
iterators define a range, including the first element pointed to by 
the first iterator and up to but not including the last element 
pointed to by the second iterator. So if you want to move through 
the range defined by the two iterators, you say something like this: 

  while(start != end) 

    cout << start++ << endl; 
 

where start and end are the two iterators in the range. Note that 
the end iterator, which we often refer to as the end sentinel, is not 
dereferenced and is there only to tell you that you’re at the end of 
the sequence. Thus it represents “one past the end.” 

Much of the time you’ll want to move through the entire sequence 
in a container, so the container needs some way to produce the 
iterators indicating the beginning of the sequence and the end 
sentinel. Here, as in the Standard C++ Library, these iterators are 
produced by the container member functions begin( ) and end( ). 
begin( ) uses the first iterator constructor that defaults to 
pointing at the beginning of the container (this is the first element 
pushed on the stack). However, a second constructor, used by 
end( ), is necessary to create the end sentinel iterator. Being “at 
the end” means pointing to the top of the stack, because top always 
indicates the next available – but unused – space on the stack. This 
iterator constructor takes a second argument of type bool, which 
is a dummy to distinguish the two constructors. 

16: Introduction to Templates 725 

The Fibonacci numbers are used again to fill the IntStack in 
main( ), and iterators are used to move through the whole 
IntStack and also within a narrowed range of the sequence. 

The next step, of course, is to make the code general by templatizing 
it on the type that it holds, so that instead of being forced to hold 
only ints you can hold any type: 

//: C16:IterStackTemplate.h 

// Simple stack template with nested iterator 

#ifndef ITERSTACKTEMPLATE_H 

#define ITERSTACKTEMPLATE_H 

#include "../require.h" 

#include <iostream> 

 

template<class T, int ssize = 100> 

class StackTemplate { 

  T stack[ssize]; 

  int top; 

public: 

  StackTemplate() : top(0) {} 

  void push(const T& i) { 

    require(top < ssize, "Too many push()es"); 

    stack[top++] = i; 

  } 

  T pop() { 

    require(top > 0, "Too many pop()s"); 

    return stack[--top]; 

  } 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    StackTemplate& s; 

    int index; 

  public: 

    iterator(StackTemplate& st): s(st),index(0){} 

    // To create the "end sentinel" iterator: 

    iterator(StackTemplate& st, bool)  

      : s(st), index(s.top) {} 

    T operator*() const { return s.stack[index];} 

    T operator++() { // Prefix form 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[++index]; 



726 Thinking in C++ www.BruceEckel.com 

    } 

    T operator++(int) { // Postfix form 

      require(index < s.top,  

        "iterator moved out of range"); 

      return s.stack[index++]; 

    } 

    // Jump an iterator forward 

    iterator& operator+=(int amount) { 

      require(index + amount < s.top, 

        " StackTemplate::iterator::operator+=() " 

        "tried to move out of bounds"); 

      index += amount; 

      return *this; 

    } 

    // To see if you're at the end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

    friend std::ostream& operator<<( 

      std::ostream& os, const iterator& it) { 

      return os << *it; 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  // Create the "end sentinel": 

  iterator end() { return iterator(*this, true);} 

}; 

#endif // ITERSTACKTEMPLATE_H ///:~ 
 

You can see that the transformation from a regular class to a 
template is reasonably transparent. This approach of first creating 
and debugging an ordinary class, then making it into a template, is 
generally considered to be easier than creating the template from 
scratch. 

Notice that instead of just saying: 

friend iterator; // Make it a friend 
 

This code has: 

16: Introduction to Templates 727 

friend class iterator; // Make it a friend 
 

This is important because the name “iterator” is already in scope, 
from an included file. 

Instead of the current( ) member function, the iterator has an 
operator* to select the current element, which makes the iterator 
look more like a pointer and is a common practice. 

Here’s the revised example to test the template: 

//: C16:IterStackTemplateTest.cpp 

//{L} fibonacci 

#include "fibonacci.h" 

#include "IterStackTemplate.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  StackTemplate<int> is; 

  for(int i = 0; i < 20; i++) 

    is.push(fibonacci(i)); 

  // Traverse with an iterator: 

  cout << "Traverse the whole StackTemplate\n"; 

  StackTemplate<int>::iterator it = is.begin(); 

  while(it != is.end()) 

    cout << it++ << endl; 

  cout << "Traverse a portion\n"; 

  StackTemplate<int>::iterator  

    start = is.begin(), end = is.begin(); 

  start += 5, end += 15; 

  cout << "start = " << start << endl; 

  cout << "end = " << end << endl; 

  while(start != end) 

    cout << start++ << endl; 

  ifstream in("IterStackTemplateTest.cpp"); 

  assure(in, "IterStackTemplateTest.cpp"); 

  string line; 

  StackTemplate<string> strings; 

  while(getline(in, line)) 

    strings.push(line); 

  StackTemplate<string>::iterator  



728 Thinking in C++ www.BruceEckel.com 

    sb = strings.begin(), se = strings.end(); 

  while(sb != se) 

    cout << sb++ << endl; 

} ///:~ 
 

The first use of the iterator just marches it from beginning to end 
(and shows that the end sentinel works properly). In the second 
usage, you can see how iterators allow you to easily specify a range 
of elements (the containers and iterators in the Standard C++ 
Library use this concept of ranges almost everywhere). The 
overloaded operator+= moves the start and end iterators to 
positions in the middle of the range of the elements in is, and these 
elements are printed out. Notice in the output that the end sentinel 
is not included in the range, thus it can be one past the end of the 
range to let you know you’ve passed the end – but you don’t 
dereference the end sentinel, or else you can end up dereferencing a 
null pointer. (I’ve put guarding in the StackTemplate::iterator, 
but in the Standard C++ Library containers and iterators there is no 
such code – for efficiency reasons – so you must pay attention.) 

Lastly, to verify that the StackTemplate works with class objects, 
one is instantiated for string and filled with the lines from the 
source-code file, which are then printed out. 

Stack with iterators 
We can repeat the process with the dynamically-sized Stack class 
that has been used as an example throughout the book. Here’s the 
Stack class with a nested iterator folded into the mix: 

//: C16:TStack2.h 

// Templatized Stack with nested iterator 

#ifndef TSTACK2_H 

#define TSTACK2_H 

 

template<class T> class Stack { 

  struct Link { 

    T* data; 

    Link* next; 

    Link(T* dat, Link* nxt) 

      : data(dat), next(nxt) {} 

  }* head; 

16: Introduction to Templates 729 

public: 

  Stack() : head(0) {} 

  ~Stack(); 

  void push(T* dat) { 

    head = new Link(dat, head); 

  } 

  T* peek() const {  

    return head ? head->data : 0; 

  } 

  T* pop(); 

  // Nested iterator class: 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    Stack::Link* p; 

  public: 

    iterator(const Stack<T>& tl) : p(tl.head) {} 

    // Copy-constructor: 

    iterator(const iterator& tl) : p(tl.p) {} 

    // The end sentinel iterator: 

    iterator() : p(0) {} 

    // operator++ returns boolean indicating end: 

    bool operator++() { 

      if(p->next) 

        p = p->next; 

      else p = 0; // Indicates end of list 

      return bool(p); 

    } 

    bool operator++(int) { return operator++(); } 

    T* current() const { 

      if(!p) return 0; 

      return p->data; 

    } 

    // Pointer dereference operator: 

    T* operator->() const {  

      require(p != 0,  

        "PStack::iterator::operator->returns 0"); 

      return current();  

    } 

    T* operator*() const { return current(); } 

    // bool conversion for conditional test: 

    operator bool() const { return bool(p); } 

    // Comparison to test for end: 

    bool operator==(const iterator&) const { 

      return p == 0; 



730 Thinking in C++ www.BruceEckel.com 

    } 

    bool operator!=(const iterator&) const { 

      return p != 0; 

    } 

  }; 

  iterator begin() const {  

    return iterator(*this);  

  } 

  iterator end() const { return iterator(); } 

}; 

 

template<class T> Stack<T>::~Stack() { 

  while(head) 

    delete pop(); 

} 

 

template<class T> T* Stack<T>::pop() { 

  if(head == 0) return 0; 

  T* result = head->data; 

  Link* oldHead = head; 

  head = head->next; 

  delete oldHead; 

  return result; 

} 

#endif // TSTACK2_H ///:~ 
 

You’ll also notice the class has been changed to support ownership, 
which works now because the class knows the exact type (or at least 
the base type, which will work assuming virtual destructors are 
used). The default is for the container to destroy its objects but you 
are responsible for any pointers that you pop( ). 

The iterator is simple, and physically very small – the size of a 
single pointer. When you create an iterator, it’s initialized to the 
head of the linked list, and you can only increment it forward 
through the list. If you want to start over at the beginning, you 
create a new iterator, and if you want to remember a spot in the list, 
you create a new iterator from the existing iterator pointing at that 
spot (using the iterator’s copy-constructor). 

To call functions for the object referred to by the iterator, you can 
use the current( ) function, the operator*, or the pointer 
dereference operator-> (a common sight in iterators). The latter 

16: Introduction to Templates 731 

has an implementation that looks identical to current( ) because it 
returns a pointer to the current object, but is different because the 
pointer dereference operator performs the extra levels of 
dereferencing (see Chapter 12). 

The iterator class follows the form you saw in the prior example. 
class iterator is nested inside the container class, it contains 
constructors to create both an iterator pointing at an element in the 
container and an “end sentinel” iterator, and the container class has 
the begin( ) and end( ) methods to produce these iterators. (When 
you learn the more about the Standard C++ Library, you’ll see that 
the names iterator, begin( ), and end( ) that are used here were 
clearly lifted standard container classes. At the end of this chapter, 
you’ll see that this enables these container classes to be used as if 
they were Standard C++ Library container classes.) 

The entire implementation is contained in the header file, so there’s 
no separate cpp file. Here’s a small test that exercises the iterator: 

//: C16:TStack2Test.cpp 

#include "TStack2.h" 

#include "../require.h" 

#include <iostream> 

#include <fstream> 

#include <string> 

using namespace std; 

 

int main() { 

  ifstream file("TStack2Test.cpp"); 

  assure(file, "TStack2Test.cpp"); 

  Stack<string> textlines; 

  // Read file and store lines in the Stack: 

  string line; 

  while(getline(file, line)) 

    textlines.push(new string(line)); 

  int i = 0; 

  // Use iterator to print lines from the list: 

  Stack<string>::iterator it = textlines.begin(); 

  Stack<string>::iterator* it2 = 0; 

  while(it != textlines.end()) { 

    cout << it->c_str() << endl; 

    it++; 



732 Thinking in C++ www.BruceEckel.com 

    if(++i == 10) // Remember 10th line 

      it2 = new Stack<string>::iterator(it); 

  } 

  cout << (*it2)->c_str() << endl; 

  delete it2; 

} ///:~ 
 

A Stack is instantiated to hold string objects and filled with lines 
from a file. Then an iterator is created and used to move through 
the sequence. The tenth line is remembered by copy-constructing a 
second iterator from the first; later this line is printed and the 
iterator – created dynamically – is destroyed. Here, dynamic object 
creation is used to control the lifetime of the object. 

PStash with iterators 
For most container classes it makes sense to have an iterator. 
Here’s an iterator added to the PStash class: 

//: C16:TPStash2.h 

// Templatized PStash with nested iterator 

#ifndef TPSTASH2_H 

#define TPSTASH2_H 

#include "../require.h" 

#include <cstdlib> 

 

template<class T, int incr = 20> 

class PStash { 

  int quantity; 

  int next; 

  T** storage; 

  void inflate(int increase = incr); 

public: 

  PStash() : quantity(0), storage(0), next(0) {} 

  ~PStash(); 

  int add(T* element); 

  T* operator[](int index) const; 

  T* remove(int index); 

  int count() const { return next; } 

  // Nested iterator class: 

  class iterator; // Declaration required 

  friend class iterator; // Make it a friend 

  class iterator { // Now define it 

    PStash& ps; 

16: Introduction to Templates 733 

    int index; 

  public: 

    iterator(PStash& pStash) 

      : ps(pStash), index(0) {} 

    // To create the end sentinel: 

    iterator(PStash& pStash, bool) 

      : ps(pStash), index(ps.next) {} 

    // Copy-constructor: 

    iterator(const iterator& rv) 

      : ps(rv.ps), index(rv.index) {} 

    iterator& operator=(const iterator& rv) { 

      ps = rv.ps; 

      index = rv.index; 

      return *this; 

    } 

    iterator& operator++() { 

      require(++index <= ps.next, 

        "PStash::iterator::operator++ " 

        "moves index out of bounds"); 

      return *this; 

    } 

    iterator& operator++(int) { 

      return operator++(); 

    } 

    iterator& operator--() { 

      require(--index >= 0, 

        "PStash::iterator::operator-- " 

        "moves index out of bounds"); 

      return *this; 

    } 

    iterator& operator--(int) {  

      return operator--(); 

    } 

    // Jump interator forward or backward: 

    iterator& operator+=(int amount) { 

      require(index + amount < ps.next &&  

        index + amount >= 0,  

        "PStash::iterator::operator+= " 

        "attempt to index out of bounds"); 

      index += amount; 

      return *this; 

    } 

    iterator& operator-=(int amount) { 

      require(index - amount < ps.next &&  

        index - amount >= 0,  



734 Thinking in C++ www.BruceEckel.com 

        "PStash::iterator::operator-= " 

        "attempt to index out of bounds"); 

      index -= amount; 

      return *this; 

    } 

    // Create a new iterator that's moved forward 

    iterator operator+(int amount) const { 

      iterator ret(*this); 

      ret += amount; // op+= does bounds check 

      return ret; 

    } 

    T* current() const { 

      return ps.storage[index]; 

    } 

    T* operator*() const { return current(); } 

    T* operator->() const {  

      require(ps.storage[index] != 0,  

        "PStash::iterator::operator->returns 0"); 

      return current();  

    } 

    // Remove the current element: 

    T* remove(){ 

      return ps.remove(index); 

    } 

    // Comparison tests for end: 

    bool operator==(const iterator& rv) const { 

      return index == rv.index; 

    } 

    bool operator!=(const iterator& rv) const { 

      return index != rv.index; 

    } 

  }; 

  iterator begin() { return iterator(*this); } 

  iterator end() { return iterator(*this, true);} 

}; 

 

// Destruction of contained objects: 

template<class T, int incr> 

PStash<T, incr>::~PStash() { 

  for(int i = 0; i < next; i++) { 

    delete storage[i]; // Null pointers OK 

    storage[i] = 0; // Just to be safe 

  } 

  delete []storage; 

} 

16: Introduction to Templates 735 

 

template<class T, int incr> 

int PStash<T, incr>::add(T* element) { 

  if(next >= quantity) 

    inflate(); 

  storage[next++] = element; 

  return(next - 1); // Index number 

} 

 

template<class T, int incr> inline 

T* PStash<T, incr>::operator[](int index) const { 

  require(index >= 0, 

    "PStash::operator[] index negative"); 

  if(index >= next) 

    return 0; // To indicate the end 

  require(storage[index] != 0,  

    "PStash::operator[] returned null pointer"); 

  return storage[index]; 

} 

 

template<class T, int incr> 

T* PStash<T, incr>::remove(int index) { 

  // operator[] performs validity checks: 

  T* v = operator[](index); 

  // "Remove" the pointer: 

  storage[index] = 0; 

  return v; 

} 

 

template<class T, int incr> 

void PStash<T, incr>::inflate(int increase) { 

  const int tsz = sizeof(T*); 

  T** st = new T*[quantity + increase]; 

  memset(st, 0, (quantity + increase) * tsz); 

  memcpy(st, storage, quantity * tsz); 

  quantity += increase; 

  delete []storage; // Old storage 

  storage = st; // Point to new memory 

} 

#endif // TPSTASH2_H ///:~ 
 

Most of this file is a fairly straightforward translation of both the 
previous PStash and the nested iterator into a template. This 



736 Thinking in C++ www.BruceEckel.com 

time, however, the operators return references to the current 
iterator, which is the more typical and flexible approach to take. 

The destructor calls delete for all contained pointers, and because 
the type is captured by the template, proper destruction will take 
place. You should be aware that if the container holds pointers to a 
base-class type, that type should have a virtual destructor to 
ensure proper cleanup of derived objects whose addresses have 
been upcast when placing them in the container. 

The PStash::iterator follows the iterator model of bonding to a 
single container object for its lifetime. In addition, the copy-
constructor allows you to make a new iterator pointing at the same 
location as the existing iterator that you create it from, effectively 
making a bookmark into the container. The operator+= and 
operator-= member functions allow you to move an iterator by a 
number of spots, while respecting the boundaries of the container. 
The overloaded increment and decrement operators move the 
iterator by one place. The operator+ produces a new iterator 
that’s moved forward by the amount of the addend. As in the 
previous example, the pointer dereference operators are used to 
operate on the element the iterator is referring to, and remove( ) 
destroys the current object by calling the container’s remove( ). 

The same kind of code as before (a la the Standard C++ Library 
containers) is used for creating the end sentinel: a second 
constructor, the container’s end( ) member function, and 
operator== and operator!= for comparison. 

The following example creates and tests two different kinds of 
Stash objects, one for a new class called Int that announces its 
construction and destruction and one that holds objects of the 
Standard library string class. 

//: C16:TPStash2Test.cpp 

#include "TPStash2.h" 

#include "../require.h" 

#include <iostream> 

#include <vector> 

#include <string> 

using namespace std; 

16: Introduction to Templates 737 

 

class Int { 

  int i; 

public: 

  Int(int ii = 0) : i(ii) { 

    cout << ">" << i << ' '; 

  } 

  ~Int() { cout << "~" << i << ' '; } 

  operator int() const { return i; } 

  friend ostream& 

    operator<<(ostream& os, const Int& x) { 

      return os << "Int: " << x.i; 

  } 

  friend ostream& 

    operator<<(ostream& os, const Int* x) { 

      return os << "Int: " << x->i; 

  } 

}; 

 

int main() { 

  { // To force destructor call 

    PStash<Int> ints; 

    for(int i = 0; i < 30; i++) 

      ints.add(new Int(i)); 

    cout << endl; 

    PStash<Int>::iterator it = ints.begin(); 

    it += 5; 

    PStash<Int>::iterator it2 = it + 10; 

    for(; it != it2; it++) 

      delete it.remove(); // Default removal 

    cout << endl; 

    for(it = ints.begin();it != ints.end();it++) 

      if(*it) // Remove() causes "holes" 

        cout << *it << endl; 

  } // "ints" destructor called here 

  cout << "\n-------------------\n";   

  ifstream in("TPStash2Test.cpp"); 

  assure(in, "TPStash2Test.cpp"); 

  // Instantiate for String: 

  PStash<string> strings; 

  string line; 

  while(getline(in, line)) 

    strings.add(new string(line)); 

  PStash<string>::iterator sit = strings.begin(); 

  for(; sit != strings.end(); sit++) 



738 Thinking in C++ www.BruceEckel.com 

    cout << **sit << endl; 

  sit = strings.begin(); 

  int n = 26; 

  sit += n; 

  for(; sit != strings.end(); sit++) 

    cout << n++ << ": " << **sit << endl; 

} ///:~ 
 

For convenience, Int has an associated ostream operator<< for 
both an Int& and an Int*. 

The first block of code in main( ) is surrounded by braces to force 
the destruction of the PStash<Int> and thus the automatic 
cleanup by that destructor. A range of elements is removed and 
deleted by hand to show that the PStash cleans up the rest. 

For both instances of PStash, an iterator is created and used to 
move through the container. Notice the elegance produced by using 
these constructs; you aren’t assailed with the implementation 
details of using an array. You tell the container and iterator objects 
what to do, not how. This makes the solution easier to 
conceptualize, to build, and to modify. 

Why iterators? 
Up until now you’ve seen the mechanics of iterators, but 
understanding why they are so important takes a more complex 
example. 

It’s common to see polymorphism, dynamic object creation, and 
containers used together in a true object-oriented program. 
Containers and dynamic object creation solve the problem of not 
knowing how many or what type of objects you’ll need. And if the 
container is configured to hold pointers to base-class objects, an 
upcast occurs every time you put a derived-class pointer into the 
container (with the associated code organization and extensibility 
benefits). As the final code in Volume 1 of this book, this example 
will also pull together various aspects of everything you’ve learned 
so far – if you can follow this example, then you’re ready for 
Volume 2. 

16: Introduction to Templates 739 

Suppose you are creating a program that allows the user to edit and 
produce different kinds of drawings. Each drawing is an object that 
contains a collection of Shape objects: 

//: C16:Shape.h 

#ifndef SHAPE_H 

#define SHAPE_H 

#include <iostream> 

#include <string> 

 

class Shape { 

public: 

  virtual void draw() = 0; 

  virtual void erase() = 0; 

  virtual ~Shape() {} 

}; 

 

class Circle : public Shape { 

public: 

  Circle() {} 

  ~Circle() { std::cout << "Circle::~Circle\n"; } 

  void draw() { std::cout << "Circle::draw\n";} 

  void erase() { std::cout << "Circle::erase\n";} 

}; 

 

class Square : public Shape { 

public: 

  Square() {} 

  ~Square() { std::cout << "Square::~Square\n"; } 

  void draw() { std::cout << "Square::draw\n";} 

  void erase() { std::cout << "Square::erase\n";} 

}; 

 

class Line : public Shape { 

public: 

  Line() {} 

  ~Line() { std::cout << "Line::~Line\n"; } 

  void draw() { std::cout << "Line::draw\n";} 

  void erase() { std::cout << "Line::erase\n";} 

}; 

#endif // SHAPE_H ///:~ 
 

This uses the classic structure of virtual functions in the base class 
that are overridden in the derived class. Notice that the Shape class 



740 Thinking in C++ www.BruceEckel.com 

includes a virtual destructor, something you should automatically 
add to any class with virtual functions. If a container holds 
pointers or references to Shape objects, then when the virtual 
destructors are called for those objects everything will be properly 
cleaned up. 

Each different type of drawing in the following example makes use 
of a different kind of templatized container class: the PStash and 
Stack that have been defined in this chapter, and the vector class 
from the Standard C++ Library. The “use”’ of the containers is 
extremely simple, and in general inheritance might not be the best 
approach (composition could make more sense), but in this case 
inheritance is a simple approach and it doesn’t detract from the 
point made in the example. 

//: C16:Drawing.cpp 

#include <vector> // Uses Standard vector too! 

#include "TPStash2.h" 

#include "TStack2.h" 

#include "Shape.h" 

using namespace std; 

 

// A Drawing is primarily a container of Shapes: 

class Drawing : public PStash<Shape> { 

public: 

  ~Drawing() { cout << "~Drawing" << endl; } 

}; 

 

// A Plan is a different container of Shapes: 

class Plan : public Stack<Shape> { 

public: 

  ~Plan() { cout << "~Plan" << endl; } 

}; 

 

// A Schematic is a different container of Shapes: 

class Schematic : public vector<Shape*> { 

public: 

  ~Schematic() { cout << "~Schematic" << endl; } 

}; 

 

// A function template: 

template<class Iter> 

void drawAll(Iter start, Iter end) { 

16: Introduction to Templates 741 

  while(start != end) { 

    (*start)->draw(); 

    start++; 

  } 

} 

 

int main() { 

  // Each type of container has  

  // a different interface: 

  Drawing d; 

  d.add(new Circle); 

  d.add(new Square); 

  d.add(new Line); 

  Plan p; 

  p.push(new Line); 

  p.push(new Square); 

  p.push(new Circle); 

  Schematic s; 

  s.push_back(new Square); 

  s.push_back(new Circle); 

  s.push_back(new Line); 

  Shape* sarray[] = {  

    new Circle, new Square, new Line  

  }; 

  // The iterators and the template function 

  // allow them to be treated generically: 

  cout << "Drawing d:" << endl; 

  drawAll(d.begin(), d.end()); 

  cout << "Plan p:" << endl; 

  drawAll(p.begin(), p.end()); 

  cout << "Schematic s:" << endl; 

  drawAll(s.begin(), s.end()); 

  cout << "Array sarray:" << endl; 

  // Even works with array pointers: 

  drawAll(sarray,  

    sarray + sizeof(sarray)/sizeof(*sarray)); 

  cout << "End of main" << endl; 

} ///:~ 
 

The different types of containers all hold pointers to Shape and 
pointers to upcast objects of classes derived from Shape. However, 
because of polymorphism, the proper behavior still occurs when the 
virtual functions are called. 



742 Thinking in C++ www.BruceEckel.com 

Note that sarray, the array of Shape*, can also be thought of as a 
container. 

Function templates 
In drawAll( ) you see something new. So far in this chapter, we 
have been using only class templates, which instantiate new classes 
based on one or more type parameters. However, you can as easily 
create function templates, which create new functions based on 
type parameters. The reason you create a function template is the 
same reason you use for a class template: You’re trying to create 
generic code, and you do this by delaying the specification of one or 
more types. You just want to say that these type parameters support 
certain operations, not exactly what types they are. 

The function template drawAll( ) can be thought of as an 
algorithm (and this is what most of the function templates in the 
Standard C++ Library are called). It just says how to do something 
given iterators describing a range of elements, as long as these 
iterators can be dereferenced, incremented, and compared. These 
are exactly the kind of iterators we have been developing in this 
chapter, and also – not coincidentally – the kind of iterators that 
are produced by the containers in the Standard C++ Library, 
evidenced by the use of vector in this example.  

We’d also like drawAll( ) to be a generic algorithm, so that the 
containers can be any type at all and we don’t have to write a new 
version of the algorithm for each different type of container. Here’s 
where function templates are essential, because they automatically 
generate the specific code for each different type of container. But 
without the extra indirection provided by the iterators, this 
genericness wouldn’t be possible. That’s why iterators are 
important; they allow you to write general-purpose code that 
involves containers without knowing the underlying structure of the 
container. (Notice that, in C++, iterators and generic algorithms 
require function templates in order to work.) 

You can see the proof of this in main( ), since drawAll( ) works 
unchanged with each different type of container. And even more 
interesting, drawAll( ) also works with pointers to the beginning 

16: Introduction to Templates 743 

and end of the array sarray. This ability to treat arrays as 
containers is integral to the design of the Standard C++ Library, 
whose algorithms look much like drawAll( ). 

Because container class templates are rarely subject to the 
inheritance and upcasting you see with “ordinary” classes, you’ll 
almost never see virtual functions in container classes. Container 
class reuse is implemented with templates, not with inheritance. 

Summary 
Container classes are an essential part of object-oriented 
programming. They are another way to simplify and hide the details 
of a program and to speed the process of program development. In 
addition, they provide a great deal of safety and flexibility by 
replacing the primitive arrays and relatively crude data structure 
techniques found in C. 

Because the client programmer needs containers, it’s essential that 
they be easy to use. This is where the template comes in. With 
templates the syntax for source-code reuse (as opposed to object-
code reuse provided by inheritance and composition) becomes 
trivial enough for the novice user. In fact, reusing code with 
templates is notably easier than inheritance and composition. 

Although you’ve learned about creating container and iterator 
classes in this book, in practice it’s much more expedient to learn 
the containers and iterators in the Standard C++ Library, since you 
can expect them to be available with every compiler. As you will see 
in Volume 2 of this book (downloadable from 
www.BruceEckel.com), the containers and algorithms in the 
Standard C++ Library will virtually always fulfill your needs so you 
don’t have to create new ones yourself. 

The issues involved with container-class design have been touched 
upon in this chapter, but you may have gathered that they can go 
much further. A complicated container-class library may cover all 
sorts of additional issues, including multithreading, persistence and 
garbage collection. 



744 Thinking in C++ www.BruceEckel.com 

Exercises 
Solutions to selected exercises can be found in the electronic document The Thinking in C++ 
Annotated Solution Guide, available for a small fee from www.BruceEckel.com. 

1.  Implement the inheritance hierarchy in the OShape 
diagram in this chapter. 

2.  Modify the result of Exercise 1 from Chapter 15 to use the  
Stack and iterator in TStack2.h instead of an array of 
Shape pointers. Add destructors to the class hierarchy so 
you can see that the Shape objects are destroyed when 
the Stack goes out of scope. 

3.  Modify TPStash.h so that the increment value used by 
inflate( ) can be changed throughout the lifetime of a 
particular container object. 

4.  Modify TPStash.h so that the increment value used by 
inflate( ) automatically resizes itself to reduce the 
number of times it needs to be called. For example, each 
time it is called it could double the increment value for 
use in the next call. Demonstrate this functionality by 
reporting whenever an inflate( ) is called, and write test 
code in main( ). 

5.  Templatize the fibonacci( ) function on the type of value 
that it produces (so it can produce long, float, etc. 
instead of just int). 

6.  Using the Standard C++ Library vector as an underlying 
implementation, create a Set template class that accepts 
only one of each type of object that you put into it. Make a 
nested iterator class that supports the “end sentinel” 
concept in this chapter. Write test code for your Set in 
main( ), and then substitute the Standard C++ Library 
set template to verify that the behavior is correct. 

7.  Modify AutoCounter.h so that it can be used as a 
member object inside any class whose creation and 
destruction you want to trace. Add a string member to 
hold the name of the class. Test this tool inside a class of 
your own. 

8.  Create a version of OwnerStack.h that uses a Standard 
C++ Library vector as its underlying implementation. 
You may need to look up some of the member functions 

16: Introduction to Templates 745 

of vector in order to do this (or just look at the 
<vector> header file). 

9.  Modify ValueStack.h so that it dynamically expands as 
you push( ) more objects and it runs out of space. 
Change ValueStackTest.cpp to test the new 
functionality. 

10.  Repeat Exercise 9 but use a Standard C++ Library 
vector as the internal implementation of the 
ValueStack. Notice how much easier this is.  

11.  Modify ValueStackTest.cpp so that it uses a Standard 
C++ Library vector instead of a Stack in main( ). 
Notice the run-time behavior: Does the vector 
automatically create a bunch of default objects when it is 
created? 

12.  Modify TStack2.h so that it uses a Standard C++ 
Library vector as its underlying implementation. Make 
sure that you don’t change the interface, so that 
TStack2Test.cpp works unchanged. 

13.  Repeat Exercise 12 using a Standard C++ Library stack 
instead of a vector (you may need to look up information 
about the stack, or hunt through the <stack> header 
file). 

14.  Modify TPStash2.h so that it uses a Standard C++ 
Library vector as its underlying implementation. Make 
sure that you don’t change the interface, so that 
TPStash2Test.cpp works unchanged. 

15.  In IterIntStack.cpp, modify IntStackIter to give it an 
“end sentinel” constructor, and add operator== and 
operator!=. In main( ), use an iterator to move 
through the elements of the container until you reach the 
end sentinel. 

16.  Using TStack2.h, TPStash2.h, and Shape.h, 
instantiate Stack and PStash containers for Shape*, fill 
them each with an assortment of upcast Shape pointers, 
then use iterators to move through each container and 
call draw( ) for each object. 

17.  Templatize the Int class in TPStash2Test.cpp so that it 
holds any type of object (feel free to change the name of 
the class to something more appropriate). 



746 Thinking in C++ www.BruceEckel.com 

18.  Templatize the IntArray class in 
IostreamOperatorOverloading.cpp from Chapter 
12, templatizing both the type of object that is contained 
and the size of the internal array. 

19.  Turn ObjContainer in NestedSmartPointer.cpp 
from Chapter 12 into a template. Test it with two different 
classes. 

20.  Modify C15:OStack.h and C15:OStackTest.cpp by 
templatizing class Stack so that it automatically 
multiply inherits from the contained class and from 
Object. The generated Stack should accept and produce 
only pointers of the contained type. 

21.  Repeat Exercise 20 using vector instead of Stack. 

22.  Inherit a class StringVector from vector<void*> and 
redefine the push_back( ) and operator[] member 
functions to accept and produce only string* (and 
perform the proper casting). Now create a template that 
will automatically make a container class to do the same 
thing for pointers to any type. This technique is often 
used to reduce code bloat from too many template 
instantiations. 

23.  In TPStash2.h, add and test an operator- to 
PStash::iterator, following the logic of operator+. 

24.  In Drawing.cpp, add and test a function template to call 
erase( ) member functions. 

25.  (Advanced) Modify the Stack class in TStack2.h to 
allow full granularity of ownership: Add a flag to each 
link indicating whether that link owns the object it points 
to, and support this information in the push( ) function 
and destructor. Add member functions to read and 
change the ownership for each link. 

26.  (Advanced) Modify PointerToMemberOperator.cpp 
from Chapter 12 so that the FunctionObject and 
operator->* are templatized to work with any return 
type (for operator->*, you’ll have to use member 
templates, described in Volume 2). Add and test support 
for zero, one and two arguments in Dog member 
functions. 

  747 

 

 

 

 

 

 

 

 

A: Coding Style 
This appendix is not about indenting and placement of 

parentheses and curly braces, although that will be 

mentioned. It is about the general guidelines used in  

this book for organizing the code listings. 



748 Thinking in C++ www.BruceEckel.com 

Although many of these issues have been introduced throughout 
the book, this appendix appears at the end so it can be assumed that 
every topic is fair game, and if you don’t understand something you 
can look it up in the appropriate section. 

All the decisions about coding style in this book have been 
deliberately considered and made, sometimes over a period of 
years. Of course, everyone has their reasons for organizing code the 
way they do, and I’m just trying to tell you how I arrived at mine 
and the constraints and environmental factors that brought me to 
those decisions. 

General 
In the text of this book, identifiers (function, variable, and class 
names) are set in bold. Most keywords will also be set in bold, 
except for those keywords that are used so much that the bolding 
can become tedious, such as “class” and “virtual.” 

I use a particular coding style for the examples in this book. It was 
developed over a number of years, and was partially inspired by 
Bjarne Stroustrup’s style in his original The C++ Programming 
Language.1 The subject of formatting style is good for hours of hot 
debate, so I’ll just say I’m not trying to dictate correct style via my 
examples; I have my own motivation for using the style that I do. 
Because C++ is a free-form programming language, you can 
continue to use whatever style you’re comfortable with. 

That said, I will note that it is important to have a consistent 
formatting style within a project. If you search the Internet, you will 
find a number of tools that can be used to reformat all the code in 
your project to achieve this valuable consistency. 

The programs in this book are files that are automatically extracted 
from the text of the book, which allows them to be tested to ensure 
that they work correctly. Thus, the code files printed in the book 

                                                   
1 Ibid. 

A: Coding Style  749 

should all work without compile-time errors when compiled with an 
implementation that conforms to Standard C++ (note that not all 
compilers support all language features). The errors that should 
cause compile-time error messages are commented out with the 
comment //! so they can be easily discovered and tested using 
automatic means. Errors discovered and reported to the author will 
appear first in the electronic version of the book (at 
www.BruceEckel.com) and later in updates of the book. 

One of the standards in this book is that all programs will compile 
and link without errors (although they will sometimes cause 
warnings). To this end, some of the programs, which demonstrate 
only a coding example and don’t represent stand-alone programs, 
will have empty main( ) functions, like this 

int main() {} 
 

This allows the linker to complete without an error.  

The standard for main( ) is to return an int, but Standard C++ 
states that if there is no return statement inside main( ), the 
compiler will automatically generate code to return 0. This option 
(no return statement in main( )) will be used in this book (some 
compilers may still generate warnings for this, but those are not 
compliant with Standard C++). 

File names 
In C, it has been traditional to name header files (containing 
declarations) with an extension of .h and implementation files (that 
cause storage to be allocated and code to be generated) with an 
extension of .c. C++ went through an evolution. It was first 
developed on Unix, where the operating system was aware of upper 
and lower case in file names. The original file names were simply 
capitalized versions of the C extensions: .H and .C. This of course 
didn’t work for operating systems that didn’t distinguish upper and 
lower case, such as DOS. DOS C++ vendors used extensions of hxx 
and cxx for header files and implementation files, respectively, or 
hpp and cpp. Later, someone figured out that the only reason you 



750 Thinking in C++ www.BruceEckel.com 

needed a different extension for a file was so the compiler could 
determine whether to compile it as a C or C++ file. Because the 
compiler never compiled header files directly, only the 
implementation file extension needed to be changed. The custom, 
across virtually all systems, has now become to use cpp for 
implementation files and h for header files. Note that when 
including Standard C++ header files, the option of having no file 
name extension is used, i.e.: #include <iostream>. 

Begin and end comment tags 
A very important issue with this book is that all code that you see in 
the book must be verified to be correct (with at least one compiler). 
This is accomplished by automatically extracting the files from the 
book. To facilitate this, all code listings that are meant to be 
compiled (as opposed to code fragments, of which there are few) 
have comment tags at the beginning and end. These tags are used 
by the code-extraction tool ExtractCode.cpp in Volume 2 of this 
book (which you can find on the Web site www.BruceEckel.com) to 
pull each code listing out of the plain-ASCII text version of this 
book. 

The end-listing tag simply tells ExtractCode.cpp that it’s the end 
of the listing, but the begin-listing tag is followed by information 
about what subdirectory the file belongs in (generally organized by 
chapters, so a file that belongs in Chapter 8 would have a tag of 
C08), followed by a colon and the name of the listing file. 

Because ExtractCode.cpp also creates a makefile for each 
subdirectory, information about how a program is made and the 
command-line used to test it is also incorporated into the listings. If 
a program is stand-alone (it doesn’t need to be linked with anything 
else) it has no extra information. This is also true for header files. 
However, if it doesn’t contain a main( ) and is meant to be linked 
with something else, then it has an {O} after the file name. If this 
listing is meant to be the main program but needs to be linked with 
other components, there’s a separate line that begins with //{L} 
and continues with all the files that need to be linked (without 
extensions, since those can vary from platform to platform). 

A: Coding Style  751 

You can find examples throughout the book. 

If a file should be extracted but the begin- and end-tags should not 
be included in the extracted file (for example, if it’s a file of test 
data) then the begin-tag is immediately followed by a ‘!’. 

Parentheses, braces, and indentation 
You may notice the formatting style in this book is different from 
many traditional C styles. Of course, everyone thinks their own style 
is the most rational. However, the style used here has a simple logic 
behind it, which will be presented here mixed in with ideas on why 
some of the other styles developed. 

The formatting style is motivated by one thing: presentation, both 
in print and in live seminars. You may feel your needs are different 
because you don’t make a lot of presentations. However, working 
code is read much more than it is written, and so it should be easy 
for the reader to perceive. My two most important criteria are 
“scannability” (how easy it is for the reader to grasp the meaning of 
a single line) and the number of lines that can fit on a page. This 
latter may sound funny, but when you are giving a live presentation, 
it’s very distracting for the audience if the presenter must shuffle 
back and forth between slides, and a few wasted lines can cause 
this. 

Everyone seems to agree that code inside braces should be 
indented. What people don’t agree on – and the place where there’s 
the most inconsistency within formatting styles – is this: Where 
does the opening brace go? This one question, I think, is what 
causes such variations among coding styles (For an enumeration of 
coding styles, see C++ Programming Guidelines, by Tom Plum and 
Dan Saks, Plum Hall 1991.) I’ll try to convince you that many of 
today’s coding styles come from pre-Standard C constraints (before 
function prototypes) and are thus inappropriate now. 

First, my answer to that key question: the opening brace should 
always go on the same line as the “precursor” (by which I mean 
“whatever the body is about: a class, function, object definition, if 



752 Thinking in C++ www.BruceEckel.com 

statement, etc.”). This is a single, consistent rule I apply to all of the 
code I write, and it makes formatting much simpler. It makes the 
“scannability” easier – when you look at this line: 

int func(int a); 
 

you know, by the semicolon at the end of the line, that this is a 
declaration and it goes no further, but when you see the line: 

int func(int a) { 
 

you immediately know it’s a definition because the line finishes 
with an opening brace, not a semicolon. By using this approach, 
there’s no difference in where you place the opening parenthesis for 
a multi-line definition: 

int func(int a) { 

  int b = a + 1; 

  return b * 2; 

} 
 

and for a single-line definition that is often used for inlines: 

int func(int a) { return (a + 1) * 2; } 
 

Similarly, for a class: 

class Thing; 
 

is a class name declaration, and 

class Thing { 
 

is a class definition. You can tell by looking at the single line in all 
cases whether it’s a declaration or definition. And of course, putting 
the opening brace on the same line, instead of a line by itself, allows 
you to fit more lines on a page.  

So why do we have so many other styles? In particular, you’ll notice 
that most people create classes following the style above (which 
Stroustrup uses in all editions of his book The C++ Programming 
Language from Addison-Wesley) but create function definitions by 
putting the opening brace on a single line by itself (which also 

A: Coding Style  753 

engenders many different indentation styles). Stroustrup does this 
except for short inline functions. With the approach I describe here, 
everything is consistent – you name whatever it is (class, function, 
enum, etc.) and on that same line you put the opening brace to 
indicate that the body for this thing is about to follow. Also, the 
opening brace is the same for short inlines and ordinary function 
definitions. 

I assert that the style of function definition used by many folks 
comes from pre-function-prototyping C, in which you didn’t declare 
the arguments inside the parentheses, but instead between the 
closing parenthesis and the opening curly brace (this shows C’s 
assembly-language roots): 

void bar() 

 int x; 

 float y; 

{ 

 /* body here */ 

} 
 

Here, it would be quite ungainly to put the opening brace on the 
same line, so no one did it. However, they did make various 
decisions about whether the braces should be indented with the 
body of the code or whether they should be at the level of the 
“precursor.” Thus, we got many different formatting styles.  

There are other arguments for placing the brace on the line 
immediately following the declaration (of a class, struct, function, 
etc.). The following came from a reader, and is presented here so 
you know what the issues are: 

Experienced ‘vi’ (vim) users know that typing the ‘]’ key twice 
will take the user to the next occurrence of ‘{‘ (or ^L) in column 
0. This feature is extremely useful in navigating code (jumping 
to the next function or class definition). [My comment: when I 
was initially working under Unix, GNU Emacs was just 
appearing and I became enmeshed in that. As a result, ‘vi’ has 
never made sense to me, and thus I do not think in terms of 
“column 0 locations.” However, there is a fair contingent of ‘vi’ 
users out there, and they are affected by this issue.] 



754 Thinking in C++ www.BruceEckel.com 

Placing the ‘{‘ on the next line eliminates some confusing code in 
complex conditionals, aiding in the scannability. Example: 

if(cond1 

   && cond2 

   && cond3) { 

   statement; 

} 
 

The above [asserts the reader] has poor scannability. However, 

if (cond1 

&& cond2 

&& cond3) 

{ 

statement; 

} 
 

breaks up the ‘if’ from the body, resulting in better readability. 
[Your opinions on whether this is true will vary depending on 
what you’re used to.] 

Finally, it’s much easier to visually align braces when they are 
aligned in the same column. They visually "stick out" much 
better. [End of reader comment] 

The issue of where to put the opening curly brace is probably the 
most discordant issue. I’ve learned to scan both forms, and in the 
end it comes down to what you’ve grown comfortable with. 
However, I note that the official Java coding standard (found on 
Sun’s Java Web site) is effectively the same as the one I present 
here – since more folks are beginning to program in both 
languages, the consistency between coding styles may be helpful. 

The approach I use removes all the exceptions and special cases, 
and logically produces a single style of indentation as well. Even 
within a function body, the consistency holds, as in: 

for(int i = 0; i < 100; i++) { 

  cout << i << endl; 

  cout << x * i << endl; 

} 
 

A: Coding Style  755 

The style is easy to teach and to remember – you use a single, 
consistent rule for all your formatting, not one for classes, two for 
functions (one-line inlines vs. multi-line), and possibly others for 
for loops, if statements, etc. The consistency alone, I think, makes 
it worthy of consideration. Above all, C++ is a newer language than 
C, and although we must make many concessions to C, we shouldn’t 
be carrying too many artifacts with us that cause problems in the 
future. Small problems multiplied by many lines of code become big 
problems. For a thorough examination of the subject, albeit in C, 
see C Style: Standards and Guidelines, by David Straker (Prentice-
Hall 1992). 

The other constraint I must work under is the line width, since the 
book has a limitation of 50 characters. What happens when 
something is too long to fit on one line? Well, again I strive to have 
a consistent policy for the way lines are broken up, so they can be 
easily viewed. As long as something is part of a single definition, 
argument list, etc., continuation lines should be indented one level 
in from the beginning of that definition, argument list, etc.  

Identifier names 
Those familiar with Java will notice that I have switched to using 
the standard Java style for all identifier names. However, I cannot 
be completely consistent here because identifiers in the Standard C 
and C++ libraries do not follow this style. 

The style is quite straightforward. The first letter of an identifier is 
only capitalized if that identifier is a class. If it is a function or 
variable, then the first letter is lowercase. The rest of the identifier 
consists of one or more words, run together but distinguished by 
capitalizing each word. So a class looks like this: 

class FrenchVanilla : public IceCream { 
 

an object identifier looks like this: 

FrenchVanilla myIceCreamCone(3); 
 

and a function looks like this: 



756 Thinking in C++ www.BruceEckel.com 

void eatIceCreamCone(); 
 

(for either a member function or a regular function). 

The one exception is for compile-time constants (const or 
#define), in which all of the letters in the identifier are uppercase. 

The value of the style is that capitalization has meaning – you can 
see from the first letter whether you’re talking about a class or an 
object/method. This is especially useful when static class members 
are accessed. 

Order of header inclusion 
Headers are included in order from “the most specific to the most 
general.” That is, any header files in the local directory are included 
first, then any of my own “tool” headers, such as require.h, then 
any third-party library headers, then the Standard C++ Library 
headers, and finally the C library headers. 

The justification for this comes from John Lakos in Large-Scale 
C++ Software Design (Addison-Wesley, 1996): 

Latent usage errors can be avoided by ensuring that the .h file 
of a component parses by itself – without externally-provided 
declarations or definitions... Including the .h file as the very 
first line of the .c file ensures that no critical piece of 
information intrinsic to the physical interface of the component 
is missing from the .h file (or, if there is, that you will find out 
about it as soon as you try to compile the .c file). 

If the order of header inclusion goes “from most specific to most 
general,” then it’s more likely that if your header doesn’t parse by 
itself, you’ll find out about it sooner and prevent annoyances down 
the road. 

A: Coding Style  757 

Include guards on header files 
Include guards are always used inside header files to prevent 
multiple inclusion of a header file during the compilation of a single 
.cpp file. The include guards are implemented using a preprocessor 
#define and checking to see that a name hasn’t already been 
defined. The name used for the guard is based on the name of the 
header file, with all letters of the file name uppercase and replacing 
the ‘.’ with an underscore. For example: 

// IncludeGuard.h 

#ifndef INCLUDEGUARD_H 

#define INCLUDEGUARD_H 

// Body of header file here... 

#endif // INCLUDEGUARD_H 
 

The identifier on the last line is included for clarity. Although some 
preprocessors ignored any characters after an #endif, that isn’t 
standard behavior and so the identifier is commented.  

Use of namespaces 
In header files, any “pollution” of the namespace in which the 
header is included must be scrupulously avoided. That is, if you 
change the namespace outside of a function or class, you will cause 
that change to occur for any file that includes your header, resulting 
in all kinds of problems. No using declarations of any kind are 
allowed outside of function definitions, and no global using 
directives are allowed in header files. 

In cpp files, any global using directives will only affect that file, 
and so in this book they are generally used to produce more easily-
readable code, especially in small programs. 

Use of require( ) and assure( ) 
The require( ) and assure( ) functions defined in require.h are 
used consistently throughout most of the book, so that they may 
properly report problems. If you are familiar with the concepts of 



758 Thinking in C++ www.BruceEckel.com 

preconditions and postconditions (introduced by Bertrand Meyer) 
you will recognize that the use of require( ) and assure( ) more 
or less provide preconditions (usually) and postconditions 
(occasionally). Thus, at the beginning of a function, before any of 
the “core” of the function is executed, the preconditions are checked 
to make sure everything is proper and that all of the necessary 
conditions are correct. Then the “core” of the function is executed, 
and sometimes some postconditions are checked to make sure that 
the new state of the data is within defined parameters. You’ll notice 
that the postcondition checks are rare in this book, and assure( ) 
is primarily used to make sure that files were opened successfully. 

  759 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

B: Programming Guidelines 
This appendix is a collection of suggestions for C++ 

programming. They’ve been assembled over the course 

of my teaching and programming experience and 



760 Thinking in C++ www.BruceEckel.com 

also from the insights of friends including Dan Saks (co-author with 
Tom Plum of C++ Programming Guidelines, Plum Hall, 1991), Scott 
Meyers (author of Effective C++, 2nd edition, Addison-Wesley, 1998), 
and Rob Murray (author of C++ Strategies & Tactics, Addison-Wesley, 
1993). Also, many of the tips are summarized from the pages of 
Thinking in C++.  

1. First make it work, then make it fast. This is true even if you 
are certain that a piece of code is really important and that it 
will be a principal bottleneck in your system. Don’t do it. Get 
the system going first with as simple a design as possible. 
Then if it isn’t going fast enough, profile it. You’ll almost 
always discover that “your” bottleneck isn’t the problem. Save 
your time for the really important stuff. 

2. Elegance always pays off. It’s not a frivolous pursuit. Not only 
does it give you a program that’s easier to build and debug, 
but it’s also easier to understand and maintain, and that’s 
where the financial value lies. This point can take some 
experience to believe, because it can seem that while you’re 
making a piece of code elegant, you’re not being productive. 
The productivity comes when the code seamlessly integrates 
into your system, and even more so when the code or system 
is modified. 

3. Remember the “divide and conquer” principle. If the problem 
you’re looking at is too confusing, try to imagine what the 
basic operation of the program would be, given the existence 
of a magic “piece” that handles the hard parts. That “piece” is 
an object – write the code that uses the object, then look at 
the object and encapsulate its hard parts into other objects, 
etc. 

4. Don’t automatically rewrite all your existing C code in C++ 
unless you need to significantly change its functionality (that 
is, don’t fix it if it isn’t broken). Recompiling C in C++ is a 
valuable activity because it may reveal hidden bugs. However, 
taking C code that works fine and rewriting it in C++ may not 
be the best use of your time, unless the C++ version will 
provide a lot of opportunities for reuse as a class. 

B: Programming Guidelines 761 

5. If you do have a large body of C code that needs changing, 
first isolate the parts of the code that will not be modified, 
possibly wrapping those functions in an “API class” as static 
member functions. Then focus on the code that will be 
changed, refactoring it into classes to facilitate easy 
modifications as your maintenance proceeds. 

6. Separate the class creator from the class user (client 
programmer). The class user is the “customer” and doesn’t 
need or want to know what’s going on behind the scenes of 
the class. The class creator must be the expert in class design 
and write the class so that it can be used by the most novice 
programmer possible, yet still work robustly in the 
application. Library use will be easy only if it’s transparent. 

7. When you create a class, make your names as clear as 
possible. Your goal should be to make the client 
programmer’s interface conceptually simple. Attempt to 
make your names so clear that comments are unnecessary. To 
this end, use function overloading and default arguments to 
create an intuitive, easy-to-use interface. 

8. Access control allows you (the class creator) to change as 
much as possible in the future without damaging client code 
in which the class is used. In this light, keep everything as 
private as possible, and make only the class interface 
public, always using functions rather than data. Make data 
public only when forced. If class users don’t need to access a 
function, make it private. If a part of your class must be 
exposed to inheritors as protected, provide a function 
interface rather than expose the actual data. In this way, 
implementation changes will have minimal impact on derived 
classes. 

9. Don’t fall into analysis paralysis. There are some things that 
you don’t learn until you start coding and get some kind of 
system working. C++ has built-in firewalls; let them work for 
you. Your mistakes in a class or set of classes won’t destroy 
the integrity of the whole system. 



762 Thinking in C++ www.BruceEckel.com 

10. Your analysis and design must produce, at minimum, the 
classes in your system, their public interfaces, and their 
relationships to other classes, especially base classes. If your 
design methodology produces more than that, ask yourself if 
all the pieces produced by that methodology have value over 
the lifetime of the program. If they do not, maintaining them 
will cost you. Members of development teams tend not to 
maintain anything that does not contribute to their 
productivity; this is a fact of life that many design methods 
don’t account for. 

11. Write the test code first (before you write the class), and keep 
it with the class. Automate the running of your tests through 
a makefile or similar tool. This way, any changes can be 
automatically verified by running the test code, and you’ll 
immediately discover errors. Because you know that you have 
the safety net of your test framework, you will be bolder about 
making sweeping changes when you discover the need. 
Remember that the greatest improvements in languages 
come from the built-in testing that type checking, exception 
handling, etc., provide, but those features take you only so 
far. You must go the rest of the way in creating a robust 
system by filling in the tests that verify features that are 
specific to your class or program. 

12. Write the test code first (before you write the class) in order 
to verify that your class design is complete. If you can’t write 
test code, you don’t know what your class looks like. In 
addition, the act of writing the test code will often flush out 
additional features or constraints that you need in the class – 
these features or constraints don’t always appear during 
analysis and design. 

13. Remember a fundamental rule of software engineering1: All 
software design problems can be simplified by introducing 
an extra level of conceptual indirection. This one idea is the 

                                                   
1 Explained to me by Andrew Koenig. 

B: Programming Guidelines 763 

basis of abstraction, the primary feature of object-oriented 
programming. 

14. Make classes as atomic as possible; that is, give each class a 
single, clear purpose. If your classes or your system design 
grows too complicated, break complex classes into simpler 
ones. The most obvious indicator of this is sheer size: if a 
class is big, chances are it’s doing too much and should be 
broken up. 

15. Watch for long member function definitions. A function that 
is long and complicated is difficult and expensive to maintain, 
and is probably trying to do too much all by itself. If you see 
such a function, it indicates that, at the least, it should be 
broken up into multiple functions. It may also suggest the 
creation of a new class. 

16. Watch for long argument lists. Function calls then become 
difficult to write, read and maintain. Instead, try to move the 
member function to a class where it is (more) appropriate, 
and/or pass objects in as arguments. 

17. Don’t repeat yourself. If a piece of code is recurring in many 
functions in derived classes, put that code into a single 
function in the base class and call it from the derived-class 
functions. Not only do you save code space, you provide for 
easy propagation of changes. You can use an inline function 
for efficiency. Sometimes the discovery of this common code 
will add valuable functionality to your interface. 

18. Watch for switch statements or chained if-else clauses. This 
is typically an indicator of type-check coding, which means 
you are choosing what code to execute based on some kind of 
type information (the exact type may not be obvious at first). 
You can usually replace this kind of code with inheritance and 
polymorphism; a polymorphic function call will perform the 
type checking for you, and allow for more reliable and easier 
extensibility. 

19. From a design standpoint, look for and separate things that 
change from things that stay the same. That is, search for the 



764 Thinking in C++ www.BruceEckel.com 

elements in a system that you might want to change without 
forcing a redesign, then encapsulate those elements in 
classes. You can learn significantly more about this concept in 
the Design Patterns chapter in Volume 2 of this book, 
available at www.BruceEckel.com. 

20. Watch out for variance. Two semantically different objects 
may have identical actions, or responsibilities, and there is a 
natural temptation to try to make one a subclass of the other 
just to benefit from inheritance. This is called variance, but 
there’s no real justification to force a superclass/subclass 
relationship where it doesn’t exist. A better solution is to 
create a general base class that produces an interface for both 
as derived classes – it requires a bit more space, but you still 
benefit from inheritance and will probably make an 
important discovery about the design. 

21. Watch out for limitation during inheritance. The clearest 
designs add new capabilities to inherited ones. A suspicious 
design removes old capabilities during inheritance without 
adding new ones. But rules are made to be broken, and if you 
are working from an old class library, it may be more efficient 
to restrict an existing class in its subclass than it would be to 
restructure the hierarchy so your new class fits in where it 
should, above the old class. 

22. Don’t extend fundamental functionality by subclassing. If an 
interface element is essential to a class it should be in the 
base class, not added during derivation. If you’re adding 
member functions by inheriting, perhaps you should rethink 
the design. 

23. Less is more. Start with a minimal interface to a class, as 
small and simple as you need to solve the problem at hand, 
but don’t try to anticipate all the ways that your class might 
be used. As the class is used, you’ll discover ways you must 
expand the interface. However, once a class is in use you 
cannot shrink the interface without disturbing client code. If 
you need to add more functions, that’s fine; it won’t disturb 
code, other than forcing recompiles. But even if new member 

B: Programming Guidelines 765 

functions replace the functionality of old ones, leave the 
existing interface alone (you can combine the functionality in 
the underlying implementation if you want). If you need to 
expand the interface of an existing function by adding more 
arguments, leave the existing arguments in their current 
order, and put default values on all of the new arguments; 
this way you won’t disturb any existing calls to that function. 

24. Read your classes aloud to make sure they’re logical, referring 
to the relationship between a base class and derived class as 
“is-a” and member objects as “has-a.” 

25. When deciding between inheritance and composition, ask if 
you need to upcast to the base type. If not, prefer composition 
(member objects) to inheritance. This can eliminate the 
perceived need for multiple inheritance. If you inherit, users 
will think they are supposed to upcast. 

26. Sometimes you need to inherit in order to access protected 
members of the base class. This can lead to a perceived need 
for multiple inheritance. If you don’t need to upcast, first 
derive a new class to perform the protected access. Then 
make that new class a member object inside any class that 
needs to use it, rather than inheriting. 

27. Typically, a base class will be used primarily to create an 
interface to classes derived from it. Thus, when you create a 
base class, default to making the member functions pure 
virtual. The destructor can also be pure virtual (to force 
inheritors to explicitly override it), but remember to give the 
destructor a function body, because all destructors in a 
hierarchy are always called. 

28. When you put a virtual function in a class, make all 
functions in that class virtual, and put in a virtual 
destructor. This approach prevents surprises in the behavior 
of the interface. Only start removing the virtual keyword 
when you’re tuning for efficiency and your profiler has 
pointed you in this direction. 



766 Thinking in C++ www.BruceEckel.com 

29. Use data members for variation in value and virtual 
functions for variation in behavior. That is, if you find a class 
that uses state variables along with member functions that 
switch behavior based on those variables, you should 
probably redesign it to express the differences in behavior 
within subclasses and overridden virtual functions. 

30. If you must do something nonportable, make an abstraction 
for that service and localize it within a class. This extra level 
of indirection prevents the non-portability from being 
distributed throughout your program. 

31. Avoid multiple inheritance. It’s for getting you out of bad 
situations, especially repairing class interfaces in which you 
don’t have control of the broken class (see Volume 2). You 
should be an experienced programmer before designing 
multiple inheritance into your system. 

32. Don’t use private inheritance. Although it’s in the language 
and seems to have occasional functionality, it introduces  
significant ambiguities when combined with run-time type 
identification. Create a private member object instead of 
using private inheritance. 

33. If two classes are associated with each other in some 
functional way (such as containers and iterators), try to make 
one a public nested friend class of the other, as the 
Standard C++ Library does with iterators inside containers 
(examples of this are shown in the latter part of Chapter 16). 
This not only emphasizes the association between the classes, 
but it allows the class name to be reused by nesting it within 
another class. The Standard C++ Library does this by 
defining a nested iterator class inside each container class, 
thereby providing the containers with a common interface. 
The other reason you’ll want to nest a class is as part of the 
private implementation. Here, nesting is beneficial for 
implementation hiding rather than the class association and 
prevention of namespace pollution noted above. 

B: Programming Guidelines 767 

34. Operator overloading is only “syntactic sugar:” a different 
way to make a function call. If overloading an operator 
doesn’t make the class interface clearer and easier to use, 
don’t do it. Create only one automatic type conversion 
operator for a class. In general, follow the guidelines and 
format given in Chapter 12 when overloading operators. 

35. Don’t fall prey to premature optimization. That way lies 
madness. In particular, don’t worry about writing (or 
avoiding) inline functions, making some functions 
nonvirtual, or tweaking code to be efficient when you are 
first constructing the system. Your primary goal should be to 
prove the design, unless the design requires a certain 
efficiency. 

36. Normally, don’t let the compiler create the constructors, 
destructors, or the operator= for you. Class designers 
should always say exactly what the class should do and keep 
the class entirely under control. If you don’t want a copy-
constructor or operator=, declare them as private. 
Remember that if you create any constructor, it prevents the 
default constructor from being synthesized. 

37. If your class contains pointers, you must create the copy-
constructor, operator=, and destructor for the class to work 
properly. 

38. When you write a copy-constructor for a derived class, 
remember to call the base-class copy-constructor explicitly 
(also the member-object versions). (See Chapter 14.) If you 
don’t, the default constructor will be called for the base class 
(or member object) and that probably isn’t what you want. To 
call the base-class copy-constructor, pass it the derived object 
you’re copying from: 
Derived(const Derived& d) : Base(d) { // ... 

39. When you write an assignment operator for a derived class, 
remember to call the base-class version of the assignment 
operator explicitly. (See Chapter 14.) If you don’t, then 
nothing will happen (the same is true for the member 



768 Thinking in C++ www.BruceEckel.com 

objects). To call the base-class assignment operator, use the 
base-class name and scope resolution: 
Derived& operator=(const Derived& d) { 
  Base::operator=(d); 

40. If you need to minimize recompiles during development of a 
large project, use the handle class/Cheshire cat technique 
demonstrated in Chapter 5, and remove it only if runtime 
efficiency is a problem. 

41. Avoid the preprocessor. Always use const for value 
substitution and inlines for macros. 

42. Keep scopes as small as possible so the visibility and lifetime 
of your objects are as small as possible. This reduces the 
chance of using an object in the wrong context and hiding a 
difficult-to-find bug. For example, suppose you have a 
container and a piece of code that iterates through it. If you 
copy that code to use with a new container, you may 
accidentally end up using the size of the old container as the 
upper bound of the new one. If, however, the old container is 
out of scope, the error will be caught at compile time. 

43. Avoid global variables. Always strive to put data inside 
classes. Global functions are more likely to occur naturally 
than global variables, although you may later discover that a 
global function may fit better as a static member of a class. 

44. If you need to declare a class or function from a library, 
always do so by including a header file. For example, if you 
want to create a function to write to an ostream, never 
declare ostream yourself using an incomplete type 
specification like this, 
class ostream; 

This approach leaves your code vulnerable to changes in 
representation. (For example, ostream could actually be a 
typedef.) Instead, always use the header file: 
#include <iostream> 

When creating your own classes, if a library is big, provide 
your users an abbreviated form of the header file with 
incomplete type specifications (that is, class name 

B: Programming Guidelines 769 

declarations) for cases in which they need to use only 
pointers. (It can speed compilations.) 

45. When choosing the return type of an overloaded operator, 
consider what will happen if expressions are chained 
together. Return a copy or reference to the lvalue (return 
*this) so it can be used in a chained expression (A = B = C). 
When defining operator=, remember x=x. 

46. When writing a function, pass arguments by const reference 
as your first choice. As long as you don’t need to modify the 
object being passed, this practice is best because it has the 
simplicity of pass-by-value syntax but doesn’t require 
expensive constructions and destructions to create a local 
object, which occurs when passing by value. Normally you 
don’t want to be worrying too much about efficiency issues 
when designing and building your system, but this habit is a 
sure win. 

47. Be aware of temporaries. When tuning for performance, 
watch out for temporary creation, especially with operator 
overloading. If your constructors and destructors are 
complicated, the cost of creating and destroying temporaries 
can be high. When returning a value from a function, always 
try to build the object “in place” with a constructor call in the 
return statement:  
return MyType(i, j); 

rather than 
MyType x(i, j); 
return x; 

The former return statement (the so-called return-value 
optimization) eliminates a copy-constructor call and 
destructor call. 

48. When creating constructors, consider exceptions. In the best 
case, the constructor won’t do anything that throws an 
exception. In the next-best scenario, the class will be 
composed and inherited from robust classes only, so they will 
automatically clean themselves up if an exception is thrown. 
If you must have naked pointers, you are responsible for 



770 Thinking in C++ www.BruceEckel.com 

catching your own exceptions and then deallocating any 
resources pointed to before you throw an exception in your 
constructor. If a constructor must fail, the appropriate action 
is to throw an exception. 

49. Do only what is minimally necessary in your constructors. 
Not only does this produce a lower overhead for constructor 
calls (many of which may not be under your control) but your 
constructors are then less likely to throw exceptions or cause 
problems. 

50. The responsibility of the destructor is to release resources 
allocated during the lifetime of the object, not just during 
construction. 

51. Use exception hierarchies, preferably derived from the 
Standard C++ exception hierarchy and nested as public 
classes within the class that throws the exceptions. The 
person catching the exceptions can then catch the specific 
types of exceptions, followed by the base type. If you add new 
derived exceptions, existing client code will still catch the 
exception through the base type. 

52. Throw exceptions by value and catch exceptions by reference. 
Let the exception-handling mechanism handle memory 
management. If you throw pointers to exception objects that 
have been created on the heap, the catcher must know to 
destroy the exception, which is bad coupling. If you catch 
exceptions by value, you cause extra constructions and 
destructions; worse, the derived portions of your exception 
objects may be sliced during upcasting by value. 

53. Don’t write your own class templates unless you must. Look 
first in the Standard C++ Library, then to vendors who create 
special-purpose tools. Become proficient with their use and 
you’ll greatly increase your productivity. 

54. When creating templates, watch for code that does not 
depend on type and put that code in a non-template base 
class to prevent needless code bloat. Using inheritance or 
composition, you can create templates in which the bulk of 

B: Programming Guidelines 771 

the code they contain is type-dependent and therefore 
essential. 

55. Don’t use the <cstdio> functions, such as printf( ). Learn 
to use iostreams instead; they are type-safe and type-
extensible, and significantly more powerful. Your investment 
will be rewarded regularly. In general, always use C++ 
libraries in preference to C libraries. 

56. Avoid C’s built-in types. They are supported in C++ for 
backward compatibility, but they are much less robust than 
C++ classes, so your bug-hunting time will increase. 

57. Whenever you use built-in types as globals or automatics, 
don’t define them until you can also initialize them. Define 
variables one per line along with their initialization. When 
defining pointers, put the ‘*’ next to the type name. You can 
safely do this if you define one variable per line. This style 
tends to be less confusing for the reader. 

58. Guarantee that initialization occurs in all aspects of your 
code. Perform all member initialization in the constructor 
initializer list, even built-in types (using pseudo-constructor 
calls). Using the constructor initializer list is often more 
efficient when initializing subobjects; otherwise the default 
constructor is called, and you end up calling other member 
functions (probably operator=) on top of that in order to get 
the initialization you want. 

59. Don’t use the form MyType a = b; to define an object. This 
one feature is a major source of confusion because it calls a 
constructor instead of the operator=. For clarity, always be 
specific and use the form MyType a(b); instead. The results 
are identical, but other programmers won’t be confused. 

60. Use the explicit casts described in Chapter 3. A cast overrides 
the normal typing system and is a potential error spot. Since 
the explicit casts divide C’s one-cast-does-all into classes of 
well-marked casts, anyone debugging and maintaining the 
code can easily find all the places where logical errors are 
most likely to happen. 



772 Thinking in C++ www.BruceEckel.com 

61. For a program to be robust, each component must be robust. 
Use all the tools provided by C++: access control, exceptions, 
const-correctness, type checking, and so on in each class you 
create. That way you can safely move to the next level of 
abstraction when building your system. 

62. Build in const-correctness. This allows the compiler to point 
out bugs that would otherwise be subtle and difficult to find. 
This practice takes a little discipline and must be used 
consistently throughout your classes, but it pays off. 

63. Use compiler error checking to your advantage. Perform all 
compiles with full warnings, and fix your code to remove all 
warnings. Write code that utilizes the compile-time errors 
and warnings rather than that which causes runtime errors 
(for example, don’t use variadic argument lists, which disable 
all type checking). Use assert( ) for debugging, but use 
exceptions for runtime errors. 

64. Prefer compile-time errors to runtime errors. Try to handle 
an error as close to the point of its occurrence as possible. 
Prefer dealing with the error at that point to throwing an 
exception. Catch any exceptions in the nearest handler that 
has enough information to deal with them. Do what you can 
with the exception at the current level; if that doesn’t solve 
the problem, rethrow the exception. (See Volume 2 for more 
details.) 

65. If you’re using exception specifications (see Volume 2 of this 
book, downloadable from www.BruceEckel.com, to learn 
about exception handling), install your own unexpected( ) 
function using set_unexpected( ). Your unexpected( ) 
should log the error and rethrow the current exception. That 
way, if an existing function gets overridden and starts 
throwing exceptions, you will have a record of the culprit and 
can modify your calling code to handle the exception.  

66. Create a user-defined terminate( ) (indicating a 
programmer error) to log the error that caused the exception, 
then release system resources, and exit the program. 

B: Programming Guidelines 773 

67. If a destructor calls any functions, those functions might 
throw exceptions. A destructor cannot throw an exception 
(this can result in a call to terminate( ), which indicates a 
programming error), so any destructor that calls functions 
must catch and manage its own exceptions. 

68. Don’t create your own “decorated” private data member 
names (prepending underscores, Hungarian notation, etc.), 
unless you have a lot of pre-existing global values; otherwise, 
let classes and namespaces do the name scoping for you. 

69. Watch for overloading. A function should not conditionally 
execute code based on the value of an argument, default or 
not. In this case, you should create two or more overloaded 
functions instead. 

70. Hide your pointers inside container classes. Bring them out 
only when you are going to immediately perform operations 
on them. Pointers have always been a major source of bugs. 
When you use new, try to drop the resulting pointer into a 
container. Prefer that a container “own” its pointers so it’s 
responsible for cleanup. Even better, wrap a pointer inside a 
class; if you still want it to look like a pointer, overload 
operator-> and operator*. If you must have a free-
standing pointer, always initialize it, preferably to an object 
address, but to zero if necessary. Set it to zero when you 
delete it to prevent accidental multiple deletions. 

71. Don’t overload global new and delete; always do this on a 
class-by-class basis. Overloading the global versions affects 
the entire client programmer project, something only the 
creators of a project should control. When overloading new 
and delete for classes, don’t assume that you know the size 
of the object; someone may be inheriting from you. Use the 
provided argument. If you do anything special, consider the 
effect it could have on inheritors. 

72. Prevent object slicing. It virtually never makes sense to 
upcast an object by value. To prevent upcasting by value, put 
pure virtual functions in your base class. 



774 Thinking in C++ www.BruceEckel.com 

73. Sometimes simple aggregation does the job. A “passenger 
comfort system” on an airline consists of disconnected 
elements: seat, air conditioning, video, etc., and yet you need 
to create many of these in a plane. Do you make private 
members and build a whole new interface? No – in this case, 
the components are also part of the public interface, so you 
should create public member objects. Those objects have 
their own private implementations, which are still safe. Be 
aware that simple aggregation is not a solution to be used 
often, but it does happen.  

  775 

 

 

 

 

 

 

 

 

 

 

C: Recommended Reading 
Resources for further study. 



776 Thinking in C++ www.BruceEckel.com 

C 
Thinking in C: Foundations for Java & C++, by Chuck Allison 
(a MindView, Inc. Seminar-on-CD ROM, ©2000, bound into the 
back of this book and also available at www.BruceEckel.com). This 
is a course including lectures and slides in the foundations of the C 
Language to prepare you to learn Java or C++. This is not an 
exhaustive course in C; only the necessities for moving on to the 
other languages are included. Additional language-specific sections 
introduce features for the C++ or Java programmer-to-be. 
Recommended prerequisite: some experience with a high-level 
programming language, such as Pascal, BASIC, Fortran, or LISP 
(it’s possible to struggle through the CD without this background, 
but the course isn’t designed to be an introduction to the basics of 
programming).  

General C++ 
The C++ Programming Language, 3rd edition, by Bjarne 
Stroustrup (Addison-Wesley 1997). To some degree, the goal of the 
book that you’re currently holding is to allow you to use Bjarne’s 
book as a reference. Since his book contains the description of the 
language by the author of that language, it’s typically the place 
where you’ll go to resolve any uncertainties about what C++ is or 
isn’t supposed to do. When you get the knack of the language and 
are ready to get serious, you’ll need it. 

C++ Primer, 3rd Edition, by Stanley Lippman and Josee Lajoie 
(Addison-Wesley 1998). Not that much of a primer anymore; it’s 
evolved into a thick book filled with lots of detail, and the one that I 
reach for along with Stroustrup’s when trying to resolve an issue. 
Thinking in C++ should provide a basis for understanding the C++ 
Primer as well as Stroustrup’s book. 

C & C++ Code Capsules, by Chuck Allison (Prentice-Hall, 1998). 
This book assumes that you already know C and C++, and covers 
some of the issues that you may be rusty on, or that you may not 

C: Recommended  777 

have gotten right the first time. This book fills in C gaps as well as 
C++ gaps. 

The C++ Standard. This is the document that the committee 
worked so hard on for all those years. This is not free, 
unfortunately. But at least you can buy the electronic form in PDF 
for only $18 at www.cssinfo.com. 

My own list of books  
Listed in order of publication. Not all of these are currently 
available. 

Computer Interfacing with Pascal & C (Self-published via the 
Eisys imprint, 1988. Only available via www.BruceEckel.com). An 
introduction to electronics from back when CP/M was still king and 
DOS was an upstart. I used high-level languages and often the 
parallel port of the computer to drive various electronic projects. 
Adapted from my columns in the first and best magazine I wrote 
for, Micro Cornucopia (To paraphrase Larry O’Brien, long-time 
editor of Software Development Magazine: the best computer 
magazine ever published – they even had plans for building a robot 
in a flower pot!) Alas, Micro C became lost long before the Internet 
appeared. Creating this book was an extremely satisfying publishing 
experience. 

Using C++ (Osborne/McGraw-Hill 1989). One of the first books 
out on C++. This is out of print and replaced by its second edition, 
the renamed C++ Inside & Out. 

C++ Inside & Out (Osborne/McGraw-Hill 1993). As noted, 
actually the 2nd edition of Using C++. The C++ in this book is 
reasonably accurate, but it's circa 1992 and Thinking in C++ is 
intended to replace it. You can find out more about this book and 
download the source code at www.BruceEckel.com. 

Thinking in C++, 1st edition (Prentice-Hall 1995).  

Black Belt C++, the Master’s Collection, Bruce Eckel, editor 
(M&T Books 1994). Out of print. A collection of chapters by various 



778 Thinking in C++ www.BruceEckel.com 

C++ luminaries based on their presentations in the C++ track at the 
Software Development Conference, which I chaired. The cover on 
this book stimulated me to gain control over all future cover 
designs. 

Thinking in Java, 2nd edition (Prentice-Hall, 2000). The first 
edition of this book won the Software Development Magazine 
Productivity Award and the Java Developer’s Journal Editor’s 
Choice Award in 1999. Downloadable from www.BruceEckel.com. 

Depth & dark corners 
These books go more deeply into language topics, and help you 
avoid the typical pitfalls inherent in developing C++ programs. 

Effective C++ (2nd Edition, Addison-Wesley 1998) and More 
Effective C++ (Addison-Wesley 1996), by Scott Meyers. The 
classic, must-have texts for serious problem-solving and code 
design in C++. I’ve tried to capture and express many of the 
concepts from these books in Thinking in C++, but I don’t fool 
myself in thinking that I’ve succeeded. If you spend any serious 
time with C++ you’ll end up with these books. Also available on CD 
ROM.  

Ruminations on C++, by Andrew Koenig and Barbara Moo 
(Addison-Wesley, 1996). Andrew worked directly with Stroustrup 
on many aspects of the C++ language and is an extremely reliable 
authority. I’ve also found the incisiveness of his insights to be 
refreshing, and have learned much from him, both in print and in 
person, over the years. 

Large-Scale C++ Software Design, by John Lakos (Addison-
Wesley, 1996). Covers issues and answers questions you will 
encounter during the creation of big projects, but often smaller ones 
as well. 

C++ Gems, Stan Lippman, editor (SIGS publications, 1996). A 
selection of articles from The C++ Report. 

C: Recommended  779 

The Design & Evolution of C++, by Bjarne Stroustrup 
(Addison-Wesley 1994). Insights from the inventor of C++ about 
why he made various design decisions. Not essential, but 
interesting. 

Analysis & design 
Extreme Programming Explained by Kent Beck (Addison-
Wesley 2000). I love this book. Yes, I tend to take a radical 
approach to things but I've always felt that there could be a much 
different, much better program development process, and I think 
XP comes pretty darn close. The only book that has had a similar 
impact on me was PeopleWare (described below), which talks 
primarily about the environment and dealing with corporate 
culture. Extreme Programming Explained talks about 
programming, and turns most things, even recent “findings,” on 
their ear. They even go so far as to say that pictures are OK as long 
as you don’t spend too much time on them and are willing to throw 
them away. (You’ll notice that this book does not have the “UML 
stamp of approval” on its cover.) I could see deciding whether to 
work for a company based solely on whether they used XP. Small 
book, small chapters, effortless to read, exciting to think about. You 
start imagining yourself working in such an atmosphere and it 
brings visions of a whole new world. 

UML Distilled by Martin Fowler (2nd edition, Addison-Wesley, 
2000). When you first encounter UML, it is daunting because there 
are so many diagrams and details. According to Fowler, most of this 
stuff is unnecessary so he cuts through to the essentials. For most 
projects, you only need to know a few diagramming tools, and 
Fowler’s goal is to come up with a good design rather than worry 
about all the artifacts of getting there. A nice, thin, readable book; 
the first one you should get if you need to understand UML. 

The Unified Software Development Process by Ivar 
Jacobsen, Grady Booch, and James Rumbaugh (Addison-Wesley 
1999). I went in fully prepared to dislike this book. It seemed to 
have all the makings of a boring college text. I was pleasantly 
surprised – only pockets of the book contain explanations that seem 



780 Thinking in C++ www.BruceEckel.com 

as if those concepts aren’t clear to the authors. The bulk of the book 
is not only clear, but enjoyable. And best of all, the process makes a 
lot of practical sense. It’s not Extreme Programming (and does not 
have their clarity about testing) but it’s also part of the UML 
juggernaut – even if you can’t get XP adopted, most people have 
climbed aboard the “UML is good” bandwagon (regardless of their 
actual level of experience with it) and so you can probably get it 
adopted. I think this book should be the flagship of UML, and the 
one you can read after Fowler’s UML Distilled when you want more 
detail. 

Before you choose any method, it’s helpful to gain perspective from 
those who are not trying to sell one. It’s easy to adopt a method 
without really understanding what you want out of it or what it will 
do for you. Others are using it, which seems a compelling reason. 
However, humans have a strange little psychological quirk: If they 
want to believe something will solve their problems, they’ll try it. 
(This is experimentation, which is good.) But if it doesn’t solve their 
problems, they may redouble their efforts and begin to announce 
loudly what a great thing they’ve discovered. (This is denial, which 
is not good.) The assumption here may be that if you can get other 
people in the same boat, you won’t be lonely, even if it’s going 
nowhere (or sinking). 

This is not to suggest that all methodologies go nowhere, but that 
you should be armed to the teeth with mental tools that help you 
stay in experimentation mode (“It’s not working; let’s try something 
else”) and out of denial mode (“No, that’s not really a problem. 
Everything’s wonderful, we don’t need to change”). I think the 
following books, read before you choose a method, will provide you 
with these tools. 

Software Creativity, by Robert Glass (Prentice-Hall, 1995). This 
is the best book I’ve seen that discusses perspective on the whole 
methodology issue. It’s a collection of short essays and papers that 
Glass has written and sometimes acquired (P.J. Plauger is one 
contributor), reflecting his many years of thinking and study on the 
subject. They’re entertaining and only long enough to say what’s 
necessary; he doesn’t ramble and bore you. He’s not just blowing 
smoke, either; there are hundreds of references to other papers and 

C: Recommended  781 

studies. All programmers and managers should read this book 
before wading into the methodology mire. 

Software Runaways: Monumental Software Disasters, by 
Robert Glass (Prentice-Hall 1997). The great thing about this book 
is that it brings to the forefront what we don’t talk about: how many 
projects not only fail, but fail spectacularly. I find that most of us 
still think “That can’t happen to me” (or “That can’t happen again”) 
and I think this puts us at a disadvantage. By keeping in mind that 
things can always go wrong, you’re in a much better position to 
make them go right. 

Object Lessons by Tom Love (SIGS Books, 1993). Another good 
“perspective” book. 

Peopleware, by Tom Demarco and Timothy Lister (Dorset House, 
2nd edition 1999). Although they have backgrounds in software 
development, this book is about projects and teams in general. But 
the focus is on the people and their needs rather than the 
technology and its needs. They talk about creating an environment 
where people will be happy and productive, rather than deciding 
what rules those people should follow to be adequate components 
of a machine. This latter attitude, I think, is the biggest contributor 
to programmers smiling and nodding when XYZ method is adopted 
and then quietly doing whatever they’ve always done. 

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). 
This chronicles the coming together of a group of scientists from 
different disciplines in Santa Fe, New Mexico, to discuss real 
problems that the individual disciplines couldn’t solve (the stock 
market in economics, the initial formation of life in biology, why 
people do what they do in sociology, etc.). By crossing physics, 
economics, chemistry, math, computer science, sociology, and 
others, a multidisciplinary approach to these problems is 
developing. But more importantly, a different way of thinking about 
these ultra-complex problems is emerging: Away from 
mathematical determinism and the illusion that you can write an 
equation that predicts all behavior and toward first observing and 
looking for a pattern and trying to emulate that pattern by any 
means possible. (The book chronicles, for example, the emergence 



782 Thinking in C++ www.BruceEckel.com 

of genetic algorithms.) This kind of thinking, I believe, is useful as 
we observe ways to manage more and more complex software 
projects.

  783 

Index 

- · 156, 163 
-- · 164 
! · 163 
!= · 158 
#, preprocessor stringize operator · 196 
#define · 194, 245, 335, 353 
#endif · 245, 757 
#ifdef · 194, 245 
#ifndef · 246 
#include · 85 
#undef · 194 
$<, in makefiles · 206 
% · 156 
& · 134, 164 
&&, logical and · 158 
&, bitwise and · 159 
&= bitwise · 160 
 ( ), overloading the function call operator · 

514 
* · 156; overloaded operator · 727, 730; 

pointer dereference · 136 
-, with pointers · 192 
--, with pointers · 192 
. member selection operator · 237 
... variable argument list · 114; varargs · 

243 
/ · 156 
:: · 232, 429; scope resolution operator, 

and namespaces · 417 
?: ternary if-else · 164 
 [ ]: array indexing · 105; overloaded 

indexing operator · 519, 698 
^ bitwise exclusive-or · 159 
^= bitwise · 160 
|, bitwise or · 159 
||, logical or · 158 
|= bitwise · 160 
~ bitwise not/ones complement · 159 
~, destructor · 287 
+ · 156, 163; with pointers · 192 
++ · 164; with pointers · 190 
< · 158 
<< · 160; overloading for iostreams · 518 
<<= · 160 
<= · 158 

= · 166; operator; as a private function · 
533; automatic creation · 532; operator, 
as a private function · 709; overloading 
· 521 

== · 158, 166 
> · 158 
->: overloading the smart pointer operator 

· 509; struct member selection via 
pointer · 178 

->*, overloading · 514 
>= · 158 
>> · 160; iostreams; operator · 106; 

overloading · 518 
>>= · 160 

A 

abort( ) · 409 
abstract: base classes and pure virtual 

functions · 646; data type · 129, 239 
abstraction · 22 
access: control · 260; run-time · 275; 

function · 379; specifiers · 29, 261; and 
object layout · 269; order for · 263 

accessors · 380 
actor, in use cases · 50 
addition (+) · 156 
address: const · 339; each object must 

have a unique address · 241; element · 
134; function · 198, 391; memory · 133; 
object · 265; pass as const references · 
473; passing and returning with const · 
349; struct object · 178 

address-of (&) · 164 
aggregate · 105; const aggregates · 337; 

initialization · 201, 301; and structures · 
302 

aggregation · 30 
algorithms, Standard C++ Library · 742 
aliasing: namespace · 415; solving with 

reference counting and copy-on-write · 
527 

Allison, Chuck · 2, 776 



784  

allocation: dynamic memory allocation · 
223, 548; memory, and efficiency · 566; 
storage · 292 

alternate linkage specification · 442 
ambiguity · 244; during automatic type 

conversion · 540; with namespaces · 
420 

analysis: and design, object-oriented · 44; 
paralysis · 45; requirements analysis · 
48 

and: & bitwise · 159, 166; && logical · 158, 
166; && logical and · 173 

and_eq, &= (bitwise and-assignment) · 
173 

anonymous union · 320 
ANSI Standard C++ · 14 
argc · 187 
arguments: argument-passing guidelines · 

455; command line · 187, 252; const · 
344; constructor · 286; default · 310, 
311, 321; argument as a flag · 329; 
destructor · 287; empty argument list, C 
vs. C++ · 114; function · 81, 138; 
indeterminate list · 114; macro · 374; 
mnemonic names · 83; name 
decoration · 312; overloading vs. default 
arguments · 324; passing · 450; 
placeholder · 323; preferred approach 
to argument passing · 351; references · 
451; return values, operator 
overloading · 505; trailing and defaults · 
322; unnamed · 114; variable argument 
list · 114, 243; without identifiers · 323 

argv · 187 
arithmetic, pointer · 190 
array · 182; automatic counting · 301; 

bounds-checked, using templates · 697; 
calculating size · 302; definition, 
limitations · 338; indexing, overloaded 
operator [] · 698; initializing to zero · 
301; inside a class · 353; making a 
pointer look like an array · 564; new & 
delete · 563; of pointers · 187; of 
pointers to functions · 201; off-by-one 
error · 301; overloading new and delete 
for arrays · 573; pointers and · 184; 
static · 692; static initialization · 425 

asctime( ) · 384 
assembly-language: asm in-line assembly-

language keyword · 173; CALL · 458; 
code for a function call · 456; code 

generated by a virtual function · 642; 
RETURN · 458 

assert( ): macro in Standard C · 197, 223, 
396 

assignment · 156, 301; disallowing · 533; 
memberwise · 532, 600; operator · 505; 
overloading · 521; pointer, const and 
non-const · 343; self-assignment in 
operator overloading · 523 

assure( ) · 757; from require.h · 237 
atexit( ) · 409 
atof( ) · 188, 189 
atoi( ) · 188 
atol( ) · 188 
auto keyword · 149, 414 
auto-decrement operator · 128 
auto-increment operator · 106, 128 
automatic: counting, and arrays · 301; 

creation of operator= · 532; destructor 
calls · 297; type conversion · 228, 533; 
pitfalls · 539; preventing with the 
keyword explicit · 534; variable · 42, 
149, 153 

B 

backslash · 95 
backspace · 95 
bad_alloc · 572 
base: abstract base classes and pure virtual 

functions · 646; base-class interface · 
633; fragile base-class problem · 276; 
types · 32; virtual keyword in derived-
class declarations · 632 

basic concepts of object-oriented 
programming (OOP) · 22 

BASIC language · 68, 77 
Beck, Kent · 779 
behavior · 219 
binary operators · 160; examples of all 

overloaded · 493; overloaded · 487 
binding: dynamic binding · 631; early · 38, 

644; function call binding · 631, 641; 
late · 38, 631; run-time binding · 631 

bit bucket · 162 
bitand, & (bitwise and) · 173 
bitcopy · 468 
bitcopy, vs. initialization · 460 
bitor, | (bitwise or) · 173 
bit-shifting · 162 

  785 

bitwise: and operator & · 159, 166; const · 
362; exclusive-or, xor ^ · 159; explicit 
bitwise and logical operators · 173; not 
~ · 159; operators · 159; or operator | · 
159, 166 

bloat, code · 391 
block: access · 269; and storage allocation · 

292; definition · 289 
Booch, Grady · 779 
book: design & production · 18; errors, 

reporting · 16 
bool · 125, 195 
Boolean · 117, 158, 163; algebra · 159; and 

floating point · 159; bool, true and false 
· 131 

bounds-checked array, with templates · 
697 

break, keyword · 122 
bucket, bit · 162 
bugs: common pitfalls with operators · 

166; finding · 292; from casts · 168; 
with temporaries · 348 

built-in type · 129; basic · 129; initializer 
for a static variable · 408; 
pseudoconstructor; calls for · 589; form 
for built-in types · 381 

byte · 133 

C 

C · 289; #define · 340; backward 
compatibility · 73; C programmers 
learning C++ · 628; C++ compatibility · 
235; compiling with C++ · 305; 
concepts · 2; const · 338; converting 
from C to C++ · 230, 760; difference 
with C++ when defining variables · 145; 
empty argument list, C vs. C++ · 114; 
finding problems in old code · 70; 
function library · 116; fundamentals · 
112; heap · 550; hole in the type system, 
via void* · 450; ISO Standard C · 14; 
libraries · 89, 219; linkage · 338; linking 
compiled C code with C++ · 442; name 
collisions · 68; operators and their use · 
156; passing and returning variables by 
value · 455; pitfalls · 227; preprocessor · 
334; safety hole during linking · 314; 
Standard library function; abort( ) · 
409; atexit( ) · 409; exit( ) · 409; 
Thinking in C CD ROM · 776 

C++: automatic typedef for struct and 
class · 231; C compatibility · 235; C 
programmers learning C++ · 628; 
cfront, original C++ compiler · 237; 
compiling C · 305; converting from C to 
C++ · 230, 760; data · 129; difference 
with C when defining variables · 145; 
efficiency · 66; empty argument list, C 
vs. C++ · 114; explicit casts · 167; 
finding C errors by recompiling in C++ · 
314; first program · 90; GNU Compiler · 
71; hybrid object-oriented language, 
and friend · 269; implicit structure 
address passing · 231; linking compiled 
C code with C++ · 442; major language 
features · 682; meaning of the language 
name · 129; object-based C++ · 628; 
one definition rule · 244; operators and 
their use · 156; programming guidelines 
· 760; Standard C++ · 14; Standards 
Committee · 14; strategies for transition 
to · 68; stricter type checking · 227; 
strongly typed language · 450; why it 
succeeds · 64 

calculating array size · 302 
CALL, assembly-language · 458 
calling a member function for an object · 

239 
calloc( ) · 223, 550, 554 
Carolan, John · 277 
Carroll, Lewis · 277 
case · 124 
cassert standard header file · 197 
cast · 40, 135, 164, 276, 552, 630; C++ 

explicit casts · 167; casting away 
constness · 363; casting void pointers · 
235; const_cast · 170; explicit cast for 
upcasting · 681; explicit keyword · 678; 
operators · 166; pointer assignment · 
343; reinterpret cast · 171; static_cast · 
169 

cat, Cheshire · 277 
catch clauses · 572 
CD ROM: seminars on CD-ROM from 

MindView · 16; Thinking in C, 
Foundations for Java & C++ (packaged 
with book) · 2, 15, 112 

cfront, original C++ compiler · 237 
chapter overviews · 7 
char · 96, 130, 132; sizeof · 173 



786  

character · 154; array literals · 343; 
character array concatenation · 96; 
constants · 155 

characteristics · 219 
check for self-assignment in operator 

overloading · 505 
Cheshire cat · 277 
cin · 97 
clashes, name · 229 
class · 25, 76, 271; abstract base classes 

and pure virtual functions · 646; adding 
new virtual functions in the derived 
class · 652; aggregate initialization · 
302; class definition and inline 
functions · 378; compile-time constants 
inside · 353, 356, 358; composition, and 
copy-constructor · 469; const and enum 
in · 353; container class templates and 
virtual functions · 743; creators · 28; 
declaration · 277; of a nested friend 
class · 514; defining the interface · 62; 
definition · 277; difference between a 
union and a class · 319; duplicate class 
definitions and templates · 699; fragile 
base-class problem · 276; generated by 
macro · 594; generated classes for 
templates · 699; handle class · 275; 
inheritance; and copy-constructor · 471; 
diagrams · 617; initialization, 
memberwise · 471; instance of · 24; 
keyword · 31; local · 428; nested · 428; 
iterator · 512, 721; overloading new and 
delete for a class · 570; pointers in, and 
overloading operator= · 524; static class 
objects inside functions · 408; static 
data members · 423; static member 
functions · 429; templates · 742; using 
const with · 352 

class-responsibility-collaboration (CRC) 
cards · 52 

cleanup · 227, 666; automatic destructor 
calls with inheritance and composition · 
592; initialization and cleanup on the 
heap · 548 

client programmer · 28, 260 
code: assembly for a function call · 456; 

bloat · 391; comment tags in listings · 
750; consulting, mentoring, and design 
and code walkthroughs from MindView 
· 16; generator · 79; organization · 248; 
header files · 244; program structure 
when writing code · 93; re-use · 583; 

source availability · 12; table-driven · 
201 

collection · 510, 719 
collector, garbage · 42 
collision, linker · 244 
comma operator · 165, 508 
command line · 252; arguments · 187 
comment tag: for linking · 148; in source-

code listings · 750 
comments, makefile · 204 
committee, C++ Standards · 14 
common interface · 647 
compaction, heap · 225 
compatibility: C & C++ · 235; with C · 98 
compilation: needless · 276; process · 79; 

separate · 78; separate, and make · 202 
compile time constants · 335 
compiler · 76, 77; creating default 

constructor · 304; original C++ 
compiler cfront · 237; running · 95; 
support · 15 

compiling C with C++ · 305 
compl, ~ ones complement · 173 
complicated: declarations & definitions · 

199; expressions, and operator 
overloading · 488 

composite: array · 182; type creation · 174 
composition · 30, 584, 607; combining 

composition & inheritance · 591; copy-
constructor · 469; member object 
initialization · 589; vs. inheritance · 
604, 620, 740 

concatenation, character array · 96 
concept, high · 48 
conditional operator · 164 
conditional, in for loop · 121 
const · 153, 334; address of · 339; 

aggregates · 337; casting away · 363; 
character array literals · 343; compile-
time constants in classes · 356; const 
reference function arguments · 351; 
correctness · 367; enum in classes · 353; 
evaluation point of · 337; extern · 339; 
function arguments and return values · 
344; in C · 338; initializing data 
members · 355; logical · 362; member 
function · 352; and objects · 359; 
mutable · 362; pass addresses as const 
references · 473; pointer to const · 171; 
pointers · 340; reference · 345, 453; and 
operator overloading · 505; return by 
value as const · 345; and operator 

  787 

overloading · 507; safety · 336; 
temporaries are automatically const · 
347 

const_cast · 170 
constant · 153; character · 155; compile-

time · 335; inside classes · 358; folding · 
335, 339; named · 153; templates, 
constants in · 703; values · 154 

constructor · 285, 548, 551, 665; 
arguments · 286; automatic type 
conversion · 534; behavior of virtual 
functions inside constructors · 664; 
copy-constructor · 432, 450, 455, 463, 
657; alternatives to · 471; vs. operator= · 
521; creating a new object from an 
existing object · 462; default · 304, 327, 
408, 470, 563; inheritance · 663; 
synthesized by the compiler · 304; 
doesn’t automatically inherit · 600; 
efficiency · 663; global object · 410; 
initialization and cleanup on the heap · 
548; initializer list · 353, 589, 664; 
pseudoconstructors · 589; inline · 392; 
installing the VPTR · 643; memberwise 
initialization · 600; name · 285; new 
operator, memory exhaustion · 576; 
order of construction with inheritance · 
665; order of constructor calls · 663; 
and destructor calls · 592; overloading · 
310, 319; private · 709; pseudo-
constructor · 562; return value · 287; 
tracking creations and destructions · 
709; virtual functions & constructors · 
662 

consulting, mentoring, and design and 
code walkthroughs from MindView · 16 

container · 510, 719; container class 
templates and virtual functions · 743; 
delete · 671; iterators · 690; new, delete, 
and containers · 692; ownership · 555, 
671, 713; polymorphism · 738; Standard 
C++ Library · 104; vector · 102 

context, and overloading · 310 
continuation, namespace · 415 
continue, keyword · 122 
control: access · 29, 260; run-time · 275; 

access specifiers · 261; expression, used 
with a for loop · 106 

controlling: execution · 117; linkage · 412 
conversion: automatic type conversion · 

533; narrowing conversions · 170; 
pitfalls in automatic type conversion · 

539; preventing automatic type 
conversion with the keyword explicit · 
534; to numbers from char* · 188 

converting from C to C++ · 230, 760 
copy-constructor · 432, 450, 455, 463, 

508, 657, 730; alternatives · 471; 
composition · 469; default · 468; 
inheritance · 471; private · 471, 709; 
upcasting and the copy-constructor · 
617; vs. operator= · 521 

copying pointers inside classes · 524 
copy-on-write (COW) · 527 
copyright notice, source code · 12 
correctness, const · 367 
costs, startup · 71 
counting: automatic, and arrays · 301; 

reference · 526 
cout · 90, 91 
cover design, book · 17 
CRC, class-responsibility-collaboration 

cards · 52 
creating: functions in C and C++ · 112; new 

object from an existing object · 462; 
objects on the heap · 554 

crisis, software · 8 
cstdlib standard header file · 188 
cstring standard header file · 269 
c-v qualifier · 366 

D 

data: defining storage for static members · 
424; initializing const members · 355; 
static area · 406; static members inside 
a class · 423 

data type: abstract · 129, 239; built-in · 
129; equivalence to class · 26; user-
defined · 129 

debugging · 78; assert() macro · 197; flags · 
194; preprocessor flags · 194; require.h · 
396; run-time · 195; using the 
preprocessor · 395 

decimal · 154 
declaration · 81; all possible combinations 

· 141; analyzing complex · 199; and 
definition · 243; class · 277; nested 
friend · 514; const · 340; forward · 151; 
function · 116, 233, 313; declaration 
syntax · 82; not essential in C · 228; 
header files · 242, 244; structure · 265; 
using, for namespaces · 421; variable; 



788  

declaration syntax · 83; point of 
declaration & scope · 145; virtual · 632; 
base-class declarations · 632; derived-
class declarations · 632 

decoration, name · 230, 231, 237, 442; 
overloading · 311 

decoupling · 628; via polymorphism · 39 
decrement · 128, 164; and increment 

operators · 506; overloading operator · 
493 

default: argument · 310, 311, 321; as a flag · 
329; vs. overloading · 324; constructor · 
304, 327, 408, 470, 563; inheritance · 
663; copy-constructor · 468; default 
values in templates · 703; keyword · 124 

defining: function pointer · 198; 
initializing at the same time · 290; 
initializing variables · 130; variable · 
145; anywhere in the scope · 145 

definition · 81; array · 338; block · 289; 
class · 277; complex function definitions 
· 198; const · 340; declaration · 243; 
duplicate class definitions and 
templates · 699; formatting pointer 
definitions · 342; function · 83; non-
inline template member function 
definitions · 699; object · 285; pure 
virtual function definitions · 651; 
storage for static data members · 424; 
structure definition in a header file · 
234 

delete · 164, 223, 553; calling delete for 
zero · 327; delete-expression · 553, 566; 
keyword · 42; multiple deletions of the 
same object · 553; new; and containers · 
692; for arrays · 563; overloading new 
and delete · 566; array · 573; class · 570; 
global · 568; void*, deleting is a bug · 
555; zero pointer · 553 

Demarco, Tom · 781 
dependency: makefile · 204; static 

initialization · 432 
deprecation, of ++ with a bool flag · 131 
dereference: * · 164; dereferencing 

function pointers · 200; pointer · 137 
derived: adding new virtual functions in 

the derived class · 652; types · 32; 
virtual keyword in derived-class 
declarations · 632 

design: analysis and design, object-
oriented · 44; book; cover · 17; design 
and production · 18; consulting, 

mentoring, and design and code 
walkthroughs from MindView · 16; five 
stages of object design · 54; inlines · 
380; mistakes · 279; pattern, iterator · 
719; patterns · 59, 70 

destructor · 287; automatic destructor calls 
· 297; with inheritance and composition 
· 592; doesn’t automatically inherit · 
600; explicit destructor call · 579; 
initialization and cleanup on the heap · 
548; inlines · 392; order of constructor 
and destructor calls · 592; pure virtual 
destructor · 668; scope · 288; static 
objects · 410; tracking creations and 
destructions · 709; virtual destructor · 
665, 707, 736, 740; virtual function 
calls in destructors · 670 

development, incremental · 614 
diagram: class inheritance diagrams · 617; 

inheritance · 40; use case · 49 
directive: preprocessor · 79; using, 

namespaces · 92, 418; header files · 247 
directly accessing structure · 240 
disallowing assignment · 533 
dispatching, double/multiple · 675 
division (/) · 156 
double · 155; dispatching, and multiple 

dispatching · 675; double precision 
floating point · 130; internal format · 
189 

do-while · 120 
downcast: static_cast · 681; type-safe · 678 
duplicate class definitions and templates · 

699 
dynamic: binding · 631; memory allocation 

· 223, 548; object creation · 42, 547, 
732, 738; type checking · 80 

dynamic_cast · 678 

E 

early binding · 38, 631, 641, 644 
edition, 2nd, what’s new in · 2 
efficiency · 371; C++ · 66; constructor · 

663; creating and returning objects · 
507; inlines · 392; memory allocation · 
567; references · 455; trap of premature 
optimization · 329; virtual functions · 
645 

elegance, in programming · 60 
Ellis, Margaret · 433 

  789 

else · 118 
embedded: object · 585; systems · 577 
encapsulation · 239, 270 
end sentinel, iterator · 724, 728, 736 
enum: and const in classes · 353; clarifying 

programs with · 179; hack · 358; 
incrementing · 180; keyword · 179; type 
checking · 180; untagged · 320, 358 

equivalence · 166; == · 158 
error: exception handling · 43; off-by-one · 

301; preventing with common header 
files · 244; reporting errors in book · 16; 
structure redeclaration · 245 

escape sequences · 94 
evaluation order, inline · 391 
evolution, in program development · 58 
exception handling · 43, 565; simple use · 

572 
executing code: after exiting main( ) · 411; 

before entering main( ) · 411 
execution: controlling · 117; point · 549 
exercise solutions · 12 
exit( ) · 397, 409 
explicit: cast · 678; C++ · 167; for 

upcasting · 681; keyword to prevent 
automatic type conversion · 534 

exponential · 154; notation · 130 
exponentiation, no operator · 517 
expressions, complicated, and operator 

overloading · 488 
extending a class during inheritance · 34 
extensible program · 633 
extern · 84, 147, 151, 335, 339, 412; const · 

335, 340; to link C code · 442 
external: linkage · 152, 338, 339, 412; 

references, during linking · 228 
extractor and inserter, overloading for 

iostreams · 518 
Extreme Programming (XP) · 61, 615, 779 

F 

factory, design pattern · 712 
false · 158, 163, 246; and true, in 

conditionals · 117; bool, true and false · 
131 

fan-out, automatic type conversion · 540 
Fibonacci · 725 
fibonacci( ) · 691 
file: header · 233, 242, 323; code 

organization · 248; const · 335; 

namespaces · 423; names · 749; reading 
and writing · 100; scope · 150, 152, 412; 
static · 150, 244, 414; structure 
definition in a header file · 234 

flags, debugging · 194 
floating point: float · 130, 155; float.h · 129; 

internal format · 189; number size 
hierarchy · 132; numbers · 130, 154; 
true and false · 159 

for: defining variables inside the control 
expression · 145; loop · 106, 121; loop 
counter, defined inside control 
expression · 291; variable lifetime in for 
loops · 292 

formatting pointer definitions · 342 
forward: declaration · 151; reference, inline 

· 391 
Fowler, Martin · 45, 58, 779 
fragile base-class problem · 276 
fragmentation, heap · 225, 567 
free store · 549 
free( ) · 223, 550, 553, 555, 569 
free-standing reference · 451 
friend · 263, 554; declaration of a nested 

friend class · 514; global function · 264; 
injection into namespace · 417; member 
function · 264; nested structure · 266; 
structure · 264 

fstream · 100 
function · 81; abstract base classes and 

pure virtual functions · 646; access · 
379; adding more to a design · 280; 
adding new virtual functions in the 
derived class · 652; address · 198, 391; 
argument · 138; const · 344; const 
reference · 351; reference · 451; array of 
pointers to · 201; assembly-language 
code generated; function call · 456; 
virtual function call · 642; binding, for a 
function call · 631, 641; body · 83; C 
library · 116; call operator( ) · 514; call 
overhead · 372, 377; called for side 
effect · 313; complicated function 
definitions · 198; constructors, behavior 
of virtual functions inside · 664; 
creating · 112; declaration · 116, 245, 
313; not essential in C · 228; required · 
233; syntax · 82; definition · 83; empty 
argument list, C vs. C++ · 114; 
expanding the function interface · 330; 
global · 234; friend · 264; helper, 
assembly · 457; inline · 372, 377, 646; 



790  

header files · 396; local class (class 
defined inside a function) · 428; 
member function · 28, 230; calling; a 
member function · 239; another 
member function from within a 
member function · 234; base-class 
functions · 588; const · 352, 359; friend 
· 264; inheritance and static member 
functions · 604; overloaded operator · 
487; selection · 234; objects · 515; 
overloading · 310; operator · 486; using 
declaration, namespaces · 421; 
overriding · 35; pass-by reference & 
temporary objects · 453; pointer; 
defining · 198; to member function · 
475; using a function pointer · 200; 
polymorphic function call · 637; 
prototyping · 113; pure virtual function 
definitions · 651; redefinition during 
inheritance · 588; return value; by 
reference · 451; returning a value · 115; 
type · 597; void · 115; signature · 597; 
stack frame for a function call · 458; 
static; class objects inside functions · 
408; member · 366, 429, 465; objects 
inside functions · 437; variables inside 
functions · 406; templates · 742; type · 
390; unique identifier for each · 310; 
variable argument list · 114; virtual 
function · 627, 629; constructor · 662; 
overriding · 632; picturing · 639 

G 

garbage collector · 42, 566 
generic algorithm · 742 
get and set functions · 381 
get( ) · 472 
getline( ): and string · 562; from iostreams 

library · 100 
Glass, Robert · 780 
global: friend function · 264; functions · 

234; new and delete, overloading · 568; 
object constructor · 410; operator, 
overloaded · 487; scope resolution · 
253; static initialization dependency of 
global objects · 432; variables · 147 

GNU C++ · 71 
Gorlen, Keith · 694 
goto · 125, 288, 293; non-local · 288 
greater than: > · 158; or equal to (>=) · 158 

guaranteed initialization · 294, 548 
guards, include, on header files · 757 
guidelines: argument passing · 455; C++ 

programming guidelines · 760; object 
development · 56 

H 

hack, enum · 358 
handle classes · 275, 277 
has-a · 30; composition · 604 
header file · 85, 116, 129, 233, 242, 323, 

335; code organization · 248; enforced 
use of in C++ · 243; formatting 
standard · 246; importance of using a 
common header file · 242; include 
guards · 246; inline definitions · 377; 
internal linkage · 412; multiple 
inclusion · 244; namespaces · 423; new 
file include format · 86; order of 
inclusion · 756; structure definition in a 
header file · 234; templates · 700, 707; 
using directives · 248 

heap · 42, 223; C heap · 550; compactor · 
225; creating objects · 554; 
fragmentation · 225, 567; guaranteeing 
that all objects are created on the heap · 
712; storage allocation · 549; simple 
example system · 570 

helper function, assembly · 457 
hexadecimal · 154 
hiding: function names inside a struct · 

230; implementation · 28, 260, 270, 
275; names; during inheritance · 595; 
during overloading · 658; variables 
from the enclosing scope · 292 

hierarchy, singly-rooted/object-based · 
672, 694 

high concept · 48 
high-level assembly language · 113 
hostile programmers · 276 
hybrid: C++, hybrid object-oriented 

language, and friend · 269; object-
oriented programming language · 7 

I 

identifier: unique for each function · 310; 
unique for each object · 238 

  791 

IEEE standard for floating-point numbers 
· 130, 189 

if-else · 118; defining variables inside the 
conditional · 145; statement · 164; 
ternary ?: · 164 

ifstream · 100, 606 
implementation · 27, 241; and interface, 

separating · 29, 261, 271, 380; hiding · 
28, 260, 270, 275; compile-time only · 
275 

implicit type conversion · 154 
in situ inline functions · 394 
include · 85; include guards, in header files 

· 246, 757; new include format · 86 
incomplete type specification · 265, 277 
increment · 128, 164; and decrement 

operators · 506; incrementing and 
enumeration · 180; overloading 
operator ++ · 493 

incremental: development · 614; 
programming · 614 

indeterminate argument list · 114 
indexing: array, using [ ] · 105, 183; zero · 

183 
inheritance · 31, 584, 586, 615; choosing 

composition vs. inheritance · 604; class 
inheritance diagrams · 617; combining 
composition & inheritance · 591; copy-
constructor · 471; diagram · 40; 
extending a class during · 34; 
extensibility · 633; function redefinition 
· 588; initialization · 663; is-a · 600, 
615; multiple · 586, 613, 621, 673, 695; 
name hiding · 658; operator 
overloading & inheritance · 612; order 
of construction · 665; private 
inheritance · 609; protected inheritance 
· 611; public inheritance · 587; static 
member functions · 604; subtyping · 
606; virtual function calls in 
destructors · 670; vs. composition · 
620, 740; VTABLE · 652 

initialization · 227, 356; aggregate · 201, 
301; array; elements · 301; to zero · 301; 
const data members · 355; const inside 
class · 353; constructor · 285; 
constructor initializer list · 353, 589, 
664; definition, simultaneous · 290; for 
loop · 106, 121; guaranteed · 294, 548; 
during inheritance · 663; initialization 
and cleanup on the heap · 548; 
initializer for a static variable of a built-

in type · 408; lazy · 704; member object 
initialization · 589; memberwise · 471, 
600; object using = · 521; static; array · 
425; const · 356; dependency · 432; 
member · 425; zero initialization by the 
linking-loading mechanism · 433; 
variables at point of definition · 130; vs. 
bitcopy · 460 

injection, friend into namespace · 417 
inline · 394, 662; class definition · 378; 

constructor efficiency · 663; 
constructors · 392; convenience · 393; 
definitions and header files · 377; 
destructors · 392; effectiveness · 390; 
efficiency · 392; function · 372, 377, 
646; header files · 396; in situ · 394; 
limitations · 390; non-inline template 
member function definitions · 699; 
order of evaluation · 391; templates · 
707 

in-memory compilation · 78 
input: reading by words · 106; standard · 

97 
insert( ) · 104 
inserter and extractor, overloading for 

iostreams · 518 
instance of a class · 24 
instantiation, template · 699 
int · 130 
interface · 241; base-class interface · 633; 

common interface · 647; defining the 
class · 62; expanding function interface 
· 330; for an object · 25; 
implementation, separation of · 29, 261, 
271, 380; implied by a template · 701; 
user · 51 

internal linkage · 152, 335, 339, 412 
interpreters · 77 
interrupt service routine (ISR) · 366, 458 
iostreams · 90; get( ) · 472; getline( ) · 100; 

global overloaded new & delete; 
interaction with · 572; limitations of · 
569; manipulators · 96; overloading << 
and >> · 518; reading and writing files · 
100; reading input · 97; setf( ) · 466; 
strings with iostreams · 100; width( ) · 
466 

is-a: inheritance · 604, 615; vs. is-like-a 
relationships · 35 

ISO Standard: C · 14; fundamentals · 112; 
C++ · 14; header files · 245 

istream, overloading operator >> · 520 



792  

iteration, in program development · 57 
iterator · 509, 719, 730; containers · 690; 

motivation · 738; nested class · 512; 
Standard C++ Library · 724 

J 

Jacobsen, Ivar · 779 
Java · 3, 15, 65, 71, 74, 588, 645, 694, 816 

K 

K&R C · 112 
keywords: #define · 245, 335; #endif · 245, 

757; #ifdef · 245; #include · 85; & · 134; 
( ), function call operator overloading · 
514; * · 136, 164; .* · 474; :: · 232, 253; ‘.’ 
(member selection operator) · 237; = · 
156; overloading · 505, 521; -> · 164; 
overloading · 509; struct member 
selection via pointer · 178; ->* · 474; 
overloading · 514; asm, for in-line 
assembly language · 173; auto · 149, 
414; bool · 125; true and false · 131; 
break · 122; case · 124; catch · 572; char 
· 96, 130, 132; class · 25, 31, 271; const · 
153, 333, 453; const_cast · 170; 
continue · 122; default · 124; delete · 42, 
223; do · 120; double · 130, 132; 
dynamic_cast · 678; else · 118; enum · 
179, 358; untagged · 320; explicit · 534; 
extern · 84, 147, 151, 335, 339, 412; for 
alternate linkage · 442; false · 117, 131; 
float · 130, 132; for · 106, 121; friend · 
263; goto · 125, 288, 293; if · 118; inline 
· 394, 662; int · 130; long · 132; long 
double · 132; long float (not legal) · 132; 
mutable · 363; namespace · 91, 414, 
757; new · 42, 223; operator · 486; 
private · 262, 270, 380, 610; protected · 
263, 270, 610; public · 261; register · 
149, 414; reinterpret_cast · 171; return · 
115; short · 132; signed · 132; signed 
char · 132; sizeof · 132, 172, 587; with 
struct · 240; static · 149, 350, 406; 
static_cast · 169, 679; struct · 175, 260; 
switch · 123, 293; template · 689, 696; 
this · 234, 286, 363, 380, 429; throw · 
572; true · 117, 131; try · 572; typedef · 

174; typeid · 680; union · 181, 318; 
anonymous · 320; unsigned · 132; using 
· 92, 417; virtual · 39, 595, 627, 632, 
637, 646, 665; void · 114; void& (illegal) 
· 143; void* · 142, 450; volatile · 155; 
while · 101, 119 

Koenig, Andrew · 376, 762, 778 

L 

Lajoie, Josee · 776 
Lakos, John · 756, 778 
language: C++ is a more strongly typed 

language · 450; C++, hybrid object-
oriented language, and friend · 269; 
hybrid object-oriented programming 
language · 7 

large programs, creation of · 78 
late binding · 38, 631; implementing · 636 
layout, object, and access control · 269 
lazy initialization · 704 
leading underscore, on identifiers 

(reserved) · 381 
leaks, memory · 224, 300 
left-shift operator << · 160 
less than: < · 158; or equal to <= · 158 
library · 76, 80, 88, 218; C · 219; code · 78; 

creating your own with the librarian · 
117; issues with different compilers · 
312; Standard C function; abort( ) · 
409; atexit( ) · 409; exit( ) · 409 

lifetime: for loop variables · 292; object · 
42, 547; temporary objects · 468 

limits.h · 129 
linkage · 152, 406; alternate linkage 

specification · 442; controlling · 412; 
external · 338, 339, 412; internal · 335, 
339, 412; no linkage · 153, 412; type-
safe · 313 

linked list · 248, 275, 298 
linker · 78, 79, 87; collision · 244; external 

references · 228; object file order · 88; 
pre-empting a library function · 89; 
searching libraries · 88, 117; unresolved 
references · 88 

Lippman, Stanley · 776 
list: constructor initializer · 353, 589; 

linked · 248, 275, 298 
Lister, Timothy · 781 
local: array · 186; classes · 428; static 

object · 410; variable · 138, 149 

  793 

logarithm · 466 
logical: and && · 166; const · 362; explicit 

bitwise and logical operators · 173; not ! 
· 163; operators · 158, 505; or || · 166 

long · 132, 135 
long double · 132, 155 
longjmp( ) · 288 
loop: for · 106; loop counter, defined 

inside control expression · 291; variable 
lifetime in for loops · 292; while · 101 

Love, Tom · 781 
lvalue · 156, 346, 698 

M 

machine instructions · 76 
macro: argument · 374; makefile · 205; 

preprocessor · 158, 192, 372; macros for 
parameterized types, instead of 
templates · 696; unsafe · 399; to 
generate classes · 594 

magic numbers, avoiding · 334 
main( ): basic form · 93; executing code 

after exiting · 411; executing code before 
entering · 411 

maintenance, program · 58 
make · 202; dependencies · 204; macros · 

205; suffix rules · 205; SUFFIXES · 206 
makefile · 203, 750 
malloc( ) · 223, 550, 552, 554, 569; 

behavior, not deterministic in time · 
555 

management obstacles · 71 
mangling, name · 230, 231, 237; and 

overloading · 311 
mathematical operators · 156 
Matson, Kris C. · 126 
member: defining storage for static data 

member · 424; initializing const data 
members · 355; member function · 28, 
230; calling · 239; calling another 
member function from within a 
member function · 234; const · 352, 
359; four member functions the 
compiler synthesizes · 619; friend · 264; 
non-inline template member function 
definitions · 699; return type · 597; 
selection · 234; signature · 597; static · 
366, 429, 465; and inheritance · 604; 
object · 30; object initialization · 589; 
overloaded member operator · 487; 

pointers to members · 473; selection 
operator · 237; static data member 
inside a class · 423; vs. non-member 
operators · 518 

memberwise: assignment · 532, 600; const 
· 362; initialization · 471, 600 

memcpy( ) · 560; standard C library 
function · 326 

memory · 133; allocation and efficiency · 
566; dynamic memory allocation · 223, 
548; leak · 224, 300; finding with 
overloaded new and delete · 573; from 
delete void* · 557; management; 
example of · 324; reference counting · 
526; memory manager overhead · 554; 
read-only (ROM) · 364; simple storage 
allocation system · 570 

memset( ) · 269, 326, 356, 560 
mentoring: and training · 71, 73; 

consulting, mentoring, and design and 
code walkthroughs from MindView · 16 

message,  sending · 25, 239, 636 
methodology, analysis and design · 44 
Meyers, Scott · 28, 760, 778 
MindView: public hands-on training 

seminars · 16; seminars-on-CD-ROM · 
16 

minimum size of a struct · 241 
mission statement · 47 
mistakes, and design · 279 
modulus (%) · 156 
Moo, Barbara · 778 
Mortensen, Owen · 477 
multiparadigm programming · 24 
multiple: dispatching · 675; inclusion of 

header files · 244; inheritance · 586, 
613, 621, 673, 695; multiple-declaration 
problem · 244 

multiplication (*) · 156 
multitasking and volatile · 365 
multi-way selection · 124 
Murray, Rob · 520, 760 
mutable · 363; bitwise vs. logical const · 

362 
mutators · 380 

N 

name: clashes · 229; collisions, in C · 68; 
decoration · 230, 231, 237, 442; no 
standard for · 312; overloading and · 



794  

311; file · 749; hiding, during 
inheritance · 595; mangling · 230, 231, 
237; and overloading · 311 

named constant · 153 
namespace · 91, 414, 757; aliasing · 415; 

ambiguity · 420; continuation · 415; 
header files · 399; injection of friends · 
417; referring to names in · 417; single 
name space for functions in C · 229; std 
· 92; unnamed · 416; using · 417; 
declaration · 421; and overloading · 
422; directive · 418; and header files · 
247 

naming the constructor · 285 
narrowing conversions · 170 
NDEBUG · 198 
needless recompilation · 276 
nested: class · 428; friend structure · 266; 

iterator class · 512, 721; scopes · 144; 
structures · 248 

new · 164, 223; and delete for arrays · 563; 
array of pointers · 558; delete and 
containers · 692; keyword · 42; new-
expression · 223, 552, 566; new-handler 
· 565; operator new · 552; constructor, 
memory exhaustion · 576; exhausting 
storage · 565; placement specifier · 577; 
overloading; can take multiple 
arguments · 577; new and delete · 566; 
for a class · 570; for arrays · 573; global 
· 568 

newline · 94 
no linkage · 153, 412 
non-local goto · 288 
not: bitwise · 159; equivalent != · 158; 

logical not ! · 173 
not_eq, != (logical not-equivalent) · 173 
nuance, and overloading · 310 
NULL references · 451, 479 
number, conversion to numbers from 

char* · 188 

O 

object · 23, 79; address of · 265; const 
member functions · 359; creating a new 
object from an existing object · 462; 
creating on the heap · 554; definition of 
· 238; definition point · 285; 
destruction of static · 410; dynamic 
object creation · 42, 738; file · 228; 

order during linking · 88; five stages of 
object design · 54; function objects · 
515; global constructor · 410; guidelines 
for object development · 56; interface to 
· 25; layout, and access control · 269; 
lifetime of an object · 42, 547; local 
static · 410; member · 30; module · 79; 
object-based · 238; object-based C++ · 
628; outside · 139; pass by value · 462; 
passing and returning large objects · 
457; scope, going out of · 143; size · 554; 
forced to be non-zero · 639; slicing · 
650, 655; static; class objects inside 
functions · 408, 437; initialization 
dependency · 432; temporary · 347, 
453, 468, 535; unique address, each 
object · 241 

object-based/singly-rooted hierarchy · 
672, 694 

object-oriented: analysis and design · 44; 
basic concepts of object-oriented 
programming (OOP) · 22; C++, hybrid 
object-oriented language, and friend · 
269; hybrid object-oriented 
programming language · 7 

obstacles, management · 71 
octal · 154 
off-by-one error · 301 
ofstream · 100, 594; as a static object · 411 
one-definition rule · 82, 244 
ones complement operator · 159 
OOP · 271; analysis and design · 44; basic 

characteristics · 24; basic concepts of 
object-oriented programming · 22; 
Simula programming language · 25; 
substitutability · 24; summarized · 239 

operator · 156; & · 134; ( ), function call · 
514; * · 136, 727, 730; ?: ternary if-else · 
164; [ ] · 508, 559, 698; ++ · 493; << 
overloading to use with ostream · 554; 
= · 505; as a private function · 533; 
automatic creation · 532; behavior of · 
522; doesn’t automatically inherit · 
600; memberwise assignment · 600; 
private · 709; vs. copy-constructor · 521; 
-> smart pointer · 509; ->* pointer to 
member · 514; >> and iostreams · 106; 
assignment · 505; auto-increment ++ · 
106; binary; operators · 160; overloaded 
· 487; overloading examples · 493; 
bitwise · 159; bool behavior with built-
in operators · 131; C & C++ · 127; 

  795 

casting · 166; choosing between 
member and non-member overloading, 
guidelines · 520; comma · 165, 508; 
complicated expressions with operator 
overloading · 488; explicit bitwise and 
logical operators · 173; fan-out in 
automatic type conversion · 540; global; 
overloaded · 487; scope resolution :: · 
253; increment ++ and decrement -- · 
506; logical · 158, 505; member 
selection · 237; member vs. non-
member · 518; new · 552; exhausting 
storage · 565; new-expression · 552; 
placement specifier · 577; no 
exponentiation · 517; no user-defined · 
517; ones-complement · 159; operators 
you can’t overload · 517; overloading · 
91, 450, 485, 732; [ ] · 519; arguments 
and return values · 505; check for self-
assignment · 505; inheritance · 612; 
member function · 487; operators that 
can be overloaded · 488; reflexivity · 
536; return type · 488; virtual functions 
· 675; pitfalls · 166; postfix increment & 
decrement · 493; precedence · 127; 
prefix increment & decrement · 493; 
preprocessor stringize operator # · 196; 
relational · 158; scope resolution :: · 
232, 253, 429; and namespaces · 417; 
for calling base-class functions · 588; 
shift · 160; sizeof · 172; type conversion 
overloading · 535; unary · 159, 163; 
overloaded · 487; overloading examples 
· 489; unusual overloaded · 508 

optimization: inlines · 379; return value 
optimization · 507 

optimizer: global · 79; peephole · 79 
or: | bitwise · 159; || logical · 158, 166, 173 
or_eq, |= (bitwise or-assignment) · 173 
order: access specifiers · 263; constructor 

and destructor calls · 592; constructor 
calls · 663 

organization, code · 248; header files · 244 
ostream · 327; overloading operator << · 

520, 554 
output, standard · 90 
outside object · 139 
overhead: assembly-language code 

generated by a virtual function · 642; 
function call · 372, 377; memory 
manager · 554; size overhead of virtual 
functions · 637 

overloading · 95; << and >> for iostreams · 
518; assignment · 521; choosing 
between members and non-members, 
guidelines · 520; constructor · 319; 
default arguments, difference with 
overloading · 324; fan-out in automatic 
type conversion · 540; function · 310; 
function call operator( ) · 514; global 
operators vs. member operators · 536; 
namespaces, using declaration · 421; 
new & delete · 566; new and delete; 
array · 573; class · 570; global · 568; on 
return values · 312; operator · 91; [ ] · 
519; ++ · 493; << to use with ostream · 
554; -> smart pointer operator · 509; -
>* pointer-to-member · 514; 
inheritance · 612; operators that can be 
overloaded · 488; operators that can’t 
be overloaded · 517; overloading 
reflexivity · 536; type conversion · 535; 
virtual functions · 675; operator · 450; 
overriding, difference · 658; pitfalls in 
automatic type conversion · 539 

overriding · 632; and overloading · 658; 
during inheritance · 595; function · 35 

overview, chapters · 7 
ownership · 599, 709, 713, 730; and 

containers · 299, 555, 671, 705 

P 

pair programming · 63 
paralysis, analysis · 45 
parsing · 79; parse tree · 79 
pass-by-reference · 140 
pass-by-value · 137, 462; and arrays · 186 
passing: and returning; addresses · 344; 

addresses, with const · 349; by value, C 
· 455; large objects · 457; by value · 344, 
450, 657; temporaries · 351 

patterns, design · 59, 70; iterator · 719 
performance issues · 72 
Perl · 89 
pitfall: automatic type conversion · 539; C · 

227; operators · 166; preprocessor · 372 
placeholder arguments · 323 
placement,  operator new placement 

specifier · 577 
planning, software development · 47 
Plauger, P.J. · 780 
Plum, Tom · 394, 751, 760 



796  

point, sequence · 286, 293 
pointer · 136, 153, 164, 276, 450; argument 

passing, vs. references · 351; arithmetic 
· 190; array · 184; making a pointer look 
like an array · 564; of pointers · 187; 
assignments, const and non-const · 
343; classes containing, and 
overloading operator= · 524; const · 171, 
340; formatting definitions · 342; 
introduction · 133; member, pointer to · 
473; function · 475; overloading · 514; 
pointer & reference upcasting · 622; 
pointer to function; array of · 201; 
defining · 198; using · 200; reference to 
pointer · 454; reference, difference · 
140; smart pointer · 730; square 
brackets · 185; stack · 294; struct, 
member selection with -> · 178; 
upcasting · 631; void · 450, 555, 559, 
562; void* · 142; vs. reference when 
modifying outside objects · 472 

polymorphism · 37, 597, 627, 681, 713, 741; 
containers · 738; polymorphic function 
call · 637; vs. downcasting · 678 

postconditions · 758 
post-decrement -- · 128 
postfix operator increment & decrement · 

493 
post-increment ++ · 128 
precedence, operator · 127 
preconditions · 758 
pre-decrement -- · 128 
prefix operator increment & decrement · 

493 
pre-increment ++ · 128 
preprocessor · 79, 85, 153; #define, #ifdef 

and #endif · 245; and scoping · 376; 
debugging flags · 194; macro · 158, 192, 
372; unsafe · 399; pitfall · 372; 
problems · 372; string concatenation · 
395; stringizing · 395; token pasting · 
395; value substitution · 334 

prerequisites, for this book · 22 
preventing automatic type conversion with 

the keyword explicit · 534 
printf( ) · 569 
private · 29, 262, 270, 377, 380, 610; copy-

constructor · 471; private inheritance · 
609 

problem space · 23 
process · 365 
production, and book design · 18 

program: maintenance · 58; structure 
when writing code · 93 

programmer, client · 28, 260 
programming: basic concepts of object-

oriented programming (OOP) · 22; 
Extreme Programming (XP) · 61, 615, 
779; in the large · 68; incremental 
process · 614; multiparadigm · 24; pair · 
63 

programs, calling other · 98 
project building tools · 203 
promotion · 228; automatic type 

conversion · 533 
protected · 29, 263, 270, 610; inheritance · 

611 
prototyping: function · 113; rapid · 59 
pseudoconstructor, for built-in types · 381, 

562, 589 
public · 29, 261; inheritance · 587; 

seminars · 5 
pure: abstract base classes and pure virtual 

functions · 646; C++, hybrid object-
oriented language, and friend · 269; 
substitution · 35; virtual destructor · 
668; virtual function definitions · 651 

push_back( ), for vector · 104 
push-down stack · 275 
putc( ) · 376 
puts( ) · 569 
Python · 54, 74, 77, 78, 89, 645, 702 

Q 

qualifier, c-v · 366 

R 

ranges, used by containers and iterators in 
the Standard C++ Library · 728 

rapid prototyping · 59 
reading: files · 100; input by words · 106 
read-only memory (ROM) · 364 
realloc( ) · 223, 550, 554 
recompiling C programs in C++ · 236 
recursion · 126, 459; and inline functions · 

392 
re-declaration of classes, preventing · 244 
redefining during inheritance · 595 
reducing recompilation · 276 

  797 

re-entrant · 458 
refactoring · 58 
reference · 153, 450, 451; C++ · 140; const · 

345, 453; and operator overloading · 
505; for argument passing · 351; 
efficiency · 455; external, during linking 
· 228; free-standing · 451; function · 
452; NULL · 451, 479; passing const · 
473; pointer & reference upcasting · 
622; pointer, reference to a pointer · 
454; reference counting · 526, 714; rules 
· 451; upcasting · 630; void reference 
(illegal) · 143; vs. pointer when 
modifying outside objects · 472 

reflexivity, in operator overloading · 536 
register · 414; variables · 149 
reinterpret_cast · 171 
relational operators · 158 
reporting errors in book · 16 
request, in OOP · 25 
require( ) · 698, 711, 757 
require.h · 237, 252, 756, 757; function 

definitions · 396 
requireArgs( ), from require.h · 252 
requirements analysis · 48 
resolution, scope: global · 253; nested 

structures · 278; operator :: · 232 
resolving references · 80 
return: by value · 450; by value as const, 

and operator overloading · 507; const 
value · 345; constructor return value · 
287; efficiency when creating and 
returning objects · 507; function return 
values, references · 451; keyword · 115; 
operator; overloaded return type · 488; 
overloading arguments and return 
values · 505; overloading on return 
values · 312; passing and returning by 
value, C · 455; passing and returning 
large objects · 457; references to local 
objects · 452; type · 597; value · 81; 
from a function · 115; optimization · 
507; semantics · 350; void · 115 

RETURN, assembly-language · 458 
reusability · 29 
reuse · 55; code reuse · 583; existing class 

libraries · 70; source code reuse with 
templates · 696; templates · 689 

right-shift operator (>>) · 160 
ROM, read-only memory, ROMability · 

364 
rotate · 162; bit manipulation · 162 

RTTI, run-time type identification · 655, 
680 

rule, makefile · 204 
Rumbaugh, James · 779 
run-time: access control · 275; binding · 

631; debugging flags · 195; type 
identification (RTTI) · 655, 680 

rvalue · 156, 698 

S 

safe union · 319 
Saks, Dan · 66, 394, 751, 760 
scenario · 49 
scheduling · 51 
Schwarz, Jerry · 434 
scope · 143, 288, 339, 554; consts · 337; 

file · 339, 412; going out of · 143; hide 
variables from the enclosing scope · 
292; preprocessor · 376; resolution; 
global · 253; nested structures · 278; 
operator :: · 232, 429; and namespaces · 
417; for calling base-class functions · 
588; scoped variable · 42; static 
member initialization · 425; storage 
allocation · 549; use case · 57 

second edition, what’s new · 2 
security · 276 
selection: member function · 234; multi-

way · 124 
self-assignment, checking for in operator 

overloading · 505, 523 
semantics, return value · 350 
seminars: on CD-ROM, from MindView · 

16; public · 5; training seminars from 
MindView · 16 

sending a message · 25, 239, 636 
sentinel, end · 728, 736 
separate compilation · 78, 80; and make · 

202 
separation of interface and 

implementation · 29, 261, 271 
sequence point · 286, 293 
set: <set> standard header file · 711; and 

get functions · 381; container class from 
the Standard C++ Library · 711 

setf( ), iostreams · 466 
setjmp( ) · 288 
SGI (Silicon Graphics) STL project · 103 
shape: example · 32; hierarchy · 682 
shift operators · 160 



798  

short · 132 
side effect · 156, 164 
signature · 597 
signed · 132; char · 132 
Silicon Graphics (SGI) STL project · 103 
Simula programming language · 25, 271 
single-precision floating point · 130 
singly-rooted/object-based hierarchy · 

672, 694 
size: built-in types · 129; object · 554; 

forced to be nonzero · 639; size_t · 568; 
storage · 220; struct · 240; word · 133 

sizeof · 132, 172, 302, 587; char · 173; 
struct · 240 

slicing: object slicing · 655 
Smalltalk · 24, 80, 645, 694, 702 
smart pointer operator -> · 509, 730 
software: crisis · 8; development 

methodology · 45 
solution space · 23 
solutions, exercise · 12 
source code availability · 12 
source-level debugger · 78 
space: problem · 23; solution · 23 
specification: incomplete type · 265, 277; 

system specification · 48 
specifier: access specifiers · 29, 261; no 

required order in a class · 263; to 
modify basic built-in types · 132 

specifying storage allocation · 147 
sstream standard header file · 520 
stack · 41, 248, 294, 549; function-call 

stack frame · 458; pointer · 406; push-
down · 275; storage allocation · 549; 
variable on the stack · 225 

Stack example class · 248, 274, 298, 388, 
597, 672, 690, 705, 728 

Standard C++ Library: algorithms · 742; 
insert( ) · 104; push_front( ) · 104; 
ranges, used by containers and iterators 
· 728 

standard for each class header file · 246 
standard input · 97 
standard library · 89 
standard library header file: cassert · 197; 

cstdlib · 188; cstring · 269; set · 711; 
sstream · 520; typeinfo · 680 

standard output · 90 
Standard Template Library (STL) · 103 
standards, C++ Committee · 14 
startup costs · 71 
startup module · 89 

Stash example class · 219, 230, 274, 294, 
314, 322, 385, 558, 707 

statement: continuation over several lines · 
97; mission · 47 

static · 149, 406, 711; array · 692; 
initialization · 425; class objects inside 
functions · 408; confusion when using · 
412; const · 356; data; area · 406; 
members inside a class · 423, 430; 
defining storage for · 424; destruction 
of objects · 410; file · 414; initialization 
dependency · 432; initialization to zero · 
433; initializer for a variable of a built-
in type · 408; local object · 410; 
member functions · 366, 429, 465; 
inheritance and · 604; objects inside 
functions · 437; storage · 41, 406; area · 
549; type checking · 80; variables in 
functions as return values · 350; 
variables inside functions · 406 

static_cast · 169, 679; downcast · 681 
std namespace · 92 
step, in for loop · 121 
STL: Silicon Graphics (SGI) STL project · 

103; Standard Template Library · 103 
storage: allocation · 292; const and extern · 

336; auto storage class specifier · 414; 
const, in C vs. C++ · 339; defining 
storage for static data members · 424; 
extern storage class specifier · 412; 
register storage class specifier · 414; 
running out of · 565; simple allocation 
system · 570; sizes · 220; static · 41, 
406; area · 549; storage class specifier · 
412; storage class · 412 

storing type information · 637 
Straker, David · 755 
string · 94, 227; class, Standard C++ · 99; 

concatenation · 96; copying a file into · 
102; getline( ) · 562; preprocessor # to 
turn a variable name into a string · 196; 
preprocessor string concatenation · 395 

stringizing, preprocessor · 395; macros · 
192; operator # · 196 

stringstream · 520 
strong typing, C++ is a more strongly 

typed language · 450 
Stroustrup, Bjarne · 4, 433, 696, 748, 776, 

779 
struct · 175, 219, 238, 260; aggregate 

initialization · 302; array of · 183; 
hiding function names inside · 230; 

  799 

minimum size · 241; pointer selection of 
member with -> · 178; size of · 240 

structure: aggregate initialization and 
structures · 302; declaration · 245, 265; 
definition in a header file · 234; friend · 
264; nested · 248; redeclaring · 245 

subobject · 585, 587, 588, 604 
substitutability, in OOP · 24 
substitution: principle · 35; value · 334 
subtraction (-) · 156 
subtyping · 606 
suffix rules, makefile · 205 
SUFFIXES, makefile · 206 
sugar, syntactic · 485 
switch · 123, 293; defining variables inside 

the selector statement · 145 
syntax: function declaration syntax · 82; 

operator overloading · 487; sugar, with 
operator overloading · 485; variable 
declaration syntax · 83 

synthesized: default constructor, behavior 
of · 305; member functions that are 
automatically created by the compiler · 
600, 619 

system specification · 48 
system() · 98 

T 

tab · 95 
table-driven code · 201 
tag name · 220 
tag, comment for linking · 148 
template · 689, 696; argument list · 700; 

basic usage · 104; class · 742; constants 
and default values in templates · 703; 
container class templates and virtual 
functions · 743; function · 742; 
generated classes · 699; header file · 
700, 707; implies an interface · 701; 
inline · 707; instantiation · 699; 
multiple definitions · 700; non-inline 
template member function definitions · 
699; preprocessor macros for 
parameterized types, instead of 
templates · 696; Standard Template 
Library (STL) · 103; Stash and Stack 
examples as templates · 705; weak 
typing · 701 

temporary object · 347, 468, 535; bugs · 
348; function references · 453; passing 

a temporary object to a function · 351; 
return value · 508 

ternary operator · 164 
testing: automated · 62; Extreme 

Programming (XP) · 61 
Thinking in C: Foundations for Java and 

C++ CD ROM · 2, 112, 776 
Thinking in C++ Volume 2, what’s in it 

and how to get it · 3 
this · 286, 363, 380, 429, 468, 552, 642; 

address of current object · 234 
throw · 572 
time, Standard C library · 384 
time_t · 384 
token pasting, preprocessor · 395 
toupper( ), unexpected results · 376 
trailing arguments only can be defaults · 

322 
training · 69; and mentoring · 71, 73; 

seminars from MindView · 16 
translation unit · 228, 432 
true · 158, 163, 166, 246; and false, in 

conditionals · 117; bool, true and false · 
131 

try block · 572 
type: abstract data type · 239; automatic 

type conversion · 533; preventing with 
the keyword explicit · 534; with 
operator overloading · 535; base · 32; 
basic built-in · 129; cast · 135; checking · 
80, 83, 153, 167; stricter in C++ · 227; 
conversion · 228; implicit · 154; 
creation, composite · 174; data type 
equivalence to class · 26; derived · 32; 
function type · 390; improved type 
checking · 236; incomplete type 
specification · 265, 277; inheritance, is-
a · 615; initialization of built-in types 
with ‘constructors’ · 354; run-time type 
identification (RTTI) · 655, 680; storing 
type information · 637; type checking; 
for enumerations · 180; for unions · 181; 
type-safe linkage · 313; user-defined · 
76, 239; weak typing · 38, 702; C++ via 
templates · 701 

typedef · 174, 177, 220, 231, 414 
typefaces, book · 18 
typeid · 680 
typeinfo standard header file · 680 
type-safe downcast · 678 



800  

U 

UML · 54; indicating composition · 30; 
Unified Modeling Language · 27, 779 

unary: examples of all overloaded unary 
operators · 489; minus - · 163; 
operators · 159, 163; overloaded · 487; 
plus + · 163 

underscore, leading, on identifiers 
(reserved) · 381 

Unified Modeling Language (UML) · 27, 
779 

union: additional type checking · 181; 
anonymous · 320; file scope · 321; 
difference between a union and a class · 
319; member functions and access 
control · 318; safe · 319; saving memory 
with · 181 

unit, translation · 228 
unnamed: arguments · 114; namespace · 

416 
unresolved references, during linking · 88 
unsigned · 132 
untagged enum · 320, 358 
unusual operator overloading · 508 
upcasting · 40, 615, 629, 636, 678, 738; by 

value · 644; copy-constructor · 617; 
explicit cast for upcasting · 681; pointer 
· 631; and reference upcasting · 622; 
reference · 630; type information, lost · 
622 

use case · 49; iteration · 57; scope · 57 
user interface · 51 
user-defined data type · 76, 129, 239 
using keyword, for namespaces · 92, 417; 

declaration · 421, 757; directive · 92, 
418, 757; header files · 247; namespace 
std · 247 

V 

value: constant · 154; minimum and 
maximum for built-in types · 129; pass-
by-value · 137; preprocessor value 
substitution · 334; return · 81; 
returning by value · 352 

varargs · 243; variable argument list · 243 
variable: argument list · 114; varargs · 243; 

automatic · 42, 149, 153; declaration 
syntax · 83; defining · 145; file scope · 

150; global · 147; going out of scope · 
143; hide from the enclosing scope · 
292; initializer for a static variable of a 
built-in type · 408; lifetime, in for loops 
· 292; local · 138, 149; point of 
definition · 289; register · 149; scoped · 
42; stack · 225; turning name into a 
string · 196 

vector · 740; assignment · 108; of change · 
59; push_back( ) · 104; Standard C++ 
Library · 102 

virtual destructor · 665, 707, 736, 740; 
pure virtual destructor · 668 

virtual function · 595, 627, 629, 646, 741; 
adding new virtual functions in the 
derived class · 652; and dynamic_cast · 
679; assembly-language code generated 
by a virtual function · 642; 
constructors, behavior of virtual 
functions inside · 662, 664; destructors, 
behavior of virtual functions inside · 
670; efficiency · 645; late binding · 637; 
operator overloading and virtual 
functions · 675; overriding · 632; 
picturing virtual functions · 639; pure 
virtual function; and abstract base 
classes · 646; definitions · 651; size 
overhead of virtual functions · 637; 
virtual keyword · 39, 632; in base-class 
declarations · 632; in derived-class 
declarations · 632 

virtual memory · 552 
visibility · 406 
void: argument list · 114; casting void 

pointers · 235; keyword · 114; pointer · 
220, 450, 555, 559, 562; reference 
(illegal) · 143 

void* · 142, 170, 220; bugs · 235; 
containers and ownership · 671; delete, 
a bug · 555 

volatile · 155, 365; casting with const_cast 
· 170 

Volume 2, Thinking in C++ · 3 
vpointer, abbreviated as VPTR · 637 
VPTR · 637, 640, 642, 662, 665; 

installation by the constructor · 643 
VTABLE · 637, 640, 642, 648, 653, 662, 

665; inheritance and the VTABLE · 652 

  801 

W 

Waldrop, M. Mitchell · 781 
weak: typing · 702; in C++ via templates · 

701; weakly typed language · 38 
while loop · 101, 119; defining variables 

inside the control expression · 145 
width( ), iostreams · 466 
wild-card · 46 
Will-Harris, Daniel · 17, 18 
word size · 133 
writing files · 100 

X 

xor ^ bitwise exclusive-or · 159, 173 
xor_eq, ^= bitwise exclusive-or-

assignment · 173 
XP, Extreme Programming · 61 

Z 

zero indexing · 183 

 



  802 

 

Public  

C++ Seminars 
Check www.BruceEckel.com  
for in-depth details and the date  
and location of the next: 

Hands-On C++ Seminar 
�� Based on this book 

�� Get a solid grounding in Standard C++ fundamentals 

�� Includes in-class programming exercises 

�� Personal attention during exercises 

Intermediate C++ Seminar 
�� Based on Volume 2 of this book (downloadable at 

www.BruceEckel.com) 

�� In-depth coverage of the Standard C++ Library 

�� Strings, containers, iterators, algorithms 

�� In-depth templates & exception handling  

Advanced C++ Topics 
�� Based on advanced topics in Volume 2 of this book 

�� Design patterns 

�� Building robust systems 

�� Creating testing & debugging frameworks 

 

Subscribe to the free newsletter 

to be automatically informed  

of upcoming seminars 

Also visit www.BrucEckel.com for: 

��Consulting Services 

��Exercise solutions for this book 
  803 

 

Seminars-on-CD-ROM 

If you like the Thinking in C  

Seminar-on-CD packaged with  

this book, then you’ll also like: 

uce Eckel’s  
ands-On C++ Seminar  
ultimedia CD ROM 
s like coming to the seminar! 

ailable at www.BruceEckel.com 
Overhead slides and synchronized audio recorded by Bruce Eckel 

All the lectures from the Hands-On C++ Seminar 

Based on this book 

Get a solid grounding in Standard C++ Fundamentals 

Just play it to see and hear the lectures! 

Lectures are indexed so you can rapidly locate the discussion  
of any subject 

Details and sample lecture can be found on the Web site 

ee www.BruceEckel.com  
r other Seminars-on-CD ROM 

The Intermediate C++ Seminar 
Advanced C++ Topics 



  804 

End-User License Agreement for Microsoft Software 
 
IMPORTANT-READ CAREFULLY: This Microsoft End-User License 
Agreement ("EULA") is a legal agreement between you (either an 
individual or a single entity) and Microsoft Corporation for the 
Microsoft software product included in this package, which includes 
computer software and may include associated media, printed 
materials, and "online" or electronic documentation ("SOFTWARE 
PRODUCT"). The SOFTWARE PRODUCT also includes any updates and 
supplements to the original SOFTWARE PRODUCT provided to you by 
Microsoft. By installing, copying, downloading, accessing or otherwise 
using the SOFTWARE PRODUCT, you agree to be bound by the terms 
of this EULA. If you do not agree to the terms of this EULA, do not 
install, copy, or otherwise use the SOFTWARE PRODUCT. 
 
SOFTWARE PRODUCT LICENSE 
 
The SOFTWARE PRODUCT is protected by copyright laws and 
international copyright treaties, as well as other intellectual property 
laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.  
1. GRANT OF LICENSE. This EULA grants you the following rights: 
1.1 License Grant. Microsoft grants to you as an individual, a personal 
nonexclusive license to make and use copies of the SOFTWARE 
PRODUCT for the sole purposes of evaluating and learning how to use 
the SOFTWARE PRODUCT, as may be instructed in accompanying 
publications or documentation. You may install the software on an 
unlimited number of computers provided that you are the only 
individual using the SOFTWARE PRODUCT.  
1.2 Academic Use. You must be a "Qualified Educational User" to use 
the SOFTWARE PRODUCT in the manner described in this section. To 
determine whether you are a Qualified Educational User, please 
contact the Microsoft Sales Information Center/One Microsoft 
Way/Redmond, WA 98052-6399 or the Microsoft subsidiary serving 
your country. If you are a Qualified Educational User, you may either: 
(i) exercise the rights granted in Section 1.1, OR  
(ii) if you intend to use the SOFTWARE PRODUCT solely for 
instructional purposes in connection with a class or other educational 
program, this EULA grants you the following alternative license 
models:  
(A) Per Computer Model. For every valid license you have acquired for 
the SOFTWARE PRODUCT, you may install a single copy of the 
SOFTWARE PRODUCT on a single computer for access and use by an 
unlimited number of student end users at your educational institution, 

  805 

provided that all such end users comply with all other terms of this 
EULA, OR  
(B) Per License Model. If you have multiple licenses for the SOFTWARE 
PRODUCT, then at any time you may have as many copies of the 
SOFTWARE PRODUCT in use as you have licenses, provided that such 
use is limited to student or faculty end users at your educational 
institution and provided that all such end users comply with all other 
terms of this EULA. For purposes of this subsection, the SOFTWARE 
PRODUCT is "in use" on a computer when it is loaded into the 
temporary memory (i.e., RAM) or installed into the permanent memory 
(e.g., hard disk, CD ROM, or other storage device) of that computer, 
except that a copy installed on a network server for the sole purpose 
of distribution to other computers is not "in use". If the anticipated 
number of users of the SOFTWARE PRODUCT will exceed the number 
of applicable licenses, then you must have a reasonable mechanism or 
process in place to ensure that the number of persons using the 
SOFTWARE PRODUCT concurrently does not exceed the number of 
licenses. 
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.  
• Limitations on Reverse Engineering, Decompilation, and 
Disassembly. You may not reverse engineer, decompile, or disassemble 
the SOFTWARE PRODUCT, except and only to the extent that such 
activity is expressly permitted by applicable law notwithstanding this 
limitation. 
• Separation of Components. The SOFTWARE PRODUCT is licensed as 
a single product. Its component parts may not be separated for use on 
more than one computer. 
• Rental. You may not rent, lease or lend the SOFTWARE PRODUCT. 
• Trademarks. This EULA does not grant you any rights in connection 
with any trademarks or service marks of Microsoft. 
• Software Transfer. The initial user of the SOFTWARE PRODUCT may 
make a one-time permanent transfer of this EULA and SOFTWARE 
PRODUCT only directly to an end user. This transfer must include all of 
the SOFTWARE PRODUCT (including all component parts, the media 
and printed materials, any upgrades, this EULA, and, if applicable, the 
Certificate of Authenticity). Such transfer may not be by way of 
consignment or any other indirect transfer. The transferee of such one-
time transfer must agree to comply with the terms of this EULA, 
including the obligation not to further transfer this EULA and 
SOFTWARE PRODUCT. 
• No Support. Microsoft shall have no obligation to provide any 
product support for the SOFTWARE PRODUCT. 
• Termination. Without prejudice to any other rights, Microsoft may 
terminate this EULA if you fail to comply with the terms and conditions 



806  

of this EULA. In such event, you must destroy all copies of the 
SOFTWARE PRODUCT and all of its component parts. 
3.  COPYRIGHT. All title and intellectual property rights in and to the 
SOFTWARE PRODUCT (including but not limited to any images, 
photographs, animations, video, audio, music, text, and "applets" 
incorporated into the SOFTWARE PRODUCT), the accompanying 
printed materials, and any copies of the SOFTWARE PRODUCT are 
owned by Microsoft or its suppliers. All title and intellectual property 
rights in and to the content which may be accessed through use of the 
SOFTWARE PRODUCT is the property of the respective content owner 
and may be protected by applicable copyright or other intellectual 
property laws and treaties. This EULA grants you no rights to use such 
content. All rights not expressly granted are reserved by Microsoft. 
4. BACKUP COPY. After installation of one copy of the SOFTWARE 
PRODUCT pursuant to this EULA, you may keep the original media on 
which the SOFTWARE PRODUCT was provided by Microsoft solely for 
backup or archival purposes. If the original media is required to use 
the SOFTWARE PRODUCT on the COMPUTER, you may make one copy 
of the SOFTWARE PRODUCT solely for backup or archival purposes. 
Except as expressly provided in this EULA, you may not otherwise 
make copies of the SOFTWARE PRODUCT or the printed materials 
accompanying the SOFTWARE PRODUCT. 
5. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE 
PRODUCT and documentation are provided with RESTRICTED RIGHTS. 
Use, duplication, or disclosure by the Government is subject to 
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in 
Technical Data and Computer Software clause at DFARS 252.227-7013 
or subparagraphs (c)(1) and (2) of the Commercial Computer 
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. 
Manufacturer is Microsoft Corporation/One Microsoft Way/Redmond, 
WA 98052-6399. 
6. EXPORT RESTRICTIONS. You agree that you will not export or re-
export the SOFTWARE PRODUCT, any part thereof, or any process or 
service that is the direct product of the SOFTWARE PRODUCT (the 
foregoing collectively referred to as the "Restricted Components"), to 
any country, person, entity or end user subject to U.S. export 
restrictions. You specifically agree not to export or re-export any of the 
Restricted Components (i) to any country to which the U.S. has 
embargoed or restricted the export of goods or services, which 
currently include, but are not necessarily limited to Cuba, Iran, Iraq, 
Libya, North Korea, Sudan and Syria, or to any national of any such 
country, wherever located, who intends to transmit or transport the 
Restricted Components back to such country; (ii) to any end-user who 
you know or have reason to know will utilize the Restricted 

  807 

Components in the design, development or production of nuclear, 
chemical or biological weapons; or (iii) to any end-user who has been 
prohibited from participating in U.S. export transactions by any federal 
agency of the U.S. government. You warrant and represent that 
neither the BXA nor any other U.S. federal agency has suspended, 
revoked, or denied your export privileges. 
7. NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN 
SUPPORT FOR PROGRAMS WRITTEN IN JAVA. JAVA TECHNOLOGY IS 
NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR 
INTENDED FOR USE OR RESALE AS ON-LINE CONTROL EQUIPMENT IN 
HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, 
SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT 
NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, 
DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH 
THE FAILURE OF JAVA TECHNOLOGY COULD LEAD DIRECTLY TO 
DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR 
ENVIRONMENTAL DAMAGE. 
 
MISCELLANEOUS 
 
If you acquired this product in the United States, this EULA is governed 
by the laws of the State of Washington.  
If you acquired this product in Canada, this EULA is governed by the 
laws of the Province of Ontario, Canada. Each of the parties hereto 
irrevocably attorns to the jurisdiction of the courts of the Province of 
Ontario and further agrees to commence any litigation which may arise 
hereunder in the courts located in the Judicial District of York, Province 
of Ontario.  
If this product was acquired outside the United States, then local law 
may apply. 
Should you have any questions concerning this EULA, or if you desire 
to contact Microsoft for any reason, please contact  
Microsoft, or write: Microsoft Sales Information Center/One Microsoft 
Way/Redmond, WA 98052-6399.  
 
LIMITED WARRANTY 
 
LIMITED WARRANTY. Microsoft warrants that (a) the SOFTWARE 
PRODUCT will perform substantially in accordance with the 
accompanying written materials for a period of ninety (90) days from 
the date of receipt, and (b) any Support Services provided by Microsoft 
shall be substantially as described in applicable written materials 
provided to you by Microsoft, and Microsoft support engineers will 
make commercially reasonable efforts to solve any problem. To the 



808  

extent allowed by applicable law, implied warranties on the SOFTWARE 
PRODUCT, if any, are limited to ninety (90) days. Some 
states/jurisdictions do not allow limitations on duration of an implied 
warranty, so the above limitation may not apply to you. 
CUSTOMER REMEDIES. Microsoft's and its suppliers' entire liability and 
your exclusive remedy shall be, at Microsoft's option, either (a) return 
of the price paid, if any, or (b) repair or replacement of the SOFTWARE 
PRODUCT that does not meet Microsoft's Limited Warranty and that is 
returned to Microsoft with a copy of your receipt. This Limited 
Warranty is void if failure of the SOFTWARE PRODUCT has resulted 
from accident, abuse, or misapplication. Any replacement SOFTWARE 
PRODUCT will be warranted for the remainder of the original warranty 
period or thirty (30) days, whichever is longer. Outside the United 
States, neither these remedies nor any product support services 
offered by Microsoft are available without proof of purchase from an 
authorized international source. 
NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY 
APPLICABLE LAW, MICROSOFT AND ITS SUPPLIERS DISCLAIM ALL 
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES 
OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, TITLE AND NON-INFRINGEMENT, WITH REGARD TO THE 
SOFTWARE PRODUCT, AND THE PROVISION OF OR FAILURE TO 
PROVIDE SUPPORT SERVICES. THIS LIMITED WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM 
STATE/JURISDICTION TO STATE/JURISDICTION. 
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY 
APPLICABLE LAW, IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS 
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR 
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT 
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS 
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER 
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO 
USE THE SOFTWARE PRODUCT OR THE FAILURE TO PROVIDE 
SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFT'S 
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE 
LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU 
FOR THE SOFTWARE PRODUCT OR U.S.$5.00; PROVIDED, HOWEVER, 
IF YOU HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES 
AGREEMENT, MICROSOFT'S ENTIRE LIABILITY REGARDING SUPPORT 
SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. 
BECAUSE SOME STATES/JURISDICTIONS DO NOT ALLOW THE 

  809 

EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION 
MAY NOT APPLY TO YOU. 
0495 Part No. 64358



  810 

LICENSE AGREEMENT FOR MindView, Inc.'s 
Thinking in C: Foundations for C++ & Java CD-ROM 
by Chuck Allison 
This CD is provided together with the book "Thinking in C++ 2nd 
edition, Volume 1." 
 
READ THIS AGREEMENT BEFORE USING THIS "Thinking in C: 
Foundations for C++ & Java" (Hereafter called "CD"). BY USING THE 
CD YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF 
THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS AND 
CONDITIONS OF THIS AGREEMENT, IMMEDIATELY RETURN THE 
UNUSED CD FOR A FULL REFUND OF MONIES PAID, IF ANY. 
 
©2000 MindView Inc. All rights reserved. Printed in the U.S. 
 
SOFTWARE REQUIREMENTS 
The purpose of this CD is to provide the Content, not the associated 
software necessary to view the Content. The Content of this CD is in 
HTML for viewing with Microsoft Internet Explorer 4 or newer, and uses 
Microsoft Sound Codecs available in Microsoft's Windows Media Player 
for Windows or the Macintosh. It is your responsibility to correctly 
install the appropriate Microsoft software for your system.  
 
The text, images, and other media included on this CD ("Content") and 
their compilation are licensed to you subject to the terms and 
conditions of this Agreement by MindView Inc., having a place of 
business at 5343 Valle Vista, La Mesa, CA 91941. Your rights to use 
other programs and materials included on the CD are also governed by 
separate agreements distributed with those programs and materials on 
the CD (the "Other Agreements"). In the event of any inconsistency 
between this Agreement and the Other Agreements, this Agreement 
shall govern. By using this CD, you agree to be bound by the terms 
and conditions of this Agreement. MindView Inc. owns title to the 
Content and to all intellectual property rights therein, except insofar as 
it contains materials that are proprietary to third-party suppliers. All 
rights in the Content except those expressly granted to you in this 
Agreement are reserved to MindView Inc. and such suppliers as their 
respective interests may appear. 
 
1. LIMITED LICENSE 
MindView Inc. grants you a limited, nonexclusive, nontransferable 
license to use the Content on a single dedicated computer (excluding 
network servers). This Agreement and your rights hereunder shall 
automatically terminate if you fail to comply with any provisions of this 

  811 

Agreement or any of the Other Agreements. Upon such termination, 
you agree to destroy the CD and all copies of the CD, whether lawful 
or not, that are in your possession or under your control.  
 
2. ADDITIONAL RESTRICTIONS 
 
a. You shall not (and shall not permit other persons or entities to) 
directly or indirectly, by electronic or other means, reproduce (except 
for archival purposes as permitted by law), publish, distribute, rent, 
lease, sell, sublicense, assign, or otherwise transfer the Content or any 
part thereof. 
 
b. You shall not (and shall not permit other persons or entities to) use 
the Content or any part thereof for any commercial purpose or merge, 
modify, create derivative works of, or translate the Content. 
 
c. You shall not (and shall not permit other persons or entities to) 
obscure MindView's or its suppliers copyright, trademark, or other 
proprietary notices or legends from any portion of the Content or any 
related materials. 
 
3. PERMISSIONS 

a. Except as noted in the Contents of the CD, you must treat this 
software just like a book. However, you may copy it onto a computer 
to be used and you may make archival copies of the software for the 
sole purpose of backing up the software and protecting your 
investment from loss. By saying, "just like a book," MindView, Inc. 
means, for example, that this software may be used by any number of 
people and may be freely moved from one computer location to 
another, so long as there is no possibility of its being used at one 
location or on one computer while it is being used at another. Just as a 
book cannot be read by two different people in two different places at 
the same time, neither can the software be used by two different 
people in two different places at the same time. 

b. You may show or demonstrate the un-modified Content in a live 
presentation, live seminar, or live performance as long as you attribute 
all material of the Content to MindView, Inc. 

c. Other permissions and grants of rights for use of the CD must be 
obtained directly from MindView, Inc. at http://www.MindView.net. 
(Bulk copies of the CD may also be purchased at this site.)  



812  

DISCLAIMER OF WARRANTY 
 
The Content and CD are provided "AS IS" without warranty of any 
kind, either express or implied, including, without limitation, any 
warranty of merchantability and fitness for a particular purpose. The 
entire risk as to the results and performance of the CD and Content is 
assumed by you. MindView Inc. and its suppliers assume no 
responsibility for defects in the CD, the accuracy of the Content, or 
omissions in the CD or the Content. MindView Inc. and its suppliers do 
not warrant, guarantee, or make any representations regarding the 
use, or the results of the use, of the product in terms of correctness, 
accuracy, reliability, currentness, or otherwise, or that the Content will 
meet your needs, or that operation of the CD will be uninterrupted or 
error-free, or that any defects in the CD or Content will be corrected. 
MindView Inc. and its suppliers shall not be liable for any loss, 
damages, or costs arising from the use of the CD or the interpretation 
of the Content. Some states do not allow exclusion or limitation of 
implied warranties or limitation of liability for incidental or 
consequential damages, so all of the above limitations or exclusions 
may not apply to you. 
 
In no event shall MindView Inc. or its suppliers' total liability to you for 
all damages, losses, and causes of action (whether in contract, tort, or 
otherwise) exceed the amount paid by you for the CD. 

MindView, Inc., and Prentice-Hall, Inc. specifically disclaim the implied 
warrantees of merchantability and fitness for a particular purpose. No 
oral or written information or advice given by MindView, Inc., Prentice-
Hall, Inc., their dealers, distributors, agents or employees shall create 
a warrantee. You may have other rights, which vary from state to 
state. 

Neither MindView, Inc., Bruce Eckel, Chuck Allison, Prentice Hall, nor 
anyone else who has been involved in the creation, production or 
delivery of the product shall be liable for any direct, indirect, 
consequential, or incidental damages (including damages for loss of 
business profits, business interruption, loss of business information, 
and the like) arising out of the use of or inability to use the product 
even if MindView, Inc., has been advised of the possibility of such 
damages. Because some states do not allow the exclusion or limitation 
of liability for consequential or incidental damages, the above 
limitation may not apply to you. 

  813 

This CD is provided as a supplement to the book "Thinking in C++ 2nd 
edition." The sole responsibility of Prentice-Hall will be to provide a 
replacement CD in the event that the one that came with the book is 
defective. This replacement warrantee shall be in effect for a period of 
sixty days from the purchase date. MindView, Inc. does not bear any 
additional responsibility for the CD. 

NO TECHNICAL SUPPORT IS PROVIDED WITH THIS CD ROM 

The following are trademarks of their respective companies in the U.S. 
and may be protected as trademarks in other countries: Sun and the 
Sun Logo, Sun Microsystems, Java, all Java-based names and logos 
and the Java Coffee Cup are trademarks of Sun Microsystems; Internet 
Explorer, the Windows Media Player, DOS, Windows 95, and Windows 
NT are trademarks of Microsoft. 



814  

Thinking in C: Foundations for Java & C++ 

Multimedia Seminar-on-CD ROM  
©2000 MindView, Inc. All rights reserved.  
WARNING: BEFORE OPENING THE DISC PACKAGE, CAREFULLY 

READ THE TERMS AND CONDITIONS OF THE LICENSE 

AGREEMENT  & WARANTEE LIMITATION ON THE PREVIOUS 

PAGES. 

The CD ROM packaged with this book is a multimedia seminar 
consisting of synchronized slides and audio lectures. The goal of 
this seminar is to introduce you to the aspects of C that are 
necessary for you to move on to C++ or Java, leaving out the 
unpleasant parts that C programmers must deal with on a day-to-
day basis but that the C++ and Java languages steer you away from. 
The CD also contains this book in HTML form along with the source 
code for the book. 

This CD ROM will work with Windows (with a sound system) and 
the Macintosh. However, you must:  

1. Install the most recent version of Microsoft’s Internet Explorer. 
Because of the features provided on the CD, it will NOT work 
with Netscape Navigator. The Internet Explorer software 
for both the Macintosh and Windows 9X/NT is 
included on the CD. 

2. Install Microsoft’s Windows Media Player. Unfortunately this is 
only allowed to be distributed directly from Microsoft’s Web 
site, so it is NOT included on the CD. You will need to go to 
http://www.microsoft.com/windows/mediaplayer and 
follow the instructions or links there to download and install the 
Media Player for your particular platform (you may need to find 
and follow an extra link for the Macintosh version). Please note 
that Microsoft sometimes changes the location of Web pages on 
their site and in that case you’ll need to use their searching 
capability to find the media player. 

At this point you should be able to play the lectures on the CD. 
Using the Internet Explorer Web browser, open the file 
Install.html that you’ll find on the CD. This will introduce you to 
the CD and provide further instructions about the use of the CD. 


